首页 > 最新文献

Molecular Cancer Research最新文献

英文 中文
Bmal1-mediated circadian MELK expression potentiates MELK inhibitor chronotherapy for esophageal cancer. bmal1介导的MELK昼夜表达增强了MELK抑制剂对食管癌的时间治疗。
IF 4.1 2区 医学 Q2 CELL BIOLOGY Pub Date : 2024-12-19 DOI: 10.1158/1541-7786.MCR-24-0498
Boning Zeng, Chao Sun, Qian Tang, Nan Li, Siying Chen, Yili Yang, Xiao Wang, Shaoxiang Wang

Esophageal squamous cell carcinoma (ESCC) remains a global health challenge. Circadian clock and Maternal embryonic leucine zipper kinase (MELK) play a key role in tumorigenesis. However, a link between circadian clock dysregulation and MELK function in the occurrence and development of ESCC remains elusive. Here, In the in vivo and in vitro systems, we found for the first time that MELK exhibits pronounced circadian rhythms expression in mice esophageal tissue, xenograft model and human ESCC cells. The diurnal differences expression between peak (ZT0) and trough (ZT12) points in normal esophageal tissue is nearly 10-fold. Circadian expression of MELK in ESCC cells was regulated by Bmal1 through binding to the MELK promoter. Supporting this, the levels of MELK were increased significantly in ESCC patients, and was accompanied with altered expression of core clock genes, especially, Bmal1 is prominently upregulated. Most importantly, Bmal1-deleted eliminated the rhythmic expression of MELK, while knockdown of other core genes had no effect on MELK expression. Furthermore, in nude mice with transplanted tumor, the anticancer effect of OTS167 at ZT0 administration is twice that of ZT12. Implications: Our findings suggest that MELK represents a therapeutic target, and can as a regulator of circadian control ESCC growth, with these findings advance our understanding of the clinical potential of chronotherapy and the importance of time-based MELK inhibition in cancer treatment.

食管鳞状细胞癌(ESCC)仍然是一个全球性的健康挑战。生物钟和母体胚胎亮氨酸拉链激酶(MELK)在肿瘤发生中起关键作用。然而,在ESCC的发生和发展过程中,生物钟失调和MELK功能之间的联系仍然是未知的。在体内和体外系统中,我们首次发现MELK在小鼠食管组织、异种移植模型和人ESCC细胞中表现出明显的昼夜节律表达。正常食管组织中峰(ZT0)与谷(ZT12)点的日表达差异接近10倍。Bmal1通过结合MELK启动子调控ESCC细胞中MELK的昼夜表达。支持这一观点的是,ESCC患者的MELK水平显著升高,并伴有核心时钟基因的表达改变,尤其是Bmal1显著上调。最重要的是,bmal1的缺失消除了MELK的节律性表达,而敲低其他核心基因对MELK的表达没有影响。此外,在移植瘤裸鼠中,ZT0给药OTS167的抗癌作用是ZT12的两倍。我们的研究结果表明,MELK代表了一个治疗靶点,并且可以作为昼夜节律控制ESCC生长的调节剂,这些发现促进了我们对时间疗法的临床潜力的理解,以及基于时间的MELK抑制在癌症治疗中的重要性。
{"title":"Bmal1-mediated circadian MELK expression potentiates MELK inhibitor chronotherapy for esophageal cancer.","authors":"Boning Zeng, Chao Sun, Qian Tang, Nan Li, Siying Chen, Yili Yang, Xiao Wang, Shaoxiang Wang","doi":"10.1158/1541-7786.MCR-24-0498","DOIUrl":"https://doi.org/10.1158/1541-7786.MCR-24-0498","url":null,"abstract":"<p><p>Esophageal squamous cell carcinoma (ESCC) remains a global health challenge. Circadian clock and Maternal embryonic leucine zipper kinase (MELK) play a key role in tumorigenesis. However, a link between circadian clock dysregulation and MELK function in the occurrence and development of ESCC remains elusive. Here, In the in vivo and in vitro systems, we found for the first time that MELK exhibits pronounced circadian rhythms expression in mice esophageal tissue, xenograft model and human ESCC cells. The diurnal differences expression between peak (ZT0) and trough (ZT12) points in normal esophageal tissue is nearly 10-fold. Circadian expression of MELK in ESCC cells was regulated by Bmal1 through binding to the MELK promoter. Supporting this, the levels of MELK were increased significantly in ESCC patients, and was accompanied with altered expression of core clock genes, especially, Bmal1 is prominently upregulated. Most importantly, Bmal1-deleted eliminated the rhythmic expression of MELK, while knockdown of other core genes had no effect on MELK expression. Furthermore, in nude mice with transplanted tumor, the anticancer effect of OTS167 at ZT0 administration is twice that of ZT12. Implications: Our findings suggest that MELK represents a therapeutic target, and can as a regulator of circadian control ESCC growth, with these findings advance our understanding of the clinical potential of chronotherapy and the importance of time-based MELK inhibition in cancer treatment.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142854491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lysosomal/mitochondrial interaction promotes tumor growth in squamous cell carcinoma of the head and neck. 溶酶体/线粒体相互作用促进头颈部鳞状细胞癌的肿瘤生长。
IF 4.1 2区 医学 Q2 CELL BIOLOGY Pub Date : 2024-12-19 DOI: 10.1158/1541-7786.MCR-24-0337
Avani Gopalkrishnan, Nathaniel Wang, Silvia Cruz-Rangel, Abdul Yassin-Kassab, Sruti Shiva, Chareeni Kurukulasuriya, Satdarshan P Monga, Ralph J DeBerardinis, Heath D Skinner, Kirill Kiselyov, Umamaheswar Duvvuri

Communication between intracellular organelles including lysosomes and mitochondria has recently been shown to regulate cellular proliferation and fitness. The way lysosomes and mitochondria communicate with each other (lysosomal/mitochondrial interaction, LMI) is, emerging as a major determinant of tumor proliferation and growth. About 30% of squamous carcinomas (including squamous cell carcinoma of the head and neck, SCCHN) overexpress TMEM16A, a calcium-activated chloride channel, which promotes cellular growth and negatively correlates with patient survival. We have recently shown that TMEM16A drives lysosomal biogenesis, but its impact on mitochondrial function has not been explored. Here, we show that in the context of high TMEM16A SCCHN, (1) patients display increased mitochondrial content, specifically complex I; (2) In vitro and in vivo models uniquely depend on mitochondrial complex I activity for growth and survival; (3) NRF2 signaling is a critical linchpin that drives mitochondrial function, and (4) mitochondrial complex I and lysosomal function are codependent for proliferation. Taken together, our data demonstrate that coordinated lysosomal and mitochondrial activity and biogenesis via LMI drive tumor proliferation and facilitates a functional interaction between lysosomal and mitochondrial networks. Therefore, inhibition of LMI instauration may serve as a therapeutic strategy for patients with SCCHN. Implications: Intervention of lysosome-mitochondria interaction may serve as a therapeutic approach for patients with high TMEM16A expressing SCCHN.

包括溶酶体和线粒体在内的胞内细胞器之间的通信最近被证明可以调节细胞增殖和适应性。溶酶体和线粒体相互沟通的方式(溶酶体/线粒体相互作用,LMI)正在成为肿瘤增殖和生长的主要决定因素。约30%的鳞状癌(包括头颈部鳞状细胞癌,SCCHN)过表达TMEM16A,这是一种钙活化的氯离子通道,促进细胞生长并与患者生存负相关。我们最近表明TMEM16A驱动溶酶体的生物发生,但其对线粒体功能的影响尚未探讨。在这里,我们表明,在高TMEM16A SCCHN的背景下,(1)患者显示线粒体含量增加,特别是复合物I;(2)体外和体内模型的生长和存活完全依赖线粒体复合体I的活性;(3) NRF2信号是驱动线粒体功能的关键关键;(4)线粒体复合体I和溶酶体功能在增殖过程中相互依赖。综上所述,我们的数据表明,通过LMI协调的溶酶体和线粒体活性和生物发生驱动肿瘤增殖,并促进溶酶体和线粒体网络之间的功能相互作用。因此,抑制LMI恢复可能是SCCHN患者的一种治疗策略。意义:干预溶酶体-线粒体相互作用可能是治疗高TMEM16A表达SCCHN患者的一种方法。
{"title":"Lysosomal/mitochondrial interaction promotes tumor growth in squamous cell carcinoma of the head and neck.","authors":"Avani Gopalkrishnan, Nathaniel Wang, Silvia Cruz-Rangel, Abdul Yassin-Kassab, Sruti Shiva, Chareeni Kurukulasuriya, Satdarshan P Monga, Ralph J DeBerardinis, Heath D Skinner, Kirill Kiselyov, Umamaheswar Duvvuri","doi":"10.1158/1541-7786.MCR-24-0337","DOIUrl":"10.1158/1541-7786.MCR-24-0337","url":null,"abstract":"<p><p>Communication between intracellular organelles including lysosomes and mitochondria has recently been shown to regulate cellular proliferation and fitness. The way lysosomes and mitochondria communicate with each other (lysosomal/mitochondrial interaction, LMI) is, emerging as a major determinant of tumor proliferation and growth. About 30% of squamous carcinomas (including squamous cell carcinoma of the head and neck, SCCHN) overexpress TMEM16A, a calcium-activated chloride channel, which promotes cellular growth and negatively correlates with patient survival. We have recently shown that TMEM16A drives lysosomal biogenesis, but its impact on mitochondrial function has not been explored. Here, we show that in the context of high TMEM16A SCCHN, (1) patients display increased mitochondrial content, specifically complex I; (2) In vitro and in vivo models uniquely depend on mitochondrial complex I activity for growth and survival; (3) NRF2 signaling is a critical linchpin that drives mitochondrial function, and (4) mitochondrial complex I and lysosomal function are codependent for proliferation. Taken together, our data demonstrate that coordinated lysosomal and mitochondrial activity and biogenesis via LMI drive tumor proliferation and facilitates a functional interaction between lysosomal and mitochondrial networks. Therefore, inhibition of LMI instauration may serve as a therapeutic strategy for patients with SCCHN. Implications: Intervention of lysosome-mitochondria interaction may serve as a therapeutic approach for patients with high TMEM16A expressing SCCHN.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142854576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolic inhibition induces pyroptosis in uveal melanoma. 代谢抑制诱导葡萄膜黑色素瘤热下垂。
IF 4.1 2区 医学 Q2 CELL BIOLOGY Pub Date : 2024-12-13 DOI: 10.1158/1541-7786.MCR-24-0508
Scott D Varney, Dan A Erkes, Glenn L Mersky, Manal U Mustafa, Vivian Chua, Inna Chervoneva, Timothy J Purwin, Emad Alnemri, Andrew E Aplin

Few treatment options are available for metastatic uveal melanoma (UM) patients. Although the bispecific tebentafusp is FDA-approved, immunotherapy has largely failed, likely given the poorly immunogenic nature of UM. Treatment options that improve the recognition of UM by the immune system may be key to reducing disease burden. We investigated whether UM has the ability to undergo pyroptosis, a form of immunogenic cell death. Publicly available patient data and cell line analysis showed that UM expressed the machinery needed for pyroptosis, including gasdermins D and E (GSDMD and E), caspases 1, 3, 4, and 8 (CASP1, 3, 4, and 8), and ninjurin1 (NINJ1). We induced cleavage of gasdermins in UM cell lines treated with metabolic inhibitors. In particular, the CPT1 inhibitor, etomoxir, induced propidium iodide uptake, caspase 3 cleavage and the release of HMGB1 and IL-1β, indicating that the observed cleavage of gasdermins led to pyroptosis. Importantly, a gene-signature reflecting CPT1A activity correlated with poor prognosis in UM patients and knockdown of CPT1A also induced pyroptosis. Etomoxir-induced pyroptosis was GSDME-dependent, but GSDMD-independent and a pyroptosis gene-signature correlated with immune infiltration and improved response to immune checkpoint blockade in a set of UM patients. Together, these data show that metabolic inhibitors can induce pyroptosis in UM cell lines, potentially offering an approach to enhance inflammation-mediated immune targeting in metastatic UM patients. Implications: Induction of pyroptosis by metabolic inhibition may alter the tumor immune microenvironment and improve the efficacy of immunotherapy in uveal melanoma.

转移性葡萄膜黑色素瘤(UM)患者的治疗选择很少。尽管双特异性tebentafusp已获得fda批准,但免疫治疗在很大程度上失败了,可能是由于UM的免疫原性较差。改善免疫系统对UM的识别的治疗方案可能是减轻疾病负担的关键。我们研究了UM是否有能力经历焦亡,一种免疫原性细胞死亡的形式。公开的患者数据和细胞系分析表明,UM表达了焦亡所需的机制,包括gasdermins D和E (GSDMD和E), caspases 1、3、4和8 (CASP1、3、4和8)和ninjurin1 (NINJ1)。我们用代谢抑制剂诱导UM细胞系的气真皮分裂。特别是,CPT1抑制剂乙托莫西诱导碘化丙啶摄取、caspase 3裂解以及HMGB1和IL-1β的释放,表明观察到的裂解导致了焦亡。重要的是,反映CPT1A活性的基因标记与UM患者预后不良相关,CPT1A的敲低也会引起焦亡。在一组UM患者中,依托莫西诱导的焦亡依赖于gsdme,但不依赖于gsdmd,并且焦亡基因特征与免疫浸润和对免疫检查点阻断的改善反应相关。总之,这些数据表明,代谢抑制剂可以诱导UM细胞系焦亡,可能为增强转移性UM患者炎症介导的免疫靶向提供了一种方法。意义:通过代谢抑制诱导焦亡可能改变肿瘤免疫微环境,提高免疫治疗葡萄膜黑色素瘤的疗效。
{"title":"Metabolic inhibition induces pyroptosis in uveal melanoma.","authors":"Scott D Varney, Dan A Erkes, Glenn L Mersky, Manal U Mustafa, Vivian Chua, Inna Chervoneva, Timothy J Purwin, Emad Alnemri, Andrew E Aplin","doi":"10.1158/1541-7786.MCR-24-0508","DOIUrl":"10.1158/1541-7786.MCR-24-0508","url":null,"abstract":"<p><p>Few treatment options are available for metastatic uveal melanoma (UM) patients. Although the bispecific tebentafusp is FDA-approved, immunotherapy has largely failed, likely given the poorly immunogenic nature of UM. Treatment options that improve the recognition of UM by the immune system may be key to reducing disease burden. We investigated whether UM has the ability to undergo pyroptosis, a form of immunogenic cell death. Publicly available patient data and cell line analysis showed that UM expressed the machinery needed for pyroptosis, including gasdermins D and E (GSDMD and E), caspases 1, 3, 4, and 8 (CASP1, 3, 4, and 8), and ninjurin1 (NINJ1). We induced cleavage of gasdermins in UM cell lines treated with metabolic inhibitors. In particular, the CPT1 inhibitor, etomoxir, induced propidium iodide uptake, caspase 3 cleavage and the release of HMGB1 and IL-1β, indicating that the observed cleavage of gasdermins led to pyroptosis. Importantly, a gene-signature reflecting CPT1A activity correlated with poor prognosis in UM patients and knockdown of CPT1A also induced pyroptosis. Etomoxir-induced pyroptosis was GSDME-dependent, but GSDMD-independent and a pyroptosis gene-signature correlated with immune infiltration and improved response to immune checkpoint blockade in a set of UM patients. Together, these data show that metabolic inhibitors can induce pyroptosis in UM cell lines, potentially offering an approach to enhance inflammation-mediated immune targeting in metastatic UM patients. Implications: Induction of pyroptosis by metabolic inhibition may alter the tumor immune microenvironment and improve the efficacy of immunotherapy in uveal melanoma.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142818668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ruthenium Drug BOLD-100 Regulates BRAFMT Colorectal Cancer Cell Apoptosis through AhR/ROS/ATR Signaling Axis Modulation. 钌药物 BOLD-100 通过 AhR/ROS/ATR 信号轴调节 BRAFMT 大肠癌细胞凋亡。
IF 4.1 2区 医学 Q2 CELL BIOLOGY Pub Date : 2024-12-03 DOI: 10.1158/1541-7786.MCR-24-0151
Daryl Griffin, Robbie Carson, Debbie Moss, Tamas Sessler, Deborah Lavin, Vijay K Tiwari, Shivaali Karelia, Richard Kennedy, Kienan I Savage, Simon McDade, Adam Carie, Jim Pankovich, Mark Bazett, Sandra Van Schaeybroeck

Patients with class I V600EBRAF-mutant (MT) colorectal cancer exhibit a poor prognosis, and their response to combined anti-BRAF/EGFR inhibition remains limited. An unmet need exits for further understanding the biology of V600EBRAFMT colorectal cancer. We used differential gene expression of BRAFWT and MT colorectal cancer cells to identify pathways underpinning BRAFMT colorectal cancer. We tested a panel of molecularly/genetically subtyped colorectal cancer cells for their sensitivity to the unfolded protein response (UPR) activator BOLD-100. To identify novel combination strategies for BOLD-100, we performed RNA sequencing and high-throughput drug screening. Pathway enrichment analysis identified significant enrichment of the UPR and DNA repair pathways in BRAFMT colorectal cancer. We found that oncogenic BRAF plays a crucial role in mediating the response to BOLD-100. Using a systems biology approach, we identified V600EBRAFMT-dependent activation of the replication stress response kinase ataxia telangiectasia and Rad3-related (ATR) as a key mediator of resistance to BOLD-100. Further analysis identified acute increases in BRAFMT-dependent-reactive oxygen species levels following treatment with BOLD-100, which promoted ATR/CHK1 activation and apoptosis. Furthermore, activation of reactive oxygen species/ATR/CHK1 following BOLD-100 was mediated through the AhR transcription factor and CYP1A1. Importantly, pharmacological blockade of this resistance pathway with ATR inhibitors synergistically increased BOLD-100-induced apoptosis and growth inhibition in BRAFMT models. These results highlight a possible novel therapeutic opportunity for BRAFMT colorectal cancer. Implications: BOLD-100 induces BRAFMT-dependent replication stress, and targeted strategies against replication stress (e.g., by using ATR inhibitors) in combination with BOLD-100 may serve as a potential novel therapeutic strategy for clinically aggressive BRAFMT colorectal cancer.

I 类 V600EBRAF 突变(MT)结直肠癌(CRC)患者预后较差,而且他们对抗 BRAF/EGFR 联合抑制剂的反应仍然有限。显然,进一步了解 V600EBRAFMT CRC 的生物学特性的需求尚未得到满足。我们利用 BRAFWT 和 MT CRC 细胞的不同基因表达来确定 BRAFMT CRC 的基础通路。我们测试了一组分子/遗传亚型 CRC 细胞对折叠蛋白反应(UPR)激活剂 BOLD-100 的敏感性。为了确定 BOLD-100 的新型组合策略,我们进行了 RNA 测序和高通量药物筛选。通路富集分析发现,UPR 和 DNA 修复通路在 BRAFMT CRC 中显著富集。我们发现致癌 BRAF 在介导对 BOLD-100 的反应中起着至关重要的作用。利用系统生物学方法,我们发现 V600EBRAFMT 依赖性激活复制应激反应激酶 ATR 是 BOLD-100 抗性的关键介导因子。进一步分析发现,BRAFMT依赖性活性氧(ROS)水平在BOLD-100治疗后急剧升高,这被证明能促进ATR/CHK1的活化和细胞凋亡。此外,还发现 BOLD-100 对 ROS/ATR/CHK1 的激活是通过 AHR 转录因子和 CYP1A1 介导的。重要的是,在 BRAFMT 模型中,用 ATR 抑制剂对这一抗性途径进行药理阻断可协同增加 BOLD-100 诱导的细胞凋亡和生长抑制。这些结果为 BRAFMT CRC 带来了新的治疗机会。意义:BOLD-100可诱导BRAFMT依赖性复制应激,针对复制应激的靶向策略(如使用ATR抑制剂)与BOLD-100联合使用可作为临床侵袭性BRAFMT CRC的潜在新型治疗策略。
{"title":"Ruthenium Drug BOLD-100 Regulates BRAFMT Colorectal Cancer Cell Apoptosis through AhR/ROS/ATR Signaling Axis Modulation.","authors":"Daryl Griffin, Robbie Carson, Debbie Moss, Tamas Sessler, Deborah Lavin, Vijay K Tiwari, Shivaali Karelia, Richard Kennedy, Kienan I Savage, Simon McDade, Adam Carie, Jim Pankovich, Mark Bazett, Sandra Van Schaeybroeck","doi":"10.1158/1541-7786.MCR-24-0151","DOIUrl":"10.1158/1541-7786.MCR-24-0151","url":null,"abstract":"<p><p>Patients with class I V600EBRAF-mutant (MT) colorectal cancer exhibit a poor prognosis, and their response to combined anti-BRAF/EGFR inhibition remains limited. An unmet need exits for further understanding the biology of V600EBRAFMT colorectal cancer. We used differential gene expression of BRAFWT and MT colorectal cancer cells to identify pathways underpinning BRAFMT colorectal cancer. We tested a panel of molecularly/genetically subtyped colorectal cancer cells for their sensitivity to the unfolded protein response (UPR) activator BOLD-100. To identify novel combination strategies for BOLD-100, we performed RNA sequencing and high-throughput drug screening. Pathway enrichment analysis identified significant enrichment of the UPR and DNA repair pathways in BRAFMT colorectal cancer. We found that oncogenic BRAF plays a crucial role in mediating the response to BOLD-100. Using a systems biology approach, we identified V600EBRAFMT-dependent activation of the replication stress response kinase ataxia telangiectasia and Rad3-related (ATR) as a key mediator of resistance to BOLD-100. Further analysis identified acute increases in BRAFMT-dependent-reactive oxygen species levels following treatment with BOLD-100, which promoted ATR/CHK1 activation and apoptosis. Furthermore, activation of reactive oxygen species/ATR/CHK1 following BOLD-100 was mediated through the AhR transcription factor and CYP1A1. Importantly, pharmacological blockade of this resistance pathway with ATR inhibitors synergistically increased BOLD-100-induced apoptosis and growth inhibition in BRAFMT models. These results highlight a possible novel therapeutic opportunity for BRAFMT colorectal cancer. Implications: BOLD-100 induces BRAFMT-dependent replication stress, and targeted strategies against replication stress (e.g., by using ATR inhibitors) in combination with BOLD-100 may serve as a potential novel therapeutic strategy for clinically aggressive BRAFMT colorectal cancer.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"1088-1101"},"PeriodicalIF":4.1,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7616621/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141856110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LRRC75A-AS1 Drives the Epithelial-Mesenchymal Transition in Cervical Cancer by Binding IGF2BP1 and Inhibiting SYVN1-Mediated NLRP3 Ubiquitination. LRRC75A-AS1 通过结合 IGF2BP1 和抑制 SYVN1 介导的 NLRP3 泛素化,推动宫颈癌的上皮-间质转化。
IF 4.1 2区 医学 Q2 CELL BIOLOGY Pub Date : 2024-12-03 DOI: 10.1158/1541-7786.MCR-23-0478
Hongying Sui, Caixia Shi, Zhipeng Yan, Jinyang Chen, Lin Man, Fang Wang

Cervical cancer severely affects women's health with increased incidence and poor survival for patients with metastasis. Our study aims to investigate the mechanism by which lncRNA LRRC75A-AS1 regulates the epithelial-mesenchymal transition (EMT) of cervical cancer through modulating m6A and ubiquitination modification. In this study, tumor tissues were collected from patients to analyze the expression of LRRC75A-AS1 and SYVN1. Migratory and invasive capacities of HeLa and CaSki cells were evaluated with wound healing and transwell assays. CCK-8 and EdU incor-poration assays were employed to examine cell proliferation. The interaction between LRRC75A-AS1, IGF2BP1, SYVN1, and NLRP3 was evaluated through RNA immunoprecipitation, RNA pull-down, FISH, and coimmunoprecipitation assays, respectively. MeRIP-qPCR was applied to analyze the m6A modification of SYVN1 mRNA. A subcutaneous tumor model of cervical cancer was established. We showed LRRC75A-AS1 was upregulated in tumor tissues, and LRRC75A-AS1 enhanced EMT through activating NLRP3/IL1β/Smad2/3 signaling in cervical cancer. Furthermore, LRRC75A-AS1 inhibited SYVN1-mediated NLRP3 ubiquitination by destabilizing SYVN1 mRNA. LRRC75A-AS1 competitively bound to IGF2BP1 protein and subsequently impaired the m6A modification of SYVN1 mRNA and its stability. Knockdown of LRRC75A-AS1 repressed EMT and tumor growth via inhibiting NLRP3/IL-1β/Smad2/3 signaling in mice. In conclusion, LRRC75A-AS1 competitively binds to IGF2BP1 protein to destabilize SYVN1 mRNA, subsequently suppresses SYVN1-mediated NLRP3 ubiquitination degradation and activates IL1β/Smad2/3 signaling, thus promoting EMT in cervical cancer. Implication: LRRC75A-AS1 promotes cervical cancer progression, and this study suggests LRRC75A-AS1 as a new therapeutic target for cervical cancer.

宫颈癌严重影响妇女健康,发病率增加,转移患者生存率低。我们的研究旨在探讨lncRNA LRRC75A-AS1通过调节m6A和泛素化修饰调控宫颈癌上皮-间质转化(EMT)的机制。本研究收集了患者的肿瘤组织,以分析 LRRC75A-AS1 和 SYVN1 的表达。通过伤口愈合和透孔试验评估了 HeLa 和 CaSki 细胞的迁移和侵袭能力。CCK-8和EdU掺入试验用于检测细胞增殖。LRRC75A-AS1、IGF2BP1、SYVN1 和 NLRP3 之间的相互作用分别通过 RNA 免疫沉淀、RNA 下拉、FISH 和 Co-IP 试验进行了评估。MeRIP-qPCR 被用于分析 SYVN1 mRNA 的 m6A 修饰。建立了宫颈癌皮下肿瘤模型。我们发现 LRRC75A-AS1 在肿瘤组织中上调,并且 LRRC75A-AS1 通过激活 NLRP3/IL-1β/Smad2/3 信号增强了宫颈癌的 EMT。此外,LRRC75A-AS1 还通过破坏 SYVN1 mRNA 的稳定性来抑制 SYVN1 介导的 NLRP3 泛素化。LRRC75A-AS1 与 IGF2BP1 蛋白竞争性结合,进而损害了 SYVN1 mRNA 的 m6A 修饰及其稳定性。通过抑制 NLRP3/IL-1β/Smad2/3 信号传导,敲除 LRRC75A-AS1 可抑制小鼠的 EMT 和肿瘤生长。总之,RRC75A-AS1能竞争性地与IGF2BP1蛋白结合,从而破坏SYVN1 mRNA的稳定性,随后抑制SYVN1介导的NLRP3泛素化降解,激活IL-1β/Smad2/3信号传导,从而促进宫颈癌的EMT。影响:LRRC75A-AS1会促进宫颈癌的进展,本研究表明LRRC75A-AS1是宫颈癌的一个新的治疗靶点。
{"title":"LRRC75A-AS1 Drives the Epithelial-Mesenchymal Transition in Cervical Cancer by Binding IGF2BP1 and Inhibiting SYVN1-Mediated NLRP3 Ubiquitination.","authors":"Hongying Sui, Caixia Shi, Zhipeng Yan, Jinyang Chen, Lin Man, Fang Wang","doi":"10.1158/1541-7786.MCR-23-0478","DOIUrl":"10.1158/1541-7786.MCR-23-0478","url":null,"abstract":"<p><p>Cervical cancer severely affects women's health with increased incidence and poor survival for patients with metastasis. Our study aims to investigate the mechanism by which lncRNA LRRC75A-AS1 regulates the epithelial-mesenchymal transition (EMT) of cervical cancer through modulating m6A and ubiquitination modification. In this study, tumor tissues were collected from patients to analyze the expression of LRRC75A-AS1 and SYVN1. Migratory and invasive capacities of HeLa and CaSki cells were evaluated with wound healing and transwell assays. CCK-8 and EdU incor-poration assays were employed to examine cell proliferation. The interaction between LRRC75A-AS1, IGF2BP1, SYVN1, and NLRP3 was evaluated through RNA immunoprecipitation, RNA pull-down, FISH, and coimmunoprecipitation assays, respectively. MeRIP-qPCR was applied to analyze the m6A modification of SYVN1 mRNA. A subcutaneous tumor model of cervical cancer was established. We showed LRRC75A-AS1 was upregulated in tumor tissues, and LRRC75A-AS1 enhanced EMT through activating NLRP3/IL1β/Smad2/3 signaling in cervical cancer. Furthermore, LRRC75A-AS1 inhibited SYVN1-mediated NLRP3 ubiquitination by destabilizing SYVN1 mRNA. LRRC75A-AS1 competitively bound to IGF2BP1 protein and subsequently impaired the m6A modification of SYVN1 mRNA and its stability. Knockdown of LRRC75A-AS1 repressed EMT and tumor growth via inhibiting NLRP3/IL-1β/Smad2/3 signaling in mice. In conclusion, LRRC75A-AS1 competitively binds to IGF2BP1 protein to destabilize SYVN1 mRNA, subsequently suppresses SYVN1-mediated NLRP3 ubiquitination degradation and activates IL1β/Smad2/3 signaling, thus promoting EMT in cervical cancer. Implication: LRRC75A-AS1 promotes cervical cancer progression, and this study suggests LRRC75A-AS1 as a new therapeutic target for cervical cancer.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"1075-1087"},"PeriodicalIF":4.1,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139098293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EHMT1/2 Inhibition Promotes Regression of Therapy-Resistant Ovarian Cancer Tumors in a CD8 T-cell-Dependent Manner. EHMT1/2抑制以CD8 T细胞依赖的方式促进耐药卵巢癌肿瘤的消退。
IF 4.1 2区 医学 Q2 CELL BIOLOGY Pub Date : 2024-12-03 DOI: 10.1158/1541-7786.MCR-24-0067
Lily L Nguyen, Zachary L Watson, Raquel Ortega, Elizabeth R Woodruff, Kimberly R Jordan, Ritsuko Iwanaga, Tomomi M Yamamoto, Courtney A Bailey, Francis To, Shujian Lin, Fabian R Villagomez, Abigail D Jeong, Saketh R Guntupalli, Kian Behbakht, Veronica Gibaja, Nausica Arnoult, Edward B Chuong, Benjamin G Bitler

Poly ADP-ribose polymerase inhibitors (PARPi) are first-line maintenance therapy for ovarian cancer and an alternative therapy for several other cancer types. However, PARPi-resistance is rising, and there is currently an unmet need to combat PARPi-resistant tumors. Here, we created an immunocompetent, PARPi-resistant mouse model to test the efficacy of combinatory PARPi and euchromatic histone methyltransferase 1/2 inhibitor (EHMTi) in the treatment of PARPi-resistant ovarian cancer. We discovered that inhibition of EHMT1/2 resensitizes cells to PARPi. Markedly, we show that single EHMTi and combinatory EHMTi/PARPi significantly reduced PARPi-resistant tumor burden and that this reduction is partially dependent on CD8 T cells. Altogether, our results show a low-toxicity drug that effectively treats PARPi-resistant ovarian cancer in an immune-dependent manner, supporting its entry into clinical development and potential incorporation of immunotherapy. Implications: Targeting the epigenome of therapy-resistant ovarian cancer induces an antitumor response mediated in part through an antitumor immune response.

聚 ADP 核糖聚合酶抑制剂(PARPi)是卵巢癌的一线维持疗法,也是其他几种癌症的替代疗法。然而,PARPi 耐药性正在上升,目前还没有满足抗 PARPi 耐药性肿瘤的需求。在此,我们创建了一种免疫功能正常的 PARPi 抗性小鼠模型,以测试 PARPi 和外色素组蛋白甲基转移酶 1/2(EHMTi)联合抑制剂治疗 PARPi 抗性卵巢癌的疗效。我们发现,抑制 EHMT1/2 可使细胞对 PARPi 重新敏感。我们发现,抑制EHMT1/2能使细胞对PARPi重新敏感。我们还发现,单药EHMTi和联合EHMTi/PARPi能显著减少PARPi耐药的肿瘤负荷,而这种减少部分依赖于CD8 T细胞。总之,我们的研究结果表明,一种低毒性药物能以免疫依赖的方式有效治疗 PARPi 耐药的卵巢癌,从而支持该药物进入临床开发阶段,并有可能纳入免疫疗法。意义:针对耐药卵巢癌的表观基因组诱导抗肿瘤反应,这种反应部分是通过抗肿瘤免疫反应介导的。
{"title":"EHMT1/2 Inhibition Promotes Regression of Therapy-Resistant Ovarian Cancer Tumors in a CD8 T-cell-Dependent Manner.","authors":"Lily L Nguyen, Zachary L Watson, Raquel Ortega, Elizabeth R Woodruff, Kimberly R Jordan, Ritsuko Iwanaga, Tomomi M Yamamoto, Courtney A Bailey, Francis To, Shujian Lin, Fabian R Villagomez, Abigail D Jeong, Saketh R Guntupalli, Kian Behbakht, Veronica Gibaja, Nausica Arnoult, Edward B Chuong, Benjamin G Bitler","doi":"10.1158/1541-7786.MCR-24-0067","DOIUrl":"10.1158/1541-7786.MCR-24-0067","url":null,"abstract":"<p><p>Poly ADP-ribose polymerase inhibitors (PARPi) are first-line maintenance therapy for ovarian cancer and an alternative therapy for several other cancer types. However, PARPi-resistance is rising, and there is currently an unmet need to combat PARPi-resistant tumors. Here, we created an immunocompetent, PARPi-resistant mouse model to test the efficacy of combinatory PARPi and euchromatic histone methyltransferase 1/2 inhibitor (EHMTi) in the treatment of PARPi-resistant ovarian cancer. We discovered that inhibition of EHMT1/2 resensitizes cells to PARPi. Markedly, we show that single EHMTi and combinatory EHMTi/PARPi significantly reduced PARPi-resistant tumor burden and that this reduction is partially dependent on CD8 T cells. Altogether, our results show a low-toxicity drug that effectively treats PARPi-resistant ovarian cancer in an immune-dependent manner, supporting its entry into clinical development and potential incorporation of immunotherapy. Implications: Targeting the epigenome of therapy-resistant ovarian cancer induces an antitumor response mediated in part through an antitumor immune response.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"1117-1127"},"PeriodicalIF":4.1,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11614706/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Defining Splicing Factor Requirements for Androgen Receptor Variant Synthesis in Advanced Prostate Cancer. 确定晚期前列腺癌中雄激素受体变体合成的剪接因子要求。
IF 4.1 2区 医学 Q2 CELL BIOLOGY Pub Date : 2024-12-03 DOI: 10.1158/1541-7786.MCR-23-0958
Laura Walker, Ruaridh Duncan, Beth Adamson, Hannah Kendall, Nicholas Brittain, Sara Luzzi, Dominic Jones, Lewis Chaytor, Samantha Peel, Claire Crafter, Daniel J O'Neill, Luke Gaughan

Resistance to androgen receptor (AR)-targeted therapies represents a major challenge in prostate cancer. A key mechanism of treatment resistance in patients who progress to castration-resistant prostate cancer (CRPC) is the generation of alternatively spliced AR variants (AR-V). Unlike full-length AR isoforms, AR-Vs are constitutively active and refractory to current receptor-targeting agents and hence drive tumor progression. Identifying regulators of AR-V synthesis may therefore provide new therapeutic opportunities in combination with conventional AR-targeting agents. Our understanding of AR transcript splicing, and the factors that control the synthesis of AR-Vs, remains limited. Although candidate-based approaches have identified a small number of AR-V splicing regulators, an unbiased analysis of splicing factors important for AR-V generation is required to fill an important knowledge gap and furnish the field with novel and tractable targets for prostate cancer treatment. To that end, we conducted a bespoke CRISPR screen to profile splicing factor requirements for AR-V synthesis. MFAP1 and CWC22 were shown to be required for the generation of AR-V mRNA transcripts, and their depletion resulted in reduced AR-V protein abundance and cell proliferation in several CRPC models. Global transcriptomic analysis of MFAP1-depleted cells revealed both AR-dependent and -independent transcriptional impacts, including genes associated with DNA damage response. As such, MFAP1 downregulation sensitized prostate cancer cells to ionizing radiation, suggesting that therapeutically targeting AR-V splicing could provide novel cellular vulnerabilities which can be exploited in CRPC. Implications: We have utilized a CRISPR screening approach to identify key regulators of pathogenic AR splicing in prostate cancer.

雄激素受体(AR)靶向疗法的耐药性是前列腺癌(PC)的一大挑战。进展为阉割耐药 PC(CRPC)的患者产生耐药性的一个关键机制是产生了交替剪接的雄激素受体变体(AR-Vs)。与全长AR(FL-AR)异构体不同,AR-Vs具有组成性活性,对目前的受体靶向药物具有耐药性,因此会推动肿瘤进展。因此,确定AR-V合成的调控因子可为结合传统的AR靶向药物提供新的治疗机会。我们对 AR 转录本剪接以及控制 AR-Vs 合成的因素的了解仍然有限。虽然基于候选的方法已经确定了少量的 AR-V 剪接调节因子,但还需要对对 AR-V 生成很重要的剪接因子进行无偏见的分析,以填补这一重要的知识空白,并为 PC 治疗领域提供新颖、可行的靶点。为此,我们进行了一次定制的 CRISPR 筛选,以确定 AR-V 合成所需的剪接因子。结果表明,MFAP1和CWC22是AR-V mRNA转录本生成所必需的,而且在几种CRPC模型中,它们的缺失会导致AR-V蛋白丰度降低和细胞增殖减少。对去除了 MFAP1 的细胞进行的全局转录组学分析显示了依赖 AR 和不依赖 AR 的转录影响,包括与 DDR 相关的基因。因此,MFAP1的下调使PC细胞对电离辐射敏感,这表明针对AR-V剪接的治疗可提供新的细胞脆弱性,可在CRPC中加以利用。意义:我们利用 CRISPR 筛选方法确定了前列腺癌中致病性 AR 剪接的关键调控因子。
{"title":"Defining Splicing Factor Requirements for Androgen Receptor Variant Synthesis in Advanced Prostate Cancer.","authors":"Laura Walker, Ruaridh Duncan, Beth Adamson, Hannah Kendall, Nicholas Brittain, Sara Luzzi, Dominic Jones, Lewis Chaytor, Samantha Peel, Claire Crafter, Daniel J O'Neill, Luke Gaughan","doi":"10.1158/1541-7786.MCR-23-0958","DOIUrl":"10.1158/1541-7786.MCR-23-0958","url":null,"abstract":"<p><p>Resistance to androgen receptor (AR)-targeted therapies represents a major challenge in prostate cancer. A key mechanism of treatment resistance in patients who progress to castration-resistant prostate cancer (CRPC) is the generation of alternatively spliced AR variants (AR-V). Unlike full-length AR isoforms, AR-Vs are constitutively active and refractory to current receptor-targeting agents and hence drive tumor progression. Identifying regulators of AR-V synthesis may therefore provide new therapeutic opportunities in combination with conventional AR-targeting agents. Our understanding of AR transcript splicing, and the factors that control the synthesis of AR-Vs, remains limited. Although candidate-based approaches have identified a small number of AR-V splicing regulators, an unbiased analysis of splicing factors important for AR-V generation is required to fill an important knowledge gap and furnish the field with novel and tractable targets for prostate cancer treatment. To that end, we conducted a bespoke CRISPR screen to profile splicing factor requirements for AR-V synthesis. MFAP1 and CWC22 were shown to be required for the generation of AR-V mRNA transcripts, and their depletion resulted in reduced AR-V protein abundance and cell proliferation in several CRPC models. Global transcriptomic analysis of MFAP1-depleted cells revealed both AR-dependent and -independent transcriptional impacts, including genes associated with DNA damage response. As such, MFAP1 downregulation sensitized prostate cancer cells to ionizing radiation, suggesting that therapeutically targeting AR-V splicing could provide novel cellular vulnerabilities which can be exploited in CRPC. Implications: We have utilized a CRISPR screening approach to identify key regulators of pathogenic AR splicing in prostate cancer.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"1128-1142"},"PeriodicalIF":4.1,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612623/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TEAD2 Promotes Hepatocellular Carcinoma Development and Sorafenib Resistance via TAK1 Transcriptional Activation. TEAD2 通过 TAK1 转录激活促进肝细胞癌发展和索拉非尼抗性
IF 4.1 2区 医学 Q2 CELL BIOLOGY Pub Date : 2024-12-03 DOI: 10.1158/1541-7786.MCR-24-0060
Yahui Zhang, Yidan Ren, Guoying Dong, Qinlian Jiao, Nan Guo, Ping Gao, Ya Li, Yunshan Wang, Wei Zhao

Hepatocellular carcinoma (HCC) is the most prevalent type of liver cancer, yet the effectiveness of treatment for patients with HCC is significantly hindered by the development of drug resistance to sorafenib. Through the application of accessibility sequencing to examine drug-resistant HCC tissues, we identified substantial alterations in chromatin accessibility in sorafenib-resistant patient-derived xenograft models. Employing multiomics data integration analysis, we confirmed that the key transcription factor TEAD2, which plays an important role in the Hippo signaling pathway, is a key factor in regulating sorafenib resistance in HCC. Functional assays illustrated that TEAD2 plays a role in promoting HCC progression and enhancing resistance to sorafenib. Mechanistically, we demonstrated that TEAD2 binds to the TAK1 promoter to modulate its expression. Furthermore, we established the involvement of TAK1 in mediating TEAD2-induced sorafenib resistance in HCC, a finding supported by the effectiveness of TAK1 inhibitors. Our research highlights that targeting the TEAD2-TAK1 axis can effectively mitigate drug resistance in patients with HCC receiving sorafenib treatment, offering a novel approach for enhancing the treatment outcomes and prognosis of individuals with HCC. Implications: Targeting the TEAD2-TAK1 axis presents a promising therapeutic strategy to overcome sorafenib resistance in HCC, potentially improving treatment outcomes and prognosis for patients.

肝细胞癌(HCC)是发病率最高的肝癌类型,然而索拉非尼耐药性的产生严重阻碍了HCC患者的治疗效果。通过应用 ATAC-seq 研究耐药 HCC 组织,我们在索拉非尼耐药患者异种移植(PDX)模型中发现了染色质可及性的实质性改变。通过多组学数据整合分析,我们证实 TEAD2 是索拉非尼耐药 HCC 组织中的关键转录调控因子。功能测试表明,TEAD2 在促进 HCC 进展和增强索拉非尼耐药性方面发挥了作用。从机理上讲,我们证明了 TEAD2 与 TAK1 启动子结合以调节其表达。此外,我们还证实了TAK1参与介导了TEAD2诱导的索拉非尼在HCC中的耐药性,这一发现得到了TAK1抑制剂有效性的支持。我们的研究强调,靶向 TEAD2-TAK1 轴可有效缓解接受索拉非尼治疗的 HCC 患者的耐药性,为提高 HCC 患者的治疗效果和预后提供了一种新方法。意义靶向TEAD2-TAK1轴是克服HCC患者索拉非尼耐药性的一种很有前景的治疗策略,有可能改善患者的治疗效果和预后。
{"title":"TEAD2 Promotes Hepatocellular Carcinoma Development and Sorafenib Resistance via TAK1 Transcriptional Activation.","authors":"Yahui Zhang, Yidan Ren, Guoying Dong, Qinlian Jiao, Nan Guo, Ping Gao, Ya Li, Yunshan Wang, Wei Zhao","doi":"10.1158/1541-7786.MCR-24-0060","DOIUrl":"10.1158/1541-7786.MCR-24-0060","url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) is the most prevalent type of liver cancer, yet the effectiveness of treatment for patients with HCC is significantly hindered by the development of drug resistance to sorafenib. Through the application of accessibility sequencing to examine drug-resistant HCC tissues, we identified substantial alterations in chromatin accessibility in sorafenib-resistant patient-derived xenograft models. Employing multiomics data integration analysis, we confirmed that the key transcription factor TEAD2, which plays an important role in the Hippo signaling pathway, is a key factor in regulating sorafenib resistance in HCC. Functional assays illustrated that TEAD2 plays a role in promoting HCC progression and enhancing resistance to sorafenib. Mechanistically, we demonstrated that TEAD2 binds to the TAK1 promoter to modulate its expression. Furthermore, we established the involvement of TAK1 in mediating TEAD2-induced sorafenib resistance in HCC, a finding supported by the effectiveness of TAK1 inhibitors. Our research highlights that targeting the TEAD2-TAK1 axis can effectively mitigate drug resistance in patients with HCC receiving sorafenib treatment, offering a novel approach for enhancing the treatment outcomes and prognosis of individuals with HCC. Implications: Targeting the TEAD2-TAK1 axis presents a promising therapeutic strategy to overcome sorafenib resistance in HCC, potentially improving treatment outcomes and prognosis for patients.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"1102-1116"},"PeriodicalIF":4.1,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction: miRNA-302b Suppresses Human Hepatocellular Carcinoma by Targeting AKT2. 撤稿:miRNA-302b 通过靶向 AKT2 抑制人类肝细胞癌。
IF 4.1 2区 医学 Q2 CELL BIOLOGY Pub Date : 2024-11-01 DOI: 10.1158/1541-7786.MCR-24-0723
Lumin Wang, Jiayi Yao, Xiaogang Zhang, Bo Guo, Xiaofeng Le, Mark Cubberly, Zongfang Li, Kejun Nan, Tusheng Song, Chen Huang
{"title":"Retraction: miRNA-302b Suppresses Human Hepatocellular Carcinoma by Targeting AKT2.","authors":"Lumin Wang, Jiayi Yao, Xiaogang Zhang, Bo Guo, Xiaofeng Le, Mark Cubberly, Zongfang Li, Kejun Nan, Tusheng Song, Chen Huang","doi":"10.1158/1541-7786.MCR-24-0723","DOIUrl":"https://doi.org/10.1158/1541-7786.MCR-24-0723","url":null,"abstract":"","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":"22 11","pages":"1067"},"PeriodicalIF":4.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142558318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction: Role of Rac1 Pathway in Epithelial-to-Mesenchymal Transition and Cancer Stem-like Cell Phenotypes in Gastric Adenocarcinoma. 撤回:Rac1 通路在胃腺癌上皮细胞向间质转化和癌干样细胞表型中的作用
IF 4.1 2区 医学 Q2 CELL BIOLOGY Pub Date : 2024-11-01 DOI: 10.1158/1541-7786.MCR-24-0857
Changhwan Yoon, Seo-Jeong Cho, Kevin K Chang, Do Joong Park, Sandra W Ryeom, Sam S Yoon
{"title":"Retraction: Role of Rac1 Pathway in Epithelial-to-Mesenchymal Transition and Cancer Stem-like Cell Phenotypes in Gastric Adenocarcinoma.","authors":"Changhwan Yoon, Seo-Jeong Cho, Kevin K Chang, Do Joong Park, Sandra W Ryeom, Sam S Yoon","doi":"10.1158/1541-7786.MCR-24-0857","DOIUrl":"10.1158/1541-7786.MCR-24-0857","url":null,"abstract":"","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":"22 11","pages":"1068"},"PeriodicalIF":4.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577340/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142558319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Cancer Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1