RNA-binding protein Nrd1 plays a role in RNA polymerase II transcription termination. In this study, we showed that the orthologous NrdA is important in global mRNA expression and secondary metabolism in Aspergillus species. We constructed an nrdA conditional expression strain using the Tet-On system in Aspergillus luchuenesis mut. kawachii. Downregulation of nrdA caused a severe growth defect, indicating that NrdA is essential for the proliferation of A. kawachii. Parallel RNA-sequencing and RNA immunoprecipitation-sequencing analysis identified potential NrdA-interacting transcripts, corresponding to 32% of the predicted protein-coding genes of A. kawachii. Subsequent gene ontology analysis suggested that overexpression of NrdA affects the production of secondary metabolites. To clarify this, we constructed Aspergillus nidulans, Aspergillus fumigatus, and Aspergillus oryzae strains overexpressing NrdA in the early developmental stage. Overexpression of NrdA reduced the production of sterigmatocystin and penicillin in A. nidulans, as well as that of helvolic acid and pyripyropene A in A. fumigatus. Moreover, it increased the production of kojic acid and reduced the production of penicillin in A. oryzae. These effects were accompanied by almost consistent changes in the mRNA levels of relevant genes. Collectively, these results suggest that NrdA is the essential RNA-binding protein, which plays a significant role in global gene expression and secondary metabolism in Aspergillus species.IMPORTANCENrd1, a component of the Nrd1-Nab3-Sen1 complex, is an essential RNA-binding protein involved in transcriptional termination in yeast. However, its role in filamentous fungi has not been studied. In this study, we characterized an orthologous NrdA in the Aspergillus species, identified potential NrdA-interacting mRNA, and investigated the effect of overexpression of NrdA on mRNA expression in Aspergillus luchuensis mut. kawachii. The results indicated that NrdA controls global gene expression involved in versatile metabolic pathways, including the secondary metabolic process, at least in the early developmental stage. We demonstrated that NrdA overexpression significantly affected the production of secondary metabolites in Aspergillus nidulans, Aspergillus oryzae, and Aspergillus fumigatus. Our findings are of importance to the fungal research community because the secondary metabolism is an industrially and clinically important aspect for the Aspergillus species.
{"title":"Overexpression of the RNA-binding protein NrdA affects global gene expression and secondary metabolism in <i>Aspergillus</i> species.","authors":"Chihiro Kadooka, Kosuke Izumitsu, Teigo Asai, Kentaro Hiramatsu, Kazuki Mori, Kayu Okutsu, Yumiko Yoshizaki, Kazunori Takamine, Masatoshi Goto, Hisanori Tamaki, Taiki Futagami","doi":"10.1128/msphere.00849-24","DOIUrl":"https://doi.org/10.1128/msphere.00849-24","url":null,"abstract":"<p><p>RNA-binding protein Nrd1 plays a role in RNA polymerase II transcription termination. In this study, we showed that the orthologous NrdA is important in global mRNA expression and secondary metabolism in <i>Aspergillus</i> species. We constructed an <i>nrdA</i> conditional expression strain using the Tet-On system in <i>Aspergillus luchuenesis</i> mut. <i>kawachii</i>. Downregulation of <i>nrdA</i> caused a severe growth defect, indicating that NrdA is essential for the proliferation of <i>A. kawachii</i>. Parallel RNA-sequencing and RNA immunoprecipitation-sequencing analysis identified potential NrdA-interacting transcripts, corresponding to 32% of the predicted protein-coding genes of <i>A. kawachii</i>. Subsequent gene ontology analysis suggested that overexpression of NrdA affects the production of secondary metabolites. To clarify this, we constructed <i>Aspergillus nidulans</i>, <i>Aspergillus fumigatus</i>, and <i>Aspergillus oryzae</i> strains overexpressing NrdA in the early developmental stage. Overexpression of NrdA reduced the production of sterigmatocystin and penicillin in <i>A. nidulans</i>, as well as that of helvolic acid and pyripyropene A in <i>A. fumigatus</i>. Moreover, it increased the production of kojic acid and reduced the production of penicillin in <i>A. oryzae</i>. These effects were accompanied by almost consistent changes in the mRNA levels of relevant genes. Collectively, these results suggest that NrdA is the essential RNA-binding protein, which plays a significant role in global gene expression and secondary metabolism in <i>Aspergillus</i> species.IMPORTANCENrd1, a component of the Nrd1-Nab3-Sen1 complex, is an essential RNA-binding protein involved in transcriptional termination in yeast. However, its role in filamentous fungi has not been studied. In this study, we characterized an orthologous NrdA in the <i>Aspergillus</i> species, identified potential NrdA-interacting mRNA, and investigated the effect of overexpression of NrdA on mRNA expression in <i>Aspergillus luchuensis</i> mut. <i>kawachii</i>. The results indicated that NrdA controls global gene expression involved in versatile metabolic pathways, including the secondary metabolic process, at least in the early developmental stage. We demonstrated that NrdA overexpression significantly affected the production of secondary metabolites in <i>Aspergillus nidulans</i>, <i>Aspergillus oryzae</i>, and <i>Aspergillus fumigatus</i>. Our findings are of importance to the fungal research community because the secondary metabolism is an industrially and clinically important aspect for the <i>Aspergillus</i> species.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0084924"},"PeriodicalIF":3.7,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143033755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-24DOI: 10.1128/msphere.00502-24
Irene Ramos
In 2020, I featured two articles in the "mSphere of Influence" commentary series that had profound implications for the field of immunology and helped shape my research perspective. These articles were "Global Analyses of Human Immune Variation Reveal Baseline Predictors of Postvaccination Responses" by Tsang et al. (Cell 157:499-513, 2014, https://doi.org/10.1016/j.cell.2014.03.031) and "A crowdsourced analysis to identify ab initio molecular signatures predictive of susceptibility to viral infection" by Fourati et al. (Nat Commun 9:4418, 2018, https://doi.org/10.1038/s41467-018-06735-8). From these topics, the identification of signatures predictive of immune responses to vaccination has greatly advanced and pivoted our understanding of how the immune state at the time of vaccination predicts (and potentially determines) vaccination outcomes. While most of this work has been done using influenza vaccination as a model, pan-vaccine signatures have been also identified. The key implications are their potential use to predict who will respond to vaccinations and to inform strategies for fine-tuning the immune setpoint to enhance immune responses. In addition, investigations in this area led us to understand that immune perturbations, such as acute infections and vaccinations, can remodel the baseline immune state and alter immune responses to future exposures, expanding this exciting field of research. These processes are likely epigenetically encoded, and some examples have already been identified and are discussed in this minireview. Therefore, further research is essential to gain a deeper understanding of how immune exposures modify the epigenome and transcriptome, influence the immune setpoint in response to vaccination, and define its exposure-specific characteristics.
{"title":"Predictive signatures of immune response to vaccination and implications of the immune setpoint remodeling.","authors":"Irene Ramos","doi":"10.1128/msphere.00502-24","DOIUrl":"https://doi.org/10.1128/msphere.00502-24","url":null,"abstract":"<p><p>In 2020, I featured two articles in the \"mSphere of Influence\" commentary series that had profound implications for the field of immunology and helped shape my research perspective. These articles were \"Global Analyses of Human Immune Variation Reveal Baseline Predictors of Postvaccination Responses\" by Tsang et al. (Cell 157:499-513, 2014, https://doi.org/10.1016/j.cell.2014.03.031) and \"A crowdsourced analysis to identify ab initio molecular signatures predictive of susceptibility to viral infection\" by Fourati et al. (Nat Commun 9:4418, 2018, https://doi.org/10.1038/s41467-018-06735-8). From these topics, the identification of signatures predictive of immune responses to vaccination has greatly advanced and pivoted our understanding of how the immune state at the time of vaccination predicts (and potentially determines) vaccination outcomes. While most of this work has been done using influenza vaccination as a model, pan-vaccine signatures have been also identified. The key implications are their potential use to predict who will respond to vaccinations and to inform strategies for fine-tuning the immune setpoint to enhance immune responses. In addition, investigations in this area led us to understand that immune perturbations, such as acute infections and vaccinations, can remodel the baseline immune state and alter immune responses to future exposures, expanding this exciting field of research. These processes are likely epigenetically encoded, and some examples have already been identified and are discussed in this minireview. Therefore, further research is essential to gain a deeper understanding of how immune exposures modify the epigenome and transcriptome, influence the immune setpoint in response to vaccination, and define its exposure-specific characteristics.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0050224"},"PeriodicalIF":3.7,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143033756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-23DOI: 10.1128/msphere.00709-24
Kimberly VanderWaal, Nakarin Pamornchainavakul, Mariana Kikuti, Jianqiang Zhang, Michael Zeller, Giovani Trevisan, Stephanie Rossow, Mark Schwartz, Daniel C L Linhares, Derald J Holtkamp, João Paulo Herrera da Silva, Cesar A Corzo, Julia P Baker, Tavis K Anderson, Dennis N Makau, Igor A D Paploski
<p><p>Existing genetic classification systems for porcine reproductive and respiratory syndrome virus type 2 (PRRSV-2), such as restriction fragment length polymorphisms and sub-lineages, are unreliable indicators of close genetic relatedness or lack sufficient resolution for epidemiological monitoring routinely conducted by veterinarians. Here, we outline a fine-scale classification system for PRRSV-2 genetic variants in the United States. Based on >25,000 U.S. open reading frame 5 (ORF5) sequences, sub-lineages were divided into genetic variants using a clustering algorithm. Through classifying new sequences every 3 months and systematically identifying new variants across 8 years, we demonstrated that prospective implementation of the variant classification system produced robust, reproducible results across time and can dynamically accommodate new genetic diversity arising from virus evolution. From 2015 to 2023, 118 variants were identified, with ~48 active variants per year, of which 26 were common (detected >50 times). Mean within-variant genetic distance was 2.4% (max: 4.8%). The mean distance to the closest related variant was 4.9%. A routinely updated webtool (https://stemma.shinyapps.io/PRRSLoom-variants/) was developed and is publicly available for end users to assign newly generated sequences to a variant ID. This classification system relies on U.S. sequences from 2015 onward; further efforts are required to extend this system to older or international sequences. Finally, we demonstrate how variant classification can better discriminate between previous and new strains on a farm, determine possible sources of new introductions into a farm/system, and track emerging variants regionally. Adoption of this classification system will enhance PRRSV-2 epidemiological monitoring, research, and communication, and improve industry responses to emerging genetic variants.IMPORTANCEThe development and implementation of a fine-scale classification system for PRRSV-2 genetic variants represent a significant advancement for monitoring PRRSV-2 occurrence in the swine industry. Based on systematically applied criteria for variant identification using national-scale sequence data, this system addresses the shortcomings of existing classification methods by offering higher resolution and adaptability to capture emerging variants. This system provides a stable and reproducible method for classifying PRRSV-2 variants, facilitated by a freely available and regularly updated webtool for use by veterinarians and diagnostic labs. Although currently based on U.S. PRRSV-2 ORF5 sequences, this system can be expanded to include sequences from other countries, paving the way for a standardized global classification system. By enabling accurate and improved discrimination of PRRSV-2 genetic variants, this classification system significantly enhances the ability to monitor, research, and respond to PRRSV-2 outbreaks, ultimately supporting better management and cont
{"title":"PRRSV-2 variant classification: a dynamic nomenclature for enhanced monitoring and surveillance.","authors":"Kimberly VanderWaal, Nakarin Pamornchainavakul, Mariana Kikuti, Jianqiang Zhang, Michael Zeller, Giovani Trevisan, Stephanie Rossow, Mark Schwartz, Daniel C L Linhares, Derald J Holtkamp, João Paulo Herrera da Silva, Cesar A Corzo, Julia P Baker, Tavis K Anderson, Dennis N Makau, Igor A D Paploski","doi":"10.1128/msphere.00709-24","DOIUrl":"https://doi.org/10.1128/msphere.00709-24","url":null,"abstract":"<p><p>Existing genetic classification systems for porcine reproductive and respiratory syndrome virus type 2 (PRRSV-2), such as restriction fragment length polymorphisms and sub-lineages, are unreliable indicators of close genetic relatedness or lack sufficient resolution for epidemiological monitoring routinely conducted by veterinarians. Here, we outline a fine-scale classification system for PRRSV-2 genetic variants in the United States. Based on >25,000 U.S. open reading frame 5 (ORF5) sequences, sub-lineages were divided into genetic variants using a clustering algorithm. Through classifying new sequences every 3 months and systematically identifying new variants across 8 years, we demonstrated that prospective implementation of the variant classification system produced robust, reproducible results across time and can dynamically accommodate new genetic diversity arising from virus evolution. From 2015 to 2023, 118 variants were identified, with ~48 active variants per year, of which 26 were common (detected >50 times). Mean within-variant genetic distance was 2.4% (max: 4.8%). The mean distance to the closest related variant was 4.9%. A routinely updated webtool (https://stemma.shinyapps.io/PRRSLoom-variants/) was developed and is publicly available for end users to assign newly generated sequences to a variant ID. This classification system relies on U.S. sequences from 2015 onward; further efforts are required to extend this system to older or international sequences. Finally, we demonstrate how variant classification can better discriminate between previous and new strains on a farm, determine possible sources of new introductions into a farm/system, and track emerging variants regionally. Adoption of this classification system will enhance PRRSV-2 epidemiological monitoring, research, and communication, and improve industry responses to emerging genetic variants.IMPORTANCEThe development and implementation of a fine-scale classification system for PRRSV-2 genetic variants represent a significant advancement for monitoring PRRSV-2 occurrence in the swine industry. Based on systematically applied criteria for variant identification using national-scale sequence data, this system addresses the shortcomings of existing classification methods by offering higher resolution and adaptability to capture emerging variants. This system provides a stable and reproducible method for classifying PRRSV-2 variants, facilitated by a freely available and regularly updated webtool for use by veterinarians and diagnostic labs. Although currently based on U.S. PRRSV-2 ORF5 sequences, this system can be expanded to include sequences from other countries, paving the way for a standardized global classification system. By enabling accurate and improved discrimination of PRRSV-2 genetic variants, this classification system significantly enhances the ability to monitor, research, and respond to PRRSV-2 outbreaks, ultimately supporting better management and cont","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0070924"},"PeriodicalIF":3.7,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143024152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-16DOI: 10.1128/msphere.01049-24
Xiaoyun Huang, April E Johnson, Joshua N Brehm, Thi Van Thanh Do, Thomas A Auchtung, Hugh C McCullough, Armando I Lerma, Sigmund J Haidacher, Kathleen M Hoch, Thomas D Horvath, Joseph A Sorg, Anthony M Haag, Jennifer M Auchtung
Treatment with antibiotics is a major risk factor for Clostridioides difficile infection, likely due to depletion of the gastrointestinal microbiota. Two microbiota-mediated mechanisms thought to limit C. difficile colonization include the conversion of conjugated primary bile salts into secondary bile salts toxic to C. difficile growth and competition between the microbiota and C. difficile for limiting nutrients. Using a continuous flow model that simulates the nutrient conditions of the distal colon, we investigated how treatment with 6 clinically used antibiotics influenced susceptibility to C. difficile infection in 12 different microbial communities cultivated from healthy individuals. Antibiotic treatment reduced microbial richness; disruption varied by antibiotic class and microbiota composition, but did not correlate with C. difficile susceptibility. Antibiotic treatment also disrupted microbial bile salt metabolism, increasing levels of the primary bile salt, cholate. However, changes in bile salt did not correlate with increased C. difficile susceptibility. Furthermore, bile salts were not required to inhibit C. difficile colonization. We tested whether amino acid fermentation contributed to the persistence of C. difficile in antibiotic-treated communities. C. difficile mutants unable to use proline as an electron acceptor in Stickland fermentation due to disruption of proline reductase (prdB-) had significantly lower levels of colonization than wild-type strains in four of six antibiotic-treated communities tested. The inability to ferment glycine or leucine as electron acceptors, however, was not sufficient to limit colonization in any communities. The data provide further support for the importance of bile salt-independent mechanisms in regulating the colonization of C. difficile.IMPORTANCEClostridioides difficile is one of the leading causes of hospital-acquired infections and antibiotic-associated diarrhea. Several potential mechanisms through which the microbiota can limit C. difficile infection have been identified and are potential targets for new therapeutics. However, it is unclear which mechanisms of C. difficile inhibition represent the best targets for the development of new therapeutics. These studies demonstrate that in a complex in vitro model of C. difficile infection, colonization resistance is independent of microbial bile salt metabolism. Instead, the ability of C. difficile to colonize is dependent upon its ability to metabolize proline, although proline-dependent colonization is context dependent and is not observed in all disrupted communities. Altogether, these studies support the need for further work to understand how bile-independent mechanisms regulate C. difficile colonization.
{"title":"<i>Clostridioides difficile</i> colonization is not mediated by bile salts and utilizes Stickland fermentation of proline in an <i>in vitro</i> model.","authors":"Xiaoyun Huang, April E Johnson, Joshua N Brehm, Thi Van Thanh Do, Thomas A Auchtung, Hugh C McCullough, Armando I Lerma, Sigmund J Haidacher, Kathleen M Hoch, Thomas D Horvath, Joseph A Sorg, Anthony M Haag, Jennifer M Auchtung","doi":"10.1128/msphere.01049-24","DOIUrl":"https://doi.org/10.1128/msphere.01049-24","url":null,"abstract":"<p><p>Treatment with antibiotics is a major risk factor for <i>Clostridioides difficile</i> infection, likely due to depletion of the gastrointestinal microbiota. Two microbiota-mediated mechanisms thought to limit <i>C. difficile</i> colonization include the conversion of conjugated primary bile salts into secondary bile salts toxic to <i>C. difficile</i> growth and competition between the microbiota and <i>C. difficile</i> for limiting nutrients. Using a continuous flow model that simulates the nutrient conditions of the distal colon, we investigated how treatment with 6 clinically used antibiotics influenced susceptibility to <i>C. difficile</i> infection in 12 different microbial communities cultivated from healthy individuals. Antibiotic treatment reduced microbial richness; disruption varied by antibiotic class and microbiota composition, but did not correlate with <i>C. difficile</i> susceptibility. Antibiotic treatment also disrupted microbial bile salt metabolism, increasing levels of the primary bile salt, cholate. However, changes in bile salt did not correlate with increased <i>C. difficile</i> susceptibility. Furthermore, bile salts were not required to inhibit <i>C. difficile</i> colonization. We tested whether amino acid fermentation contributed to the persistence of <i>C. difficile</i> in antibiotic-treated communities. <i>C. difficile</i> mutants unable to use proline as an electron acceptor in Stickland fermentation due to disruption of proline reductase (<i>prdB</i>-) had significantly lower levels of colonization than wild-type strains in four of six antibiotic-treated communities tested. The inability to ferment glycine or leucine as electron acceptors, however, was not sufficient to limit colonization in any communities. The data provide further support for the importance of bile salt-independent mechanisms in regulating the colonization of <i>C. difficile</i>.IMPORTANCE<i>Clostridioides difficile</i> is one of the leading causes of hospital-acquired infections and antibiotic-associated diarrhea. Several potential mechanisms through which the microbiota can limit <i>C. difficile</i> infection have been identified and are potential targets for new therapeutics. However, it is unclear which mechanisms of <i>C. difficile</i> inhibition represent the best targets for the development of new therapeutics. These studies demonstrate that in a complex <i>in vitro</i> model of <i>C. difficile</i> infection, colonization resistance is independent of microbial bile salt metabolism. Instead, the ability of <i>C. difficile</i> to colonize is dependent upon its ability to metabolize proline, although proline-dependent colonization is context dependent and is not observed in all disrupted communities. Altogether, these studies support the need for further work to understand how bile-independent mechanisms regulate <i>C. difficile</i> colonization.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0104924"},"PeriodicalIF":3.7,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-14DOI: 10.1128/msphere.01008-24
Duhita Sant, Akilah I Mateen, Raymond F Sullivan, Jeffrey M Boyd, Valerie J Carabetta, Srujana S Yadavalli, Jennifer S Sun
The annual fall meeting for the Theobald Smith Society was held in November 2024 on the campus of Rutgers University-New Brunswick. Eighty-six branch members from across New Jersey attended the meeting, composed of undergraduate, graduate, and postdoctoral trainees, faculty members, and government and industry professionals. This report highlights the breadth and diversity of research conducted by American Society for Microbiology members in the Theobald Smith Society and celebrates their groundbreaking discoveries.
{"title":"Emerging themes in microbial stress response and mechanistic insights: key findings from the fall 2024 ASM Theobald Smith Society meeting.","authors":"Duhita Sant, Akilah I Mateen, Raymond F Sullivan, Jeffrey M Boyd, Valerie J Carabetta, Srujana S Yadavalli, Jennifer S Sun","doi":"10.1128/msphere.01008-24","DOIUrl":"10.1128/msphere.01008-24","url":null,"abstract":"<p><p>The annual fall meeting for the Theobald Smith Society was held in November 2024 on the campus of Rutgers University-New Brunswick. Eighty-six branch members from across New Jersey attended the meeting, composed of undergraduate, graduate, and postdoctoral trainees, faculty members, and government and industry professionals. This report highlights the breadth and diversity of research conducted by American Society for Microbiology members in the Theobald Smith Society and celebrates their groundbreaking discoveries.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0100824"},"PeriodicalIF":3.7,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142979307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-10DOI: 10.1128/msphere.00537-24
Rajalakshmy Ayilam Ramachandran, Rossella Titone, Joelle T Abdallah, Mahad Rehman, Mou Cao, Hamid Baniasadi, Danielle M Robertson
Pseudomonas aeruginosa (PA) is an opportunistic gram-negative pathogen that can infect the cornea, leading to permanent vision loss. Autophagy is a cannibalistic process that drives cytoplasmic components to the lysosome for degradation and/or recycling. Autophagy has been shown to play a key role in the removal of intracellular pathogens and, as such, is an important component of the innate immune response. Autophagy is intimately linked to mitochondria, organelles that mediate energy homeostasis, immune signaling, and cell death. Using a combination of biochemical and imaging approaches, we investigated the effects of PA on autophagy and host cell mitochondria in relation to pro-inflammatory cytokine expression. Using a standard invasive test strain of PA, we show that PA infection triggers dephosphorylation of the mechanistic target of rapamycin in corneal epithelial cells, leading to the induction of autophagy through ULK1/2. This was associated with robust mitochondrial depolarization, changes in mitochondrial ultrastructure, and an increase in IL-6 and IL-8 secretion. PA infection was also associated with an increase in purine metabolism by host cells. Treatment with the ULK1/2 inhibitor, MRT68921, which blocks phagophore formation, attenuated levels of intracellular PA in corneal epithelial cells. Unexpectedly, treatment of cells with MRT68921 blocked PA-induced mitochondrial depolarization and downregulated purine and pyrimidine metabolism. While MRT68921 attenuated the PA-induced increase in IL-6, it further increased IL-8 and neutrophil chemotaxis. This was associated with the nuclear internalization of NFκB. Taken together, these findings highlight a novel mechanism whereby the inhibition of ULK1/2 activity confers mitoprotection during PA infection in corneal epithelial cells.IMPORTANCEPseudomonas aeruginosa (PA) is a common pathogen that can cause severe disease in man. In the eye, PA infection can lead to blindness. In this study, we show that PA induces autophagy, a mechanism whereby cells recycle damaged proteins and organelles. PA infection further depolarizes mitochondria, leading to the release of pro-inflammatory mediators. Unexpectedly, the inhibition of ULK1/2, an enzyme involved in the early stages of autophagy, not only inhibits autophagy but enhances mitochondrial polarization. This leads to a reduction in intracellular levels of PA and changes in the inflammatory milieu. Together, these data suggest that the inhibition of ULK1/2 may be mitoprotective in corneal epithelial cells during PA infection.
{"title":"Inhibition of Unc-51-like-kinase is mitoprotective during <i>Pseudomonas aeruginosa</i> infection in corneal epithelial cells.","authors":"Rajalakshmy Ayilam Ramachandran, Rossella Titone, Joelle T Abdallah, Mahad Rehman, Mou Cao, Hamid Baniasadi, Danielle M Robertson","doi":"10.1128/msphere.00537-24","DOIUrl":"https://doi.org/10.1128/msphere.00537-24","url":null,"abstract":"<p><p><i>Pseudomonas aeruginosa</i> (PA) is an opportunistic gram-negative pathogen that can infect the cornea, leading to permanent vision loss. Autophagy is a cannibalistic process that drives cytoplasmic components to the lysosome for degradation and/or recycling. Autophagy has been shown to play a key role in the removal of intracellular pathogens and, as such, is an important component of the innate immune response. Autophagy is intimately linked to mitochondria, organelles that mediate energy homeostasis, immune signaling, and cell death. Using a combination of biochemical and imaging approaches, we investigated the effects of PA on autophagy and host cell mitochondria in relation to pro-inflammatory cytokine expression. Using a standard invasive test strain of PA, we show that PA infection triggers dephosphorylation of the mechanistic target of rapamycin in corneal epithelial cells, leading to the induction of autophagy through ULK1/2. This was associated with robust mitochondrial depolarization, changes in mitochondrial ultrastructure, and an increase in IL-6 and IL-8 secretion. PA infection was also associated with an increase in purine metabolism by host cells. Treatment with the ULK1/2 inhibitor, MRT68921, which blocks phagophore formation, attenuated levels of intracellular PA in corneal epithelial cells. Unexpectedly, treatment of cells with MRT68921 blocked PA-induced mitochondrial depolarization and downregulated purine and pyrimidine metabolism. While MRT68921 attenuated the PA-induced increase in IL-6, it further increased IL-8 and neutrophil chemotaxis. This was associated with the nuclear internalization of NF<sub>κ</sub>B. Taken together, these findings highlight a novel mechanism whereby the inhibition of ULK1/2 activity confers mitoprotection during PA infection in corneal epithelial cells.IMPORTANCE<i>Pseudomonas aeruginosa</i> (PA) is a common pathogen that can cause severe disease in man. In the eye, PA infection can lead to blindness. In this study, we show that PA induces autophagy, a mechanism whereby cells recycle damaged proteins and organelles. PA infection further depolarizes mitochondria, leading to the release of pro-inflammatory mediators. Unexpectedly, the inhibition of ULK1/2, an enzyme involved in the early stages of autophagy, not only inhibits autophagy but enhances mitochondrial polarization. This leads to a reduction in intracellular levels of PA and changes in the inflammatory milieu. Together, these data suggest that the inhibition of ULK1/2 may be mitoprotective in corneal epithelial cells during PA infection.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0053724"},"PeriodicalIF":3.7,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142952311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-19Epub Date: 2024-11-12DOI: 10.1128/msphere.00308-24
Kassapa Ellepola, Robert C Shields, Jessica K Kajfasz, Hua Zhang, Jose A Lemos, Hui Wu, Zezhang T Wen
Our recent studies have shown that deficiency of MecA in Streptococcus mutans significantly affects cell division, growth, and biofilm formation. In this study, an in vitro mixed-species model, proteomics, and affinity pull-down assays were used to further characterize the MecA-mediated regulation in S. mutans. The results showed that compared with the wild type, UA159, the mecA mutant significantly reduced its production of glucans and weakened its ability to facilitate mixed-species biofilm formation. Relative to the wild type, the mecA mutant also displayed unique characteristics, including colony morphology, growth rate, and biofilm formation that did not fully resemble any of the clpP, clpX, clpE, clpCE, and clpC individual or combinational mutants. Deletion of mecA was shown to result in alteration of >337 proteins, including down expression of GtfBC&D and adhesin P1. More than 277 proteins were differentially expressed in response to clpP deletion, including increased expression of GtfB. By cross-referencing the two proteomes, a distinctive set of proteins was found to be altered in the mecA mutant, indicating a ClpP-independent role of MecA in the regulation of S. mutans. When analyzed using affinity pull-down, ClpC, ClpX, ClpE, and CcpA were among the members identified in the MecA-associated complex. Further analysis using a bacterial two-hybrid system confirmed CcpA, ClpX, and ClpE as members of the MecA interactome. These results further suggest that MecA in S. mutans is more than an adapter of the Clp-proteolytic machinery, although the mechanism that underlies the Clp-independent regulation and its impact on S. mutans pathophysiology await further investigation.
Importance: MecA is known as an adaptor protein that works in concerto with ATPase ClpC and protease ClpP in the regulated proteolysis machinery. The results presented here provide further evidence that MecA in S. mutans, a keystone cariogenic bacterium, plays a significant role in its ability to facilitate mixed-species biofilm formation, a trait critical to its cariogenicity. Proteomics analysis, along with affinity pull-down and bacterial two-hybrid system, further confirm that MecA can also regulate S. mutans physiology and biofilm formation through pathways independent of the Clp proteolytic machinery, although how it functions independently of Clp awaits further investigation.
{"title":"MecA in <i>Streptococcus mutans</i> is a multi-functional protein.","authors":"Kassapa Ellepola, Robert C Shields, Jessica K Kajfasz, Hua Zhang, Jose A Lemos, Hui Wu, Zezhang T Wen","doi":"10.1128/msphere.00308-24","DOIUrl":"10.1128/msphere.00308-24","url":null,"abstract":"<p><p>Our recent studies have shown that deficiency of MecA in <i>Streptococcus mutans</i> significantly affects cell division, growth, and biofilm formation. In this study, an <i>in vitro</i> mixed-species model, proteomics, and affinity pull-down assays were used to further characterize the MecA-mediated regulation in <i>S. mutans</i>. The results showed that compared with the wild type, UA159, the <i>mecA</i> mutant significantly reduced its production of glucans and weakened its ability to facilitate mixed-species biofilm formation. Relative to the wild type, the <i>mecA</i> mutant also displayed unique characteristics, including colony morphology, growth rate, and biofilm formation that did not fully resemble any of the <i>clpP, clpX, clpE, clpCE,</i> and <i>clpC</i> individual or combinational mutants. Deletion of <i>mecA</i> was shown to result in alteration of >337 proteins, including down expression of GtfBC&D and adhesin P1. More than 277 proteins were differentially expressed in response to <i>clpP</i> deletion, including increased expression of GtfB. By cross-referencing the two proteomes, a distinctive set of proteins was found to be altered in the <i>mecA</i> mutant, indicating a ClpP-independent role of MecA in the regulation of <i>S. mutans</i>. When analyzed using affinity pull-down, ClpC, ClpX, ClpE, and CcpA were among the members identified in the MecA-associated complex. Further analysis using a bacterial two-hybrid system confirmed CcpA, ClpX, and ClpE as members of the MecA interactome. These results further suggest that MecA in <i>S. mutans</i> is more than an adapter of the Clp-proteolytic machinery, although the mechanism that underlies the Clp-independent regulation and its impact on <i>S. mutans</i> pathophysiology await further investigation.</p><p><strong>Importance: </strong>MecA is known as an adaptor protein that works in concerto with ATPase ClpC and protease ClpP in the regulated proteolysis machinery. The results presented here provide further evidence that MecA in <i>S. mutans</i>, a keystone cariogenic bacterium, plays a significant role in its ability to facilitate mixed-species biofilm formation, a trait critical to its cariogenicity. Proteomics analysis, along with affinity pull-down and bacterial two-hybrid system, further confirm that MecA can also regulate <i>S. mutans</i> physiology and biofilm formation through pathways independent of the Clp proteolytic machinery, although how it functions independently of Clp awaits further investigation.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0030824"},"PeriodicalIF":3.7,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656736/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-19Epub Date: 2024-11-18DOI: 10.1128/msphere.00881-24
Reid Longley, Aaron J Robinson, Olivia A Asher, Earl Middlebrook, Gregory Bonito, Patrick S G Chain
{"title":"Erratum for Longley et al., \"Signatures of Mollicutes-related endobacteria in publicly available Mucoromycota genomes\".","authors":"Reid Longley, Aaron J Robinson, Olivia A Asher, Earl Middlebrook, Gregory Bonito, Patrick S G Chain","doi":"10.1128/msphere.00881-24","DOIUrl":"10.1128/msphere.00881-24","url":null,"abstract":"","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0088124"},"PeriodicalIF":3.7,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656730/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142648473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-19Epub Date: 2024-11-21DOI: 10.1128/msphere.00893-24
Jack Hassall, Jeffery K J Cheng, Meera Unnikrishnan
{"title":"Erratum for Hassall et al., \"Dissecting Individual Interactions between Pathogenic and Commensal Bacteria within a Multispecies Gut Microbial Community\".","authors":"Jack Hassall, Jeffery K J Cheng, Meera Unnikrishnan","doi":"10.1128/msphere.00893-24","DOIUrl":"10.1128/msphere.00893-24","url":null,"abstract":"","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0089324"},"PeriodicalIF":3.7,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656729/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142682453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Motile flagella (also called "motile cilia") play a variety of important roles in lower and higher eukaryotes, including cellular motility and fertility. Flagellar motility is driven by several species of the gigantic motor-protein complexes, flagellar dyneins, that reside within these organelles. Among the flagellar-dynein species, a hetero-dimeric dynein called "IDA f/I1" has been shown to be particularly important in controlling the flagellar waveform, and defects in this dynein species in humans cause ciliopathies such as multiple morphological abnormalities of the flagella and asthenoteratozoospermia. IDA f/I1 is composed of many subunits, including two HCs (HCα and HCβ) and three ICs (IC140, IC138, and IC97), and among the three ICs of IDA f/I1, the exact molecular function(s) of IC97 in flagellar motility is not well understood. In this study, we isolated a Chlamydomonas mutant lacking IC97 and analyzed the phenotypes. The ic97 mutant phenocopied several aspects of the previously isolated IDA-f/I1-related mutants in Chlamydomonas and showed slow swimming compared to the wild type but retained the ability to phototaxis. Further analysis revealed that the mutant had low flagellar beat frequency and miscoordination between the two (cis- and trans-) flagella. In addition, the mutant cells swam in a comparatively straight path compared to the wild-type cells. Taken together, our results highlight the importance of proper assembly of IC97 in the IDA-f/I1 complex for the regulation of flagellar and cellular motility in Chlamydomonas and provide valuable insights into both the molecular functions of IC97 orthologs in higher eukaryotes and the pathogenetic mechanisms of human ciliopathies caused by IDA-f/I1 defects.
Importance: IDA f/I1 is a hetero-dimeric flagellar dynein that is particularly important for the regulation of flagellar waveform and whose defects are associated with human ciliopathies. IC97 is an evolutionarily conserved intermediate chain of IDA f/I1, but the detailed molecular functions of IC97 in flagellar motility have not been elucidated. In this study, mutational and biochemical analyses of the previously uncharacterized Chlamydomonas ic97 mutant revealed that IC97 is required for both the normal flagellar and cellular motility. In particular, IC97 appears to play an important role in both the control of flagellar beat frequency and the coordination between the two (cis- and trans-) flagella in Chlamydomonas. Our results provide important insights into the regulation of IDA-f/I1 activity by IC97 and the pathogenetic mechanisms of human ciliopathies caused by IDA-f/I1 defects.
{"title":"<i>Chlamydomonas</i> IC97, an intermediate chain of the flagellar dynein f/I1, is required for normal flagellar and cellular motility.","authors":"Ryosuke Yamamoto, Yui Tanaka, Shunsuke Orii, Kogiku Shiba, Kazuo Inaba, Takahide Kon","doi":"10.1128/msphere.00558-24","DOIUrl":"10.1128/msphere.00558-24","url":null,"abstract":"<p><p>Motile flagella (also called \"motile cilia\") play a variety of important roles in lower and higher eukaryotes, including cellular motility and fertility. Flagellar motility is driven by several species of the gigantic motor-protein complexes, flagellar dyneins, that reside within these organelles. Among the flagellar-dynein species, a hetero-dimeric dynein called \"IDA f/I1\" has been shown to be particularly important in controlling the flagellar waveform, and defects in this dynein species in humans cause ciliopathies such as multiple morphological abnormalities of the flagella and asthenoteratozoospermia. IDA f/I1 is composed of many subunits, including two HCs (HCα and HCβ) and three ICs (IC140, IC138, and IC97), and among the three ICs of IDA f/I1, the exact molecular function(s) of IC97 in flagellar motility is not well understood. In this study, we isolated a <i>Chlamydomonas</i> mutant lacking IC97 and analyzed the phenotypes. The <i>ic97</i> mutant phenocopied several aspects of the previously isolated IDA-f/I1-related mutants in <i>Chlamydomonas</i> and showed slow swimming compared to the wild type but retained the ability to phototaxis. Further analysis revealed that the mutant had low flagellar beat frequency and miscoordination between the two (<i>cis</i>- and <i>trans</i>-) flagella. In addition, the mutant cells swam in a comparatively straight path compared to the wild-type cells. Taken together, our results highlight the importance of proper assembly of IC97 in the IDA-f/I1 complex for the regulation of flagellar and cellular motility in <i>Chlamydomonas</i> and provide valuable insights into both the molecular functions of IC97 orthologs in higher eukaryotes and the pathogenetic mechanisms of human ciliopathies caused by IDA-f/I1 defects.</p><p><strong>Importance: </strong>IDA f/I1 is a hetero-dimeric flagellar dynein that is particularly important for the regulation of flagellar waveform and whose defects are associated with human ciliopathies. IC97 is an evolutionarily conserved intermediate chain of IDA f/I1, but the detailed molecular functions of IC97 in flagellar motility have not been elucidated. In this study, mutational and biochemical analyses of the previously uncharacterized <i>Chlamydomonas ic97</i> mutant revealed that IC97 is required for both the normal flagellar and cellular motility. In particular, IC97 appears to play an important role in both the control of flagellar beat frequency and the coordination between the two (<i>cis</i>- and <i>trans</i>-) flagella in <i>Chlamydomonas</i>. Our results provide important insights into the regulation of IDA-f/I1 activity by IC97 and the pathogenetic mechanisms of human ciliopathies caused by IDA-f/I1 defects.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0055824"},"PeriodicalIF":3.7,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656769/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142730962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}