首页 > 最新文献

Molecular Cancer Research最新文献

英文 中文
Retraction: CDX1 Expression Induced by CagA-Expressing Helicobacter pylori Promotes Gastric Tumorigenesis. 撤回:表达CagA的幽门螺杆菌诱导CDX1表达促进胃肿瘤发生
IF 4.1 2区 医学 Q2 CELL BIOLOGY Pub Date : 2024-11-01 DOI: 10.1158/1541-7786.MCR-24-0859
Sang Il Choi, Changhwan Yoon, Mi Ree Park, DaHyung Lee, Myeong-Cherl Kook, Jian-Xian Lin, Jun Hyuk Kang, Hassan Ashktorab, Duane T Smoot, Sam S Yoon, Soo-Jeong Cho
{"title":"Retraction: CDX1 Expression Induced by CagA-Expressing Helicobacter pylori Promotes Gastric Tumorigenesis.","authors":"Sang Il Choi, Changhwan Yoon, Mi Ree Park, DaHyung Lee, Myeong-Cherl Kook, Jian-Xian Lin, Jun Hyuk Kang, Hassan Ashktorab, Duane T Smoot, Sam S Yoon, Soo-Jeong Cho","doi":"10.1158/1541-7786.MCR-24-0859","DOIUrl":"https://doi.org/10.1158/1541-7786.MCR-24-0859","url":null,"abstract":"","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":"22 11","pages":"1065"},"PeriodicalIF":4.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142558316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GRAIL1 Stabilizes Misfolded Mutant p53 through a Ubiquitin Ligase-Independent, Chaperone Regulatory Function. GRAIL1 通过独立于泛素连接酶的伴侣调节功能稳定折叠错误的突变 p53。
IF 4.1 2区 医学 Q2 CELL BIOLOGY Pub Date : 2024-11-01 DOI: 10.1158/1541-7786.MCR-24-0361
Paramita Ray, Sangeeta Jaiswal, Daysha Ferrer-Torres, Zhuwen Wang, Derek Nancarrow, Meghan Curtin, May San Martinho, Shannon M Lacy, Srimathi Kasturirangan, Dafydd Thomas, Jason R Spence, Matthias C Truttmann, Kiran H Lagisetty, Theodore S Lawrence, Thomas D Wang, David G Beer, Dipankar Ray

Frequent (>70%) TP53 mutations often promote its protein stabilization, driving esophageal adenocarcinoma (EAC) development linked to poor survival and therapy resistance. We previously reported that during Barrett's esophagus progression to EAC, an isoform switch occurs in the E3 ubiquitin ligase RNF128 (aka GRAIL-gene related to anergy in lymphocytes), enriching isoform 1 (hereby GRAIL1) and stabilizing the mutant p53 protein. Consequently, GRAIL1 knockdown degrades mutant p53. But, how GRAIL1 stabilizes the mutant p53 protein remains unclear. In search for a mechanism, here, we performed biochemical and cell biology studies to identify that GRAIL has a binding domain (315-PMCKCDILKA-325) for heat shock protein 40/DNAJ. This interaction can influence DNAJ chaperone activity to modulate misfolded mutant p53 stability. As predicted, either the overexpression of a GRAIL fragment (Frag-J) encompassing the DNAJ binding domain or a cell-permeable peptide (Pep-J) encoding the above 10 amino acids can bind and inhibit DNAJ-Hsp70 co-chaperone activity, thus degrading misfolded mutant p53. Consequently, either Frag-J or Pep-J can reduce the survival of mutant p53 containing dysplastic Barrett's esophagus and EAC cells and inhibit the growth of patient-derived organoids of dysplastic Barrett's esophagus in 3D cultures. The misfolded mutant p53 targeting and growth inhibitory effects of Pep-J are comparable with simvastatin, a cholesterol-lowering drug that can degrade misfolded mutant p53 also via inhibiting DNAJA1, although by a distinct mechanism. Implications: We identified a novel ubiquitin ligase-independent, chaperone-regulating domain in GRAIL and further synthesized a first-in-class novel misfolded mutant p53 degrading peptide having future translational potential.

TP53的频繁突变(>70%)通常会促进其蛋白的稳定,从而推动食管腺癌(EAC)的发展,而食管腺癌的发展与生存率低和耐药性有关。我们以前曾报道过,在巴雷特病(BE)发展为 EAC 的过程中,E3 泛素连接酶 RNF128(又名 GRAIL--与淋巴细胞中的过敏有关的基因)会发生异构体转换,富集异构体 1(即 GRAIL1),从而稳定突变的 p53 蛋白。因此,敲除 GRAIL1 会降解突变 p53。但是,GRAIL1 是如何稳定突变 p53 蛋白的仍不清楚。为了寻找这一机制,我们进行了生化和细胞生物学研究,发现 GRAIL 有一个与 Hsp40/DNAJ 结合的结构域(315-PMCKCDILKA-325)。这种相互作用可以影响 DNAJ 合子的活性,从而调节折叠错误的突变体 p53 的稳定性。正如预测的那样,无论是过量表达包含 DNAJ 结合域的 GRAIL 片段(Frag-J),还是编码上述 10 个氨基酸的细胞渗透肽(Pep-J),都能结合并抑制 DNAJ-Hsp70 协同伴侣的活性,从而降解折叠错误的突变体 p53。因此,Frag-J 或 Pep-J 都能降低含有突变 p53 的发育不良 BE 和 EAC 细胞的存活率,并抑制患者来源的发育不良 BE 器官组织(PDOs)在三维培养中的生长。Pep-J对错误折叠突变体p53的靶向和生长抑制作用与辛伐他汀(一种降低胆固醇的药物)不相上下,后者也能通过抑制DNAJA1降解错误折叠突变体p53,但机制不同。意义:我们在 GRAIL 中发现了一个独立于泛素连接酶的新型伴侣调节结构域,并进一步合成了一种具有未来转化潜力的一流新型错误折叠突变体 p53 降解肽。
{"title":"GRAIL1 Stabilizes Misfolded Mutant p53 through a Ubiquitin Ligase-Independent, Chaperone Regulatory Function.","authors":"Paramita Ray, Sangeeta Jaiswal, Daysha Ferrer-Torres, Zhuwen Wang, Derek Nancarrow, Meghan Curtin, May San Martinho, Shannon M Lacy, Srimathi Kasturirangan, Dafydd Thomas, Jason R Spence, Matthias C Truttmann, Kiran H Lagisetty, Theodore S Lawrence, Thomas D Wang, David G Beer, Dipankar Ray","doi":"10.1158/1541-7786.MCR-24-0361","DOIUrl":"10.1158/1541-7786.MCR-24-0361","url":null,"abstract":"<p><p>Frequent (>70%) TP53 mutations often promote its protein stabilization, driving esophageal adenocarcinoma (EAC) development linked to poor survival and therapy resistance. We previously reported that during Barrett's esophagus progression to EAC, an isoform switch occurs in the E3 ubiquitin ligase RNF128 (aka GRAIL-gene related to anergy in lymphocytes), enriching isoform 1 (hereby GRAIL1) and stabilizing the mutant p53 protein. Consequently, GRAIL1 knockdown degrades mutant p53. But, how GRAIL1 stabilizes the mutant p53 protein remains unclear. In search for a mechanism, here, we performed biochemical and cell biology studies to identify that GRAIL has a binding domain (315-PMCKCDILKA-325) for heat shock protein 40/DNAJ. This interaction can influence DNAJ chaperone activity to modulate misfolded mutant p53 stability. As predicted, either the overexpression of a GRAIL fragment (Frag-J) encompassing the DNAJ binding domain or a cell-permeable peptide (Pep-J) encoding the above 10 amino acids can bind and inhibit DNAJ-Hsp70 co-chaperone activity, thus degrading misfolded mutant p53. Consequently, either Frag-J or Pep-J can reduce the survival of mutant p53 containing dysplastic Barrett's esophagus and EAC cells and inhibit the growth of patient-derived organoids of dysplastic Barrett's esophagus in 3D cultures. The misfolded mutant p53 targeting and growth inhibitory effects of Pep-J are comparable with simvastatin, a cholesterol-lowering drug that can degrade misfolded mutant p53 also via inhibiting DNAJA1, although by a distinct mechanism. Implications: We identified a novel ubiquitin ligase-independent, chaperone-regulating domain in GRAIL and further synthesized a first-in-class novel misfolded mutant p53 degrading peptide having future translational potential.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"996-1010"},"PeriodicalIF":4.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530312/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141634059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editor's Note: Therapeutic Targeting of Nuclear γ-Tubulin in RB1-Negative Tumors. 编者按:RB1阴性肿瘤中核γ-微管蛋白的治疗靶点。
IF 4.1 2区 医学 Q2 CELL BIOLOGY Pub Date : 2024-11-01 DOI: 10.1158/1541-7786.MCR-24-0792
Lisa Lindström, Bruno O Villoutreix, Sophie Lehn, Rebecka Hellsten, Elise Nilsson, Enisa Crneta, Roger Olsson, Maria Alvarado-Kristensson
{"title":"Editor's Note: Therapeutic Targeting of Nuclear γ-Tubulin in RB1-Negative Tumors.","authors":"Lisa Lindström, Bruno O Villoutreix, Sophie Lehn, Rebecka Hellsten, Elise Nilsson, Enisa Crneta, Roger Olsson, Maria Alvarado-Kristensson","doi":"10.1158/1541-7786.MCR-24-0792","DOIUrl":"https://doi.org/10.1158/1541-7786.MCR-24-0792","url":null,"abstract":"","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":"22 11","pages":"1064"},"PeriodicalIF":4.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142558314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expanding Our Horizon to Inform Cutting Edge Mechanistic Studies: Cancer Research Resources. 扩大我们的视野,为前沿机制研究提供信息:癌症研究资源。
IF 4.1 2区 医学 Q2 CELL BIOLOGY Pub Date : 2024-11-01 DOI: 10.1158/1541-7786.MCR-24-0884
Massimo Loda
{"title":"Expanding Our Horizon to Inform Cutting Edge Mechanistic Studies: Cancer Research Resources.","authors":"Massimo Loda","doi":"10.1158/1541-7786.MCR-24-0884","DOIUrl":"10.1158/1541-7786.MCR-24-0884","url":null,"abstract":"","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":"22 11","pages":"995"},"PeriodicalIF":4.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142558315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
METTL14-Mediated Bim mRNA m6A Modification Augments Osimertinib Sensitivity in EGFR-Mutant NSCLC Cells. METTL14 介导的 Bim mRNA m6A 修饰增强了表皮生长因子受体突变 NSCLC 细胞对奥希替尼的敏感性。
IF 4.1 2区 医学 Q2 CELL BIOLOGY Pub Date : 2024-11-01 DOI: 10.1158/1541-7786.MCR-23-1018
Siwen Fan, Xinwu Lv, Chuantao Zhang, Bingbing Zeng, Yanqing Liang, Danyang Chen, Zumin Xu, Pan Li, Shanshan Wu, Hao Liu, Kai Luo, Zongcai Liu, Yanmei Yi

Resistance to osimertinib represents a significant challenge for the successful treatment of non-small cell lung cancer (NSCLC) harboring activating mutations in EGFR. N6-methyladenosine (m6A) on mRNAs is critical for various biological processes, yet whether m6A regulates osimertinib resistance of NSCLC remains unknown. In this study, we demonstrated that developing osimertinib-resistant phenotypes depends on m6A reduction resulting from downexpression of m6A methyltransferase METTL14 in EGFR-mutant NSCLCs. Both in vitro and in vivo assays showed that specific knockdown of METTL14 was sufficient to confer osimertinib resistance and that elevated expression of METTL14 rescued the efficacy of osimertinib in the resistant NSCLC cells. Mechanistically, METTL14 promoted m6A methylation of pro-apoptotic Bim mRNA and increased Bim mRNA stability and expression, resulting in activating the Bim-dependent pro-apoptotic signaling and thereby promoting osimertinib-induced cell apoptosis. Analysis of clinical samples revealed that decreased expression of METTL14 was observed in osimertinib-resistant NSCLC tissues and significantly associated with a poor prognosis. In conclusion, our study reveals a novel regulatory mechanism by which METTL14-mediated m6A methylation of Bim mRNA inhibited osimertinib resistance of NSCLC cells. It offers more evidences for the involvement of m6A modification in regulation of osimertinib resistance and provides potential therapeutic targets for novel approaches to overcome the tolerance of osimertinib and other EGFR tyrosine kinase inhibitors. Implications: This study offers more evidences for the involvement of METTL14-mediated N6-methyladenosine modification in regulation of osimertinib resistance and provides potential therapeutic targets for novel approaches to overcome the tolerance of osimertinib and other EGFR tyrosine kinase inhibitors.

对于表皮生长因子受体(EGFR)发生活化突变的非小细胞肺癌(NSCLC)来说,奥希替尼的耐药性是成功治疗这类癌症的一大挑战。mRNA上的N6-甲基腺苷(m6A)对多种生物过程至关重要,但m6A是否调控奥希替尼对NSCLC的耐药性仍是未知数。在这项研究中,我们证明了在表皮生长因子受体突变的NSCLC中,奥希替尼耐药表型的形成取决于m6A甲基转移酶METTL14的下表达导致的m6A减少。体外和体内试验均表明,特异性敲除METTL14足以导致奥希替尼耐药,而METTL14的表达升高则能挽救奥希替尼在耐药NSCLC细胞中的疗效。从机理上讲,METTL14促进了促凋亡Bim mRNA的m6A甲基化,增加了Bim mRNA的稳定性和表达,从而激活了依赖Bim的促凋亡信号转导,进而促进了奥希替尼诱导的细胞凋亡。对临床样本的分析表明,在奥希替尼耐药的 NSCLC 组织中观察到 METTL14 的表达降低,并与不良预后显著相关。总之,我们的研究揭示了一种新的调控机制,即 METTL14 介导的 Bim mRNA m6A 甲基化抑制了 NSCLC 细胞对奥希替尼的耐药性。这为 m6A 修饰参与调控奥希替尼耐药提供了更多证据,并为克服奥希替尼和其他 EGFR-TKIs 耐受性的新方法提供了潜在的治疗靶点。意义:本研究为METTL14介导的m6A修饰参与调控奥希替尼耐药性提供了更多证据,并为克服奥希替尼和其他EGFR-TKIs耐受性的新方法提供了潜在的治疗靶点。
{"title":"METTL14-Mediated Bim mRNA m6A Modification Augments Osimertinib Sensitivity in EGFR-Mutant NSCLC Cells.","authors":"Siwen Fan, Xinwu Lv, Chuantao Zhang, Bingbing Zeng, Yanqing Liang, Danyang Chen, Zumin Xu, Pan Li, Shanshan Wu, Hao Liu, Kai Luo, Zongcai Liu, Yanmei Yi","doi":"10.1158/1541-7786.MCR-23-1018","DOIUrl":"10.1158/1541-7786.MCR-23-1018","url":null,"abstract":"<p><p>Resistance to osimertinib represents a significant challenge for the successful treatment of non-small cell lung cancer (NSCLC) harboring activating mutations in EGFR. N6-methyladenosine (m6A) on mRNAs is critical for various biological processes, yet whether m6A regulates osimertinib resistance of NSCLC remains unknown. In this study, we demonstrated that developing osimertinib-resistant phenotypes depends on m6A reduction resulting from downexpression of m6A methyltransferase METTL14 in EGFR-mutant NSCLCs. Both in vitro and in vivo assays showed that specific knockdown of METTL14 was sufficient to confer osimertinib resistance and that elevated expression of METTL14 rescued the efficacy of osimertinib in the resistant NSCLC cells. Mechanistically, METTL14 promoted m6A methylation of pro-apoptotic Bim mRNA and increased Bim mRNA stability and expression, resulting in activating the Bim-dependent pro-apoptotic signaling and thereby promoting osimertinib-induced cell apoptosis. Analysis of clinical samples revealed that decreased expression of METTL14 was observed in osimertinib-resistant NSCLC tissues and significantly associated with a poor prognosis. In conclusion, our study reveals a novel regulatory mechanism by which METTL14-mediated m6A methylation of Bim mRNA inhibited osimertinib resistance of NSCLC cells. It offers more evidences for the involvement of m6A modification in regulation of osimertinib resistance and provides potential therapeutic targets for novel approaches to overcome the tolerance of osimertinib and other EGFR tyrosine kinase inhibitors. Implications: This study offers more evidences for the involvement of METTL14-mediated N6-methyladenosine modification in regulation of osimertinib resistance and provides potential therapeutic targets for novel approaches to overcome the tolerance of osimertinib and other EGFR tyrosine kinase inhibitors.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"1051-1063"},"PeriodicalIF":4.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction: KRAS Activation in Gastric Adenocarcinoma Stimulates Epithelial-to-Mesenchymal Transition to Cancer Stem-Like Cells and Promotes Metastasis. 撤回:胃腺癌中的 KRAS 激活会刺激上皮细胞向癌干样细胞的间质转化并促进转移。
IF 4.1 2区 医学 Q2 CELL BIOLOGY Pub Date : 2024-11-01 DOI: 10.1158/1541-7786.MCR-24-0858
Changhwan Yoon, Jacob Till, Soo-Jeong Cho, Kevin K Chang, Jian-Xian Lin, Chang-Ming Huang, Sandra Ryeom, Sam S Yoon
{"title":"Retraction: KRAS Activation in Gastric Adenocarcinoma Stimulates Epithelial-to-Mesenchymal Transition to Cancer Stem-Like Cells and Promotes Metastasis.","authors":"Changhwan Yoon, Jacob Till, Soo-Jeong Cho, Kevin K Chang, Jian-Xian Lin, Chang-Ming Huang, Sandra Ryeom, Sam S Yoon","doi":"10.1158/1541-7786.MCR-24-0858","DOIUrl":"10.1158/1541-7786.MCR-24-0858","url":null,"abstract":"","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":"22 11","pages":"1066"},"PeriodicalIF":4.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579845/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142558317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NAP1L1 Promotes Endometrial Cancer Progression via EP300-Mediated DDX5 Promoter Acetylation. NAP1L1 通过 EP300 介导的 DDX5 启动子乙酰化促进子宫内膜癌进展
IF 4.1 2区 医学 Q2 CELL BIOLOGY Pub Date : 2024-11-01 DOI: 10.1158/1541-7786.MCR-23-0871
Xiangfei Zhu, Yishan Li, Zhiying Shao, Xiaoyuan Lu, Youguo Chen

Endometrial cancer is one of the predominant tumors of the female reproductive system. In this current study, we investigated the functions and related mechanisms of nucleosome assembly protein 1 like 1 (NAP1L1)/ DEAD-box helicase 5 (DDX5) in endometrial cancer. This retrospective study analyzed the medical records of patients with endometrial cancer, collected tissue samples for NAP1L1 and DDX5 staining, and conducted survival analysis using the Kaplan-Meier method. To evaluate the impact of NAP1L1 and/or DDX5 on cellular processes in endometrial cancer cells, several techniques were employed. These included Cell Counting Kit-8 assay, wound healing assay, Transwell assay, as well as overexpression or knockdown of target gene expression. Additionally, chromatin immunoprecipitation, dual luciferase reporter gene, and coimmunoprecipitation (Co-IP) assay were utilized to confirm the interaction between NAP1L1, E1A-binding protein p300 (EP300), and DDX5. Furthermore, qRT-PCR, Western blot, and Co-IP assay were performed to analyze the modulation of NAP1L1/DDX5 in Wnt/β-catenin. NAP1L1 and DDX5 expression were upregulated in endometrial cancer tissues, and correlated with poor prognosis. NAP1L1/DDX5 promoted endometrial cancer cell proliferation, migration, and invasion. NAP1L1 promotes acetylation and transcription by recruiting EP300 to the DDX5 promoter. DDX5 could activate Wnt/β-catenin signal by binding to β-catenin. In animal models, knockdown of NAP1L1 inhibits endometrial cancer tumor growth and lung metastasis. To sum up, our study demonstrated that NAP1L1 promoted the malignant phenotypes of endometrial cancer cells via recruiting EP300 to promote DDX5 acetylation, thus activating the Wnt/β-catenin signaling pathway. Implications: Our research findings indicate that targeting the NAP1L1/EP300/DX5 axis might be a new potential treatment option for endometrial cancer.

子宫内膜癌(EC)是女性生殖系统的主要肿瘤之一。在本研究中,我们探讨了 NAP1L1/DDX5 在子宫内膜癌中的功能和相关机制。这项回顾性研究分析了EC患者的病历,采集了组织样本进行NAP1L1和DDX5染色,并采用Kaplan-Meier法进行了生存率分析。为了评估NAP1L1和/或DDX5对EC细胞过程的影响,研究人员采用了多种技术。这些技术包括 CCK-8 试验、伤口愈合试验、Transwell 试验以及过表达或敲除靶基因表达。此外,还采用了 ChIP、双荧光素酶报告基因、Co-IP 试验来证实 NAP1L1、EP300 和 DDX5 之间的相互作用。此外,还进行了 qRT-PCR、Western 印迹和 Co-IP 检测,以分析 NAP1L1/DDX5 对 Wnt/β-catenin 的调控作用。结果表明,NAP1L1和DDX5在EC组织中表达上调,并与不良预后相关。NAP1L1/DDX5促进了EC细胞的增殖、迁移和侵袭。NAP1L1 通过招募 EP300 至 DDX5 启动子促进乙酰化和转录。DDX5可通过与β-catenin结合激活Wnt/β-catenin信号。在动物模型中,敲除NAP1L1可抑制EC肿瘤的生长和肺转移。综上所述,我们的研究表明,NAP1L1通过招募EP300促进DDX5乙酰化,从而激活Wnt/β-catenin信号通路,促进了EC细胞恶性表型的形成。意义:我们的研究结果表明,以NAP1L1/EP300/DX5轴为靶点可能是子宫内膜癌的一种新的潜在治疗方案。
{"title":"NAP1L1 Promotes Endometrial Cancer Progression via EP300-Mediated DDX5 Promoter Acetylation.","authors":"Xiangfei Zhu, Yishan Li, Zhiying Shao, Xiaoyuan Lu, Youguo Chen","doi":"10.1158/1541-7786.MCR-23-0871","DOIUrl":"10.1158/1541-7786.MCR-23-0871","url":null,"abstract":"<p><p>Endometrial cancer is one of the predominant tumors of the female reproductive system. In this current study, we investigated the functions and related mechanisms of nucleosome assembly protein 1 like 1 (NAP1L1)/ DEAD-box helicase 5 (DDX5) in endometrial cancer. This retrospective study analyzed the medical records of patients with endometrial cancer, collected tissue samples for NAP1L1 and DDX5 staining, and conducted survival analysis using the Kaplan-Meier method. To evaluate the impact of NAP1L1 and/or DDX5 on cellular processes in endometrial cancer cells, several techniques were employed. These included Cell Counting Kit-8 assay, wound healing assay, Transwell assay, as well as overexpression or knockdown of target gene expression. Additionally, chromatin immunoprecipitation, dual luciferase reporter gene, and coimmunoprecipitation (Co-IP) assay were utilized to confirm the interaction between NAP1L1, E1A-binding protein p300 (EP300), and DDX5. Furthermore, qRT-PCR, Western blot, and Co-IP assay were performed to analyze the modulation of NAP1L1/DDX5 in Wnt/β-catenin. NAP1L1 and DDX5 expression were upregulated in endometrial cancer tissues, and correlated with poor prognosis. NAP1L1/DDX5 promoted endometrial cancer cell proliferation, migration, and invasion. NAP1L1 promotes acetylation and transcription by recruiting EP300 to the DDX5 promoter. DDX5 could activate Wnt/β-catenin signal by binding to β-catenin. In animal models, knockdown of NAP1L1 inhibits endometrial cancer tumor growth and lung metastasis. To sum up, our study demonstrated that NAP1L1 promoted the malignant phenotypes of endometrial cancer cells via recruiting EP300 to promote DDX5 acetylation, thus activating the Wnt/β-catenin signaling pathway. Implications: Our research findings indicate that targeting the NAP1L1/EP300/DX5 axis might be a new potential treatment option for endometrial cancer.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"1011-1021"},"PeriodicalIF":4.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
lncRNA-WAL Promotes Triple-Negative Breast Cancer Aggression by Inducing β-Catenin Nuclear Translocation. lncRNA-WAL通过诱导β-catenin核易位促进三阴性乳腺癌的侵袭。
IF 4.1 2区 医学 Q2 CELL BIOLOGY Pub Date : 2024-11-01 DOI: 10.1158/1541-7786.MCR-23-0334
Hongyan Huang, Haiyun Jin, Rong Lei, Zhanghai He, Shishi He, Jiewen Chen, Phei E Saw, Zhu Qiu, Guosheng Ren, Yan Nie

Because of its insensitivity to existing radiotherapy, namely, chemotherapy and targeted treatments, triple-negative breast cancer (TNBC) remains a great challenge to overcome. Increasing evidence has indicated abnormal Wnt/β-catenin pathway activation in TNBC but not luminal or HER2+ breast cancer, and lncRNAs play a key role in a variety of cancers. Through lncRNA microarray profiling between activated and inactivated Wnt/β-catenin pathway of TNBC tissues, lnc-WAL (Wnt/β-catenin-associated lncRNA; WAL) was selected as the top upregulated lncRNA in Wnt/β-catenin pathway activation compared with the inactivation group. RNA immunoprecipitation sequencing was used to compare the β-catenin and IgG groups, in which lnc-WAL could interact with β-catenin. Clinically, increased lnc-WAL in TNBC tumor tissue was associated with shorter survival. lnc-WAL promoted epithelial-mesenchymal transition, the proliferation, migration, and invasion of breast cancer stem cells and TNBC cells. Mechanistically, lnc-WAL inhibited β-catenin protein degradation via AXIN-mediated phosphorylation at serine 45. Subsequently, β-catenin accumulated in the nucleus and activated the target genes. Importantly, Wnt/β-catenin pathway activation stimulated the transcription of lnc-WAL. These results pointed to a master regulatory role of lnc-WAL/AXIN/β-catenin in the malignant progression of TNBC. Our findings provide important clinical translational evidence that lnc-WAL may be a potential therapeutic target against TNBC. Implications: The positive feedback between lnc-WAL and the Wnt/β-catenin pathway promotes TNBC progression, and lnc-WAL could be a potential prognostic marker for patients with TNBC.

由于三阴性乳腺癌(TNBC)对现有的放疗、化疗和靶向治疗不敏感,因此仍然是一个需要攻克的巨大挑战。越来越多的证据表明,Wnt/β-catenin通路在TNBC中异常激活,而在管腔癌或HER2+乳腺癌中则没有。通过对TNBC组织中激活和失活的wnt/β-catenin通路进行lncRNA微阵列分析,发现lnc-WAL(wnt/β-catenin相关lncRNA;WAL)是wnt/β-catenin通路激活组与失活组相比上调最多的lncRNA。RIP-seq用于比较β-catenin组和IgG组,其中lnc-WAL可与β-catenin相互作用。在临床上,TNBC肿瘤组织中lnc-WAL的增加与生存期缩短有关。lnc-WAL促进EMT、乳腺癌干细胞(BCSCs)和TNBC细胞的增殖、迁移和侵袭。从机理上讲,lnc-WAL通过Axin介导的丝氨酸45磷酸化抑制β-catenin蛋白降解。随后,β-catenin在细胞核中积累并激活靶基因。重要的是,wnt/β-catenin通路的激活刺激了lnc-WAL的转录。这些结果表明,lnc-WAL/Axin/β-catenin在TNBC的恶性进展中起着主调控作用。我们的研究结果提供了重要的临床转化证据,表明lnc-WAL可能是TNBC的潜在治疗靶点。意义:lnc-WAL与Wnt/β-catenin通路之间的正反馈促进了TNBC的进展,lnc-WAL可能是TNBC患者的潜在预后标志物。
{"title":"lncRNA-WAL Promotes Triple-Negative Breast Cancer Aggression by Inducing β-Catenin Nuclear Translocation.","authors":"Hongyan Huang, Haiyun Jin, Rong Lei, Zhanghai He, Shishi He, Jiewen Chen, Phei E Saw, Zhu Qiu, Guosheng Ren, Yan Nie","doi":"10.1158/1541-7786.MCR-23-0334","DOIUrl":"10.1158/1541-7786.MCR-23-0334","url":null,"abstract":"<p><p>Because of its insensitivity to existing radiotherapy, namely, chemotherapy and targeted treatments, triple-negative breast cancer (TNBC) remains a great challenge to overcome. Increasing evidence has indicated abnormal Wnt/β-catenin pathway activation in TNBC but not luminal or HER2+ breast cancer, and lncRNAs play a key role in a variety of cancers. Through lncRNA microarray profiling between activated and inactivated Wnt/β-catenin pathway of TNBC tissues, lnc-WAL (Wnt/β-catenin-associated lncRNA; WAL) was selected as the top upregulated lncRNA in Wnt/β-catenin pathway activation compared with the inactivation group. RNA immunoprecipitation sequencing was used to compare the β-catenin and IgG groups, in which lnc-WAL could interact with β-catenin. Clinically, increased lnc-WAL in TNBC tumor tissue was associated with shorter survival. lnc-WAL promoted epithelial-mesenchymal transition, the proliferation, migration, and invasion of breast cancer stem cells and TNBC cells. Mechanistically, lnc-WAL inhibited β-catenin protein degradation via AXIN-mediated phosphorylation at serine 45. Subsequently, β-catenin accumulated in the nucleus and activated the target genes. Importantly, Wnt/β-catenin pathway activation stimulated the transcription of lnc-WAL. These results pointed to a master regulatory role of lnc-WAL/AXIN/β-catenin in the malignant progression of TNBC. Our findings provide important clinical translational evidence that lnc-WAL may be a potential therapeutic target against TNBC. Implications: The positive feedback between lnc-WAL and the Wnt/β-catenin pathway promotes TNBC progression, and lnc-WAL could be a potential prognostic marker for patients with TNBC.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"1036-1050"},"PeriodicalIF":4.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528204/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141469682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
hnRNPAB Promotes Pancreatic Ductal Adenocarcinoma Extravasation and Liver Metastasis by Stabilizing MYC mRNA. HnRNPAB 通过稳定 MYC mRNA 促进胰腺导管腺癌的外渗和肝转移。
IF 4.1 2区 医学 Q2 CELL BIOLOGY Pub Date : 2024-11-01 DOI: 10.1158/1541-7786.MCR-24-0110
Ke Lei, Mingyue Sun, Xianghan Chen, Jia Wang, Xiaolan Liu, Ying Ning, Shuai Ping, Ruining Gong, Yu Zhang, Gong Qing, Chenyang Zhao, He Ren

Heterogeneous nuclear ribonucleoprotein AB (hnRNPAB) is considered a cancer-promoting heterogeneous nuclear ribonucleoprotein in many cancers, but its function in pancreatic ductal adenocarcinoma (PDAC) is poorly understood. hnRNPAB was highly expressed in PDAC tissues compared with normal pancreatic tissues, and high expression of hnRNPAB was associated with poor overall survival and recurrence-free survival in patients with PDAC. hnRNPAB promotes migration and invasion of PDAC cells in vitro. In xenograft tumor mouse models, hnRNPAB deprivation significantly attenuated liver metastasis. hnRNPAB mRNA and protein levels are positively associated with MYC in PDAC cells. Mechanistically, hnRNPAB bound to MYC mRNA and prolonged its half-life. hnRNPAB induced PDAC cells to secrete CXCL8 via MYC, which promoted neutrophil recruitment and facilitated tumor cells entrancing into the hepatic parenchyma. These findings point to a novel regulatory mechanism via which hnRNPAB promotes PDAC metastasis. Implications: hnRNPAB participates in the posttranscriptional regulation of the oncogene MYC by binding and stabilizing MYC mRNA, thereby promoting liver metastasis in PDAC.

异质核糖核蛋白AB(hnRNPAB)在许多癌症中被认为是一种促癌异质核糖核蛋白,但它在胰腺导管腺癌(PDAC)中的功能却鲜为人知。与正常胰腺组织相比,HnRNPAB在PDAC组织中高表达,而且hnRNPAB的高表达与PDAC患者的总生存期和无复发生存期差有关。HnRNPAB 在体外促进 PDAC 细胞的迁移和侵袭。在异种移植肿瘤小鼠模型中,剥夺hnRNPAB可显著减少肝转移。HnRNPAB mRNA和蛋白水平与PDAC细胞中的MYC呈正相关。从机制上讲,hnRNPAB与MYC mRNA结合,延长了MYC mRNA的半衰期。HnRNPAB通过MYC诱导PDAC细胞分泌CXCL8,从而促进中性粒细胞的募集,促进肿瘤细胞进入肝实质。这些发现揭示了 hnRNPAB 促进 PDAC 转移的新型调控机制。意义:Hnrnpab通过结合和稳定MYC mRNA参与转录后调控癌基因MYC,从而促进PDAC的肝转移。
{"title":"hnRNPAB Promotes Pancreatic Ductal Adenocarcinoma Extravasation and Liver Metastasis by Stabilizing MYC mRNA.","authors":"Ke Lei, Mingyue Sun, Xianghan Chen, Jia Wang, Xiaolan Liu, Ying Ning, Shuai Ping, Ruining Gong, Yu Zhang, Gong Qing, Chenyang Zhao, He Ren","doi":"10.1158/1541-7786.MCR-24-0110","DOIUrl":"10.1158/1541-7786.MCR-24-0110","url":null,"abstract":"<p><p>Heterogeneous nuclear ribonucleoprotein AB (hnRNPAB) is considered a cancer-promoting heterogeneous nuclear ribonucleoprotein in many cancers, but its function in pancreatic ductal adenocarcinoma (PDAC) is poorly understood. hnRNPAB was highly expressed in PDAC tissues compared with normal pancreatic tissues, and high expression of hnRNPAB was associated with poor overall survival and recurrence-free survival in patients with PDAC. hnRNPAB promotes migration and invasion of PDAC cells in vitro. In xenograft tumor mouse models, hnRNPAB deprivation significantly attenuated liver metastasis. hnRNPAB mRNA and protein levels are positively associated with MYC in PDAC cells. Mechanistically, hnRNPAB bound to MYC mRNA and prolonged its half-life. hnRNPAB induced PDAC cells to secrete CXCL8 via MYC, which promoted neutrophil recruitment and facilitated tumor cells entrancing into the hepatic parenchyma. These findings point to a novel regulatory mechanism via which hnRNPAB promotes PDAC metastasis. Implications: hnRNPAB participates in the posttranscriptional regulation of the oncogene MYC by binding and stabilizing MYC mRNA, thereby promoting liver metastasis in PDAC.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"1022-1035"},"PeriodicalIF":4.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141534886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ubiquitin Ligase TRIM22 Inhibits Ovarian Cancer Malignancy via TCF4 Degradation. 泛素连接酶TRIM22通过TCF4降解抑制卵巢癌恶变
IF 4.1 2区 医学 Q2 CELL BIOLOGY Pub Date : 2024-10-02 DOI: 10.1158/1541-7786.MCR-23-0962
Tao Tao, Yongqi Zhang, Chunyan Guan, Shuxiang Wang, Xiaoli Liu, Min Wang

Ovarian cancer is one of the most common malignancies in women. Tripartite motif-containing protein 22 (TRIM22) plays an important role in the initiation and progression of malignant tumors. Similarly, the transcription factor 4 (TCF4) is an essential factor involved in the initiation and progression of many tumors. However, it is still unclear whether TRIM22 can affect TCF4 in ovarian cancer. Therefore, this study aims to investigate the mechanism related to TRIM22 and TCF4 in ovarian cancer. TRIM22 protein and mRNA levels were analyzed in samples from clinical and cell lines. The effects of TRIM22 knockdown and overexpression on cell proliferation, colony formation, migration, invasion, and related biomarkers were evaluated. In addition, the role of ubiquitination-mediated degradation of TCF4 was investigated by qRT-PCR and Western blotting. The association between TRIM22 and TCF4 was evaluated by Western blotting, coimmunoprecipitation, proliferation, colony formation, invasion, migration, and related biomarkers. The results showed that the expression of TRIM22 was minimal in ovarian cancer tissues. Furthermore, upregulation of TRIM22 significantly inhibited ovarian cancer cell proliferation, colony formation, migration, and invasion. In addition, TRIM22 was observed to regulate the degradation of TCF4 through the ubiquitination pathway. TCF4 can reverse the effects of TRIM22 on proliferation, colony formation, migration, and invasion in ovarian cancer cells. TRIM22-mediated ubiquitination of TCF4 at K48 is facilitated by the RING domain. Implications: In conclusion, ubiquitination of TCF4 protein in ovarian cancer is regulated by TRIM22, which has the potential to limit the proliferation, migration, and invasion of ovarian cancer.

卵巢癌(OC)是女性最常见的恶性肿瘤之一。含三方基序蛋白 22(TRIM22)在恶性肿瘤的发生和发展过程中起着重要作用。同样,转录因子 4(TCF4)也是参与许多肿瘤发生和发展的重要因子。然而,TRIM22是否会影响OC中的TCF4仍不清楚。因此,本研究旨在探讨TRIM22与TCF4在OC中的相关机制。本研究分析了临床样本和细胞系样本中的TRIM22蛋白和mRNA水平。评估了TRIM22敲除和过表达对细胞增殖、集落形成、迁移、侵袭和相关生物标志物的影响。此外,还通过qRT-PCR和Western印迹法研究了泛素化介导的TCF4降解的作用。通过Western印迹、共免疫沉淀、增殖、集落形成、侵袭、迁移及相关生物标记评估了TRIM22与TCF4之间的关联。结果显示,TRIM22在OC组织中的表达量极少。此外,上调 TRIM22 能显著抑制 OC 细胞的增殖、集落形成、迁移和侵袭。此外,还观察到TRIM22通过泛素化途径调控TCF4的降解。TCF4 可以逆转 TRIM22 对 OC 细胞增殖、集落形成、迁移和侵袭的影响。TRIM22介导的TCF4在K48处的泛素化是由RING结构域促进的。意义:总之,TCF4 蛋白在 OC 中的泛素化是由 TRIM22 调节的,它有可能限制 OC 的增殖、迁移和侵袭。
{"title":"Ubiquitin Ligase TRIM22 Inhibits Ovarian Cancer Malignancy via TCF4 Degradation.","authors":"Tao Tao, Yongqi Zhang, Chunyan Guan, Shuxiang Wang, Xiaoli Liu, Min Wang","doi":"10.1158/1541-7786.MCR-23-0962","DOIUrl":"10.1158/1541-7786.MCR-23-0962","url":null,"abstract":"<p><p>Ovarian cancer is one of the most common malignancies in women. Tripartite motif-containing protein 22 (TRIM22) plays an important role in the initiation and progression of malignant tumors. Similarly, the transcription factor 4 (TCF4) is an essential factor involved in the initiation and progression of many tumors. However, it is still unclear whether TRIM22 can affect TCF4 in ovarian cancer. Therefore, this study aims to investigate the mechanism related to TRIM22 and TCF4 in ovarian cancer. TRIM22 protein and mRNA levels were analyzed in samples from clinical and cell lines. The effects of TRIM22 knockdown and overexpression on cell proliferation, colony formation, migration, invasion, and related biomarkers were evaluated. In addition, the role of ubiquitination-mediated degradation of TCF4 was investigated by qRT-PCR and Western blotting. The association between TRIM22 and TCF4 was evaluated by Western blotting, coimmunoprecipitation, proliferation, colony formation, invasion, migration, and related biomarkers. The results showed that the expression of TRIM22 was minimal in ovarian cancer tissues. Furthermore, upregulation of TRIM22 significantly inhibited ovarian cancer cell proliferation, colony formation, migration, and invasion. In addition, TRIM22 was observed to regulate the degradation of TCF4 through the ubiquitination pathway. TCF4 can reverse the effects of TRIM22 on proliferation, colony formation, migration, and invasion in ovarian cancer cells. TRIM22-mediated ubiquitination of TCF4 at K48 is facilitated by the RING domain. Implications: In conclusion, ubiquitination of TCF4 protein in ovarian cancer is regulated by TRIM22, which has the potential to limit the proliferation, migration, and invasion of ovarian cancer.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"943-956"},"PeriodicalIF":4.1,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141262339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Cancer Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1