Pub Date : 2022-10-06eCollection Date: 2022-01-01DOI: 10.1155/2022/3933252
Lei Zhang, Chaoying Pei, Dan Hou, Guoshuai Yang, Dan Yu
Small extracellular vesicles (sEVs) secreted by mesenchymal stem cells (MSCs) have shown great therapeutic potential in cerebral ischemia-reperfusion injury (CIRI). In this study, we firstly performed a systematic review to evaluate the efficacy of MSCs-derived sEV for experimental cerebral ischemia/reperfusion injury. 24 studies were identified by searching 8 databases from January 2012 to August 2022. The methodological quality was assessed by using the SYRCLE 's risk of bias tool for animal studies. All the data were analyzed using RevMan 5.3 software. As a result, the score of study quality ranged from 3 to 9 in a total of ten points. Meta-analyses showed that MSCs-derived sEVs could effectively alleviate neurological impairment scores, reduced the volume of cerebral infarction and brain water content, and attenuated neuronal apoptosis. Additionally, the possible mechanisms of MSCs-derived sEVs for attenuating neuronal apoptosis were inhibiting microglia-mediated neuroinflammation. Thus, MSCs-derived sEVs might be regarded as a novel insight for cerebral ischemic stroke. However, further mechanistic studies, therapeutic safety, and clinical trials are required. Systematic review registration. PROSPERO CRD42022312227.
{"title":"Inhibition of Cerebral Ischemia/Reperfusion Injury by MSCs-Derived Small Extracellular Vesicles in Rodent Models: A Systematic Review and Meta-Analysis.","authors":"Lei Zhang, Chaoying Pei, Dan Hou, Guoshuai Yang, Dan Yu","doi":"10.1155/2022/3933252","DOIUrl":"https://doi.org/10.1155/2022/3933252","url":null,"abstract":"<p><p>Small extracellular vesicles (sEVs) secreted by mesenchymal stem cells (MSCs) have shown great therapeutic potential in cerebral ischemia-reperfusion injury (CIRI). In this study, we firstly performed a systematic review to evaluate the efficacy of MSCs-derived sEV for experimental cerebral ischemia/reperfusion injury. 24 studies were identified by searching 8 databases from January 2012 to August 2022. The methodological quality was assessed by using the SYRCLE 's risk of bias tool for animal studies. All the data were analyzed using RevMan 5.3 software. As a result, the score of study quality ranged from 3 to 9 in a total of ten points. Meta-analyses showed that MSCs-derived sEVs could effectively alleviate neurological impairment scores, reduced the volume of cerebral infarction and brain water content, and attenuated neuronal apoptosis. Additionally, the possible mechanisms of MSCs-derived sEVs for attenuating neuronal apoptosis were inhibiting microglia-mediated neuroinflammation. Thus, MSCs-derived sEVs might be regarded as a novel insight for cerebral ischemic stroke. However, further mechanistic studies, therapeutic safety, and clinical trials are required. Systematic review registration. PROSPERO CRD42022312227.</p>","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":" ","pages":"3933252"},"PeriodicalIF":3.1,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9633211/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40668927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-04eCollection Date: 2022-01-01DOI: 10.1155/2022/3923384
Jiandong Sun, Yan Liu, Xiaoning Hao, Michel Baudry, Xiaoning Bi
Angelman syndrome (AS) is a rare neurodevelopmental disorder characterized by severe developmental delay, motor impairment, language and cognition deficits, and often with increased seizure activity. AS is caused by deficiency of UBE3A, which is both an E3 ligase and a cofactor for transcriptional regulation. We previously showed that the small conductance potassium channel protein SK2 is a UBE3A substrate, and that increased synaptic SK2 levels contribute to impairments in synaptic plasticity and fear-conditioning memory, as inhibition of SK2 channels significantly improved both synaptic plasticity and fear memory in male AS mice. In the present study, we investigated UBE3a-mediated regulation of synaptic plasticity and fear-conditioning in female AS mice. Results from both western blot and immunofluorescence analyses showed that synaptic SK2 levels were significantly increased in hippocampus of female AS mice, as compared to wild-type (WT) littermates. Like in male AS mice, long-term potentiation (LTP) was significantly reduced while long-term depression (LTD) was enhanced at hippocampal CA3-CA1 synapses of female AS mice, as compared to female WT mice. Both alterations were significantly reduced by treatment with the SK2 inhibitor, apamin. The shunting effect of SK2 channels on NMDA receptor was significantly larger in female AS mice as compared to female WT mice. Female AS mice also showed impairment in both contextual and tone memory recall, and this impairment was significantly reduced by apamin treatment. Our results indicate that like male AS mice, female AS mice showed significant impairment in both synaptic plasticity and fear-conditioning memory due to increased levels of synaptic SK2 channels. Any therapeutic strategy to reduce SK2-mediated inhibition of NMDAR should be beneficial to both male and female patients.
安杰尔曼综合征(Angelman syndrome,AS)是一种罕见的神经发育障碍性疾病,以严重的发育迟缓、运动障碍、语言和认知障碍为特征,通常伴有癫痫发作活动增加。AS是由UBE3A缺乏引起的,UBE3A既是E3连接酶,也是转录调控的辅助因子。我们以前的研究表明,小电导钾通道蛋白SK2是UBE3A的底物,而突触SK2水平的增加会导致突触可塑性和恐惧条件记忆的损伤,因为抑制SK2通道能显著改善雄性AS小鼠的突触可塑性和恐惧记忆。在本研究中,我们研究了 UBE3a 介导的对雌性 AS 小鼠突触可塑性和恐惧调理记忆的调控。Western印迹和免疫荧光分析结果表明,与野生型小鼠相比,雌性AS小鼠海马中突触SK2水平显著升高。与雄性AS小鼠一样,与雌性WT小鼠相比,雌性AS小鼠海马CA3-CA1突触的长期延时(LTP)明显降低,而长期抑制(LTD)增强。用SK2抑制剂阿帕明治疗后,这两种改变都明显减少。与雌性WT小鼠相比,雌性AS小鼠SK2通道对NMDA受体的分流效应明显增大。雌性AS小鼠还表现出情境记忆和语调记忆回忆的障碍,而这种障碍在阿帕明治疗后明显减轻。我们的研究结果表明,与雄性AS小鼠一样,雌性AS小鼠也会因突触SK2通道水平的增加而在突触可塑性和恐惧条件反射记忆方面表现出明显的障碍。任何减少SK2介导的NMDAR抑制的治疗策略都应该对雄性和雌性患者有益。
{"title":"Lack of UBE3A-Mediated Regulation of Synaptic SK2 Channels Contributes to Learning and Memory Impairment in the Female Mouse Model of Angelman Syndrome.","authors":"Jiandong Sun, Yan Liu, Xiaoning Hao, Michel Baudry, Xiaoning Bi","doi":"10.1155/2022/3923384","DOIUrl":"10.1155/2022/3923384","url":null,"abstract":"<p><p>Angelman syndrome (AS) is a rare neurodevelopmental disorder characterized by severe developmental delay, motor impairment, language and cognition deficits, and often with increased seizure activity. AS is caused by deficiency of UBE3A, which is both an E3 ligase and a cofactor for transcriptional regulation. We previously showed that the small conductance potassium channel protein SK2 is a UBE3A substrate, and that increased synaptic SK2 levels contribute to impairments in synaptic plasticity and fear-conditioning memory, as inhibition of SK2 channels significantly improved both synaptic plasticity and fear memory in male AS mice. In the present study, we investigated UBE3a-mediated regulation of synaptic plasticity and fear-conditioning in female AS mice. Results from both western blot and immunofluorescence analyses showed that synaptic SK2 levels were significantly increased in hippocampus of female AS mice, as compared to wild-type (WT) littermates. Like in male AS mice, long-term potentiation (LTP) was significantly reduced while long-term depression (LTD) was enhanced at hippocampal CA3-CA1 synapses of female AS mice, as compared to female WT mice. Both alterations were significantly reduced by treatment with the SK2 inhibitor, apamin. The shunting effect of SK2 channels on NMDA receptor was significantly larger in female AS mice as compared to female WT mice. Female AS mice also showed impairment in both contextual and tone memory recall, and this impairment was significantly reduced by apamin treatment. Our results indicate that like male AS mice, female AS mice showed significant impairment in both synaptic plasticity and fear-conditioning memory due to increased levels of synaptic SK2 channels. Any therapeutic strategy to reduce SK2-mediated inhibition of NMDAR should be beneficial to both male and female patients.</p>","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":"2022 ","pages":"3923384"},"PeriodicalIF":3.1,"publicationDate":"2022-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9553421/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33509568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Hemiplegic shoulder pain (HSP) is a common symptom for post-stroke patients, which has a severely adverse impact on their rehabilitation outcomes. However, the cause of HSP has not been clearly identified due to its complicated multifactorial etiologies. As possible causes of HSP, the abnormality of both muscular electrical activity and blood perfusion remains lack of investigations.
Objective: This study aimed to analyze the alteration of muscular electrical activity and blood perfusion of upper extremity in patients with HSP by using surface electromyography (sEMG) and laser speckle contrast imaging (LSCI) measurement techniques, which may provide some insight into the etiology of HSP.
Methods: In this observational and cross-sectional study, three groups of participants were recruited. They were hemiplegic patients with shoulder pain (HSP group), hemiplegic patients without shoulder pain (HNSP group), and healthy participants (Healthy group). The sEMG data and blood perfusion data were collected from all the subjects and used to compute three different physiological measures, the root-mean-square (RMS) and median-frequency (MDF) parameters of sEMG recordings, and the perfusion unit (PU) parameter of blood perfusion imaging.
Results: The RMS parameter of sEMG showed significant difference (p < 0.05) in the affected side between HSP, HNSP, and Healthy groups. The MDF parameter of sEMG and PU parameter of blood perfusion showed no significant difference in both sides among the three groups (p > 0.05). The RMS parameter of sEMG showed a statistically significant correlation with the pain intensity (r = -0.691, p =0.012).
Conclusion: This study indicated that the muscular electrical activity of upper extremity had a correlation with the presence of HSP, and the blood perfusion seemed to be no such correlation. The findings of the study suggested an alternative way to explore the mechanism and treatment of HSP.
背景:偏瘫肩痛(HSP)是脑卒中后患者的常见症状,严重影响其康复效果。然而,由于其复杂的多因素病因,HSP的病因尚未明确确定。肌电活动异常和血流灌注异常作为热休克的可能病因,目前尚缺乏研究。目的:利用肌表电图(sEMG)和激光散斑对比成像(LSCI)测量技术,分析HSP患者上肢肌电活动和血流灌注的变化,为HSP的病因分析提供依据。方法:在这项观察性横断面研究中,招募了三组参与者。他们分别是有肩痛的偏瘫患者(HSP组)、无肩痛的偏瘫患者(HNSP组)和健康的参与者(健康组)。收集所有受试者的肌电信号数据和血液灌注数据,计算三种不同的生理指标,肌电信号记录的均方根(RMS)和中频(MDF)参数,以及血液灌注成像的灌注单位(PU)参数。结果:HSP组、HNSP组、健康组患侧肌电RMS参数差异有统计学意义(p < 0.05)。两组间肌电图MDF参数、血流灌注PU参数差异均无统计学意义(p > 0.05)。肌电图RMS参数与疼痛强度的相关性有统计学意义(r = -0.691, p =0.012)。结论:本研究提示上肢肌电活动与HSP的存在有相关性,而血液灌注似乎无相关性。本研究结果为探索热休克的机制和治疗提供了另一种途径。
{"title":"Analysis of Muscular Electrical Activity and Blood Perfusion of Upper Extremity in Patients with Hemiplegic Shoulder Pain: A Pilot Study.","authors":"Minghong Sui, Naifu Jiang, Luhui Yan, Chenxi Zhang, Jiaqing Liu, Tiebin Yan, Guanglin Li","doi":"10.1155/2022/5253527","DOIUrl":"https://doi.org/10.1155/2022/5253527","url":null,"abstract":"<p><strong>Background: </strong>Hemiplegic shoulder pain (HSP) is a common symptom for post-stroke patients, which has a severely adverse impact on their rehabilitation outcomes. However, the cause of HSP has not been clearly identified due to its complicated multifactorial etiologies. As possible causes of HSP, the abnormality of both muscular electrical activity and blood perfusion remains lack of investigations.</p><p><strong>Objective: </strong>This study aimed to analyze the alteration of muscular electrical activity and blood perfusion of upper extremity in patients with HSP by using surface electromyography (sEMG) and laser speckle contrast imaging (LSCI) measurement techniques, which may provide some insight into the etiology of HSP.</p><p><strong>Methods: </strong>In this observational and cross-sectional study, three groups of participants were recruited. They were hemiplegic patients with shoulder pain (HSP group), hemiplegic patients without shoulder pain (HNSP group), and healthy participants (Healthy group). The sEMG data and blood perfusion data were collected from all the subjects and used to compute three different physiological measures, the root-mean-square (RMS) and median-frequency (MDF) parameters of sEMG recordings, and the perfusion unit (PU) parameter of blood perfusion imaging.</p><p><strong>Results: </strong>The RMS parameter of sEMG showed significant difference (<i>p</i> < 0.05) in the affected side between HSP, HNSP, and Healthy groups. The MDF parameter of sEMG and PU parameter of blood perfusion showed no significant difference in both sides among the three groups (<i>p</i> > 0.05). The RMS parameter of sEMG showed a statistically significant correlation with the pain intensity (<i>r</i> = -0.691, <i>p</i> =0.012).</p><p><strong>Conclusion: </strong>This study indicated that the muscular electrical activity of upper extremity had a correlation with the presence of HSP, and the blood perfusion seemed to be no such correlation. The findings of the study suggested an alternative way to explore the mechanism and treatment of HSP.</p>","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":"2022 ","pages":"5253527"},"PeriodicalIF":3.1,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9532142/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33490764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-27eCollection Date: 2022-01-01DOI: 10.1155/2022/7432842
Karina Hernández Mercado, Araceli Martínez Moreno, Luis Francisco Rodríguez Durán, Martha L Escobar, Angélica Zepeda
The dentate gyrus (DG) is the gateway of sensory information arriving from the perforant pathway (PP) to the hippocampus. The adequate integration of incoming information into the DG is paramount in the execution of hippocampal-dependent cognitive functions. An abnormal DG granule cell layer (GCL) widening due to granule cell dispersion has been reported under hyperexcitation conditions in animal models as well as in patients with mesial temporal lobe epilepsy, but also in patients with no apparent relation to epilepsy. Strikingly, it is unclear whether the presence and severity of GCL widening along time affect synaptic processing arising from the PP and alter the performance in hippocampal-mediated behaviors. To evaluate the above, we injected excitotoxic kainic acid (KA) unilaterally into the DG of mice and analyzed the evolution of GCL widening at 10 and 30 days post injection (dpi), while analyzing if KA-induced GCL widening affected in vivo long-term potentiation (LTP) in the PP-DG pathway, as well as the performance in learning and memory through contextual fear conditioning. Our results show that at 10 dpi, when a subtle GCL widening was observed, LTP induction, as well as contextual fear memory, were impaired. However, at 30 dpi when a pronounced increase in GCL widening was found, LTP induction and contextual fear memory were already reestablished. These results highlight the plastic potential of the DG to recover some of its functions despite a major structural alteration such as abnormal GCL widening.
{"title":"Progression in Time of Dentate Gyrus Granule Cell Layer Widening due to Excitotoxicity Occurs along In Vivo LTP Reinstatement and Contextual Fear Memory Recovery.","authors":"Karina Hernández Mercado, Araceli Martínez Moreno, Luis Francisco Rodríguez Durán, Martha L Escobar, Angélica Zepeda","doi":"10.1155/2022/7432842","DOIUrl":"10.1155/2022/7432842","url":null,"abstract":"<p><p>The dentate gyrus (DG) is the gateway of sensory information arriving from the perforant pathway (PP) to the hippocampus. The adequate integration of incoming information into the DG is paramount in the execution of hippocampal-dependent cognitive functions. An abnormal DG granule cell layer (GCL) widening due to granule cell dispersion has been reported under hyperexcitation conditions in animal models as well as in patients with mesial temporal lobe epilepsy, but also in patients with no apparent relation to epilepsy. Strikingly, it is unclear whether the presence and severity of GCL widening along time affect synaptic processing arising from the PP and alter the performance in hippocampal-mediated behaviors. To evaluate the above, we injected excitotoxic kainic acid (KA) unilaterally into the DG of mice and analyzed the evolution of GCL widening at 10 and 30 days post injection (dpi), while analyzing if KA-induced GCL widening affected in vivo long-term potentiation (LTP) in the PP-DG pathway, as well as the performance in learning and memory through contextual fear conditioning. Our results show that at 10 dpi, when a subtle GCL widening was observed, LTP induction, as well as contextual fear memory, were impaired. However, at 30 dpi when a pronounced increase in GCL widening was found, LTP induction and contextual fear memory were already reestablished. These results highlight the plastic potential of the DG to recover some of its functions despite a major structural alteration such as abnormal GCL widening.</p>","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":"2022 ","pages":"7432842"},"PeriodicalIF":3.1,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9533134/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33517675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-26eCollection Date: 2022-01-01DOI: 10.1155/2022/4714763
Yi Tang, Shuxing Zheng, Yin Tian
Attention deficit hyperactivity disorder (ADHD) is a common mental disorder in children, which is related to inattention and hyperactivity. These symptoms are associated with abnormal interactions of brain networks. We used resting-state functional magnetic resonance imaging (rs-fMRI) based on the graph theory to explore the topology property changes of brain networks between an ADHD group and a normal group. The more refined AAL_1024 atlas was used to construct the functional networks with high nodal resolution, for detecting more subtle changes in brain regions and differences among groups. We compared altered topology properties of brain network between the groups from multilevel, mainly including modularity at mesolevel. Specifically, we analyzed the similarities and differences of module compositions between the two groups. The results found that the ADHD group showed stronger economic small-world network property, while the clustering coefficient was significantly lower than the normal group; the frontal and occipital lobes showed smaller node degree and global efficiency between disease statuses. The modularity results also showed that the module number of the ADHD group decreased, and the ADHD group had short-range overconnectivity within module and long-range underconnectivity between modules. Moreover, modules containing long-range connections between the frontal and occipital lobes disappeared, indicating that there was lack of top-down control information between the executive control region and the visual processing region in the ADHD group. Our results suggested that these abnormal regions were related to executive control and attention deficit of ADHD patients. These findings helped to better understand how brain function correlates with the ADHD symptoms and complement the fewer modularity elaboration of ADHD research.
{"title":"Resting-State fMRI Whole Brain Network Function Plasticity Analysis in Attention Deficit Hyperactivity Disorder.","authors":"Yi Tang, Shuxing Zheng, Yin Tian","doi":"10.1155/2022/4714763","DOIUrl":"https://doi.org/10.1155/2022/4714763","url":null,"abstract":"<p><p>Attention deficit hyperactivity disorder (ADHD) is a common mental disorder in children, which is related to inattention and hyperactivity. These symptoms are associated with abnormal interactions of brain networks. We used resting-state functional magnetic resonance imaging (rs-fMRI) based on the graph theory to explore the topology property changes of brain networks between an ADHD group and a normal group. The more refined AAL_1024 atlas was used to construct the functional networks with high nodal resolution, for detecting more subtle changes in brain regions and differences among groups. We compared altered topology properties of brain network between the groups from multilevel, mainly including modularity at mesolevel. Specifically, we analyzed the similarities and differences of module compositions between the two groups. The results found that the ADHD group showed stronger economic small-world network property, while the clustering coefficient was significantly lower than the normal group; the frontal and occipital lobes showed smaller node degree and global efficiency between disease statuses. The modularity results also showed that the module number of the ADHD group decreased, and the ADHD group had short-range overconnectivity within module and long-range underconnectivity between modules. Moreover, modules containing long-range connections between the frontal and occipital lobes disappeared, indicating that there was lack of top-down control information between the executive control region and the visual processing region in the ADHD group. Our results suggested that these abnormal regions were related to executive control and attention deficit of ADHD patients. These findings helped to better understand how brain function correlates with the ADHD symptoms and complement the fewer modularity elaboration of ADHD research.</p>","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":"2022 ","pages":"4714763"},"PeriodicalIF":3.1,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9529483/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33490412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Introduction: Action observation therapy (AOT) is a mirror neuron-based approach that has been recently used in poststroke rehabilitation. The main goal of this study was to investigate the effectiveness of AOT of occupations and tasks that are meaningful for chronic stroke patients on occupational performance, upper-extremity function, and corticospinal changes.
Method: A randomized control trial was designed to compare between experimental (n = 13) and control groups (n = 14). In both groups, the execution of meaningful tasks was practiced, but the videos of those tasks were just shown to the experiment group. Instead, patients in the control group watched nature videos as a placebo. Clinical outcomes were evaluated using the Canadian Occupational Performance Measure (COPM), Fugl-Meyer Assessment (FMA), Action Research Arm Test (ARAT), and Box-Block Test (BBT) on 3 occasions: baseline, post (at 4 weeks), and follow-up (at 8 weeks). The assessments of central motor conduction time (CMCT) for abductor policis brevis (APB) and extensor indicis (EI) were only recorded at baseline and posttreatment. Both assessors of clinical and neurophysiological outcomes were blinded to the allocation of subjects.
Result: Finally, the results of outcomes in 24 patients who completed the study were analyzed. In both groups, significant improvements after treatment were seen for most outcomes (p ≤ 0.05). These changes were persistent until follow-up. There were significant differences in COPM performance (p = 0.03) and satisfaction (p = 0.001) between the experimental and control groups. In contrast, other clinical assessments such as FMA, ARAT, and BBT did not show significant differences between the two treatments (p ≥ 0.05). The results of CMCT related to APB showed a more significant change in the experiment group compared to the control group (p = 0.022). There was no difference in change detected between the two groups for CMCT related to EI after treatments.
Conclusion: Observation and execution of meaningful activities can enhance the effects of simply practicing those activities on occupational performance/satisfaction and corticospinal excitability poststroke.
{"title":"Effects of Meaningful Action Observation Therapy on Occupational Performance, Upper Limb Function, and Corticospinal Excitability Poststroke: A Double-Blind Randomized Control Trial.","authors":"Aryan Shamili, Afsoon Hassani Mehraban, Akram Azad, Gholam Reza Raissi, Mohsen Shati","doi":"10.1155/2022/5284044","DOIUrl":"10.1155/2022/5284044","url":null,"abstract":"<p><strong>Introduction: </strong>Action observation therapy (AOT) is a mirror neuron-based approach that has been recently used in poststroke rehabilitation. The main goal of this study was to investigate the effectiveness of AOT of occupations and tasks that are meaningful for chronic stroke patients on occupational performance, upper-extremity function, and corticospinal changes.</p><p><strong>Method: </strong>A randomized control trial was designed to compare between experimental (<i>n</i> = 13) and control groups (<i>n</i> = 14). In both groups, the execution of meaningful tasks was practiced, but the videos of those tasks were just shown to the experiment group. Instead, patients in the control group watched nature videos as a placebo. Clinical outcomes were evaluated using the Canadian Occupational Performance Measure (COPM), Fugl-Meyer Assessment (FMA), Action Research Arm Test (ARAT), and Box-Block Test (BBT) on 3 occasions: baseline, post (at 4 weeks), and follow-up (at 8 weeks). The assessments of central motor conduction time (CMCT) for abductor policis brevis (APB) and extensor indicis (EI) were only recorded at baseline and posttreatment. Both assessors of clinical and neurophysiological outcomes were blinded to the allocation of subjects.</p><p><strong>Result: </strong>Finally, the results of outcomes in 24 patients who completed the study were analyzed. In both groups, significant improvements after treatment were seen for most outcomes (<i>p</i> ≤ 0.05). These changes were persistent until follow-up. There were significant differences in COPM performance (<i>p</i> = 0.03) and satisfaction (<i>p</i> = 0.001) between the experimental and control groups. In contrast, other clinical assessments such as FMA, ARAT, and BBT did not show significant differences between the two treatments (<i>p</i> ≥ 0.05). The results of CMCT related to APB showed a more significant change in the experiment group compared to the control group (<i>p</i> = 0.022). There was no difference in change detected between the two groups for CMCT related to EI after treatments.</p><p><strong>Conclusion: </strong>Observation and execution of meaningful activities can enhance the effects of simply practicing those activities on occupational performance/satisfaction and corticospinal excitability poststroke.</p>","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":"2022 ","pages":"5284044"},"PeriodicalIF":3.1,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9507745/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33484503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Electroacupuncture (EA) therapy has been widely reported to alleviate neuropathic pain with few side effects in both clinical practice and animal studies worldwide. However, little is known about the comparison of the therapeutic efficacy among the diverse EA schemes used for neuropathic pain. The present study is aimed at investigating the therapeutic efficacy discrepancy between the single and combined-acupoint EA and to reveal the difference of mechanisms behind them. Electroacupuncture was given at both Zusanli (ST36) and Huantiao (GB30) in the combined group or ST36 alone in the single group. Paw withdrawal mechanical threshold (PWMT) was measured to determine the pain level. Electrophysiology was performed to detect the effects of EA on synaptic transmission in the spinal dorsal horn of the vGlut2-tdTomato mice. Spinal contents of endogenous opioids, endocannabinoids, and their receptors were examined. Inhibitors of CBR (cannabinoid receptor) and opioid receptors were used to study the roles of opioid and endocannabinoid system (ECS) in EA analgesia. We found that combined-acupoint acupuncture provide stronger analgesia than the single group did, and the former inhibited the synaptic transmission at the spinal level to a greater extent than later. Besides, the high-intensity stimulation at ST36 or normal stimulation at two sham acupoints did not mimic the similar efficacy of analgesia in the combined group. Acupuncture stimulation in single and combined groups both activated the endogenous opioid system. The ECS was only activated in the combined group. Naloxone totally blocked the analgesic effect of single-acupoint EA; however, it did not attenuate that of combined-acupoint EA unless coadministered with CBR antagonists. Hence, in the CCI-induced neuropathic pain model, combined-acupoint EA at ST36 and GB30 is more effective in analgesia than the single-acupoint EA at ST36. EA stimulation at GB30 alone neither provided a superior analgesic effect to EA treatment at ST36 nor altered the content of AEA, 2-AG, CB1 receptor, or CB2 receptor compared with the CCI group. Activation of the ECS is the main contributor of the better analgesia by the combined acupoint stimulation than that induced by single acupoint stimulation.
{"title":"Combined-Acupoint Electroacupuncture Induces Better Analgesia via Activating the Endocannabinoid System in the Spinal Cord.","authors":"Zhenhua Jiang, Yuheng Li, Qun Wang, Zongping Fang, Jiao Deng, Xinxin Zhang, Bowen Shen, Zhixin Wu, Qianzi Yang, Lize Xiong","doi":"10.1155/2022/7670629","DOIUrl":"https://doi.org/10.1155/2022/7670629","url":null,"abstract":"<p><p>Electroacupuncture (EA) therapy has been widely reported to alleviate neuropathic pain with few side effects in both clinical practice and animal studies worldwide. However, little is known about the comparison of the therapeutic efficacy among the diverse EA schemes used for neuropathic pain. The present study is aimed at investigating the therapeutic efficacy discrepancy between the single and combined-acupoint EA and to reveal the difference of mechanisms behind them. Electroacupuncture was given at both Zusanli (ST36) and Huantiao (GB30) in the combined group or ST36 alone in the single group. Paw withdrawal mechanical threshold (PWMT) was measured to determine the pain level. Electrophysiology was performed to detect the effects of EA on synaptic transmission in the spinal dorsal horn of the vGlut2-tdTomato mice. Spinal contents of endogenous opioids, endocannabinoids, and their receptors were examined. Inhibitors of CBR (cannabinoid receptor) and opioid receptors were used to study the roles of opioid and endocannabinoid system (ECS) in EA analgesia. We found that combined-acupoint acupuncture provide stronger analgesia than the single group did, and the former inhibited the synaptic transmission at the spinal level to a greater extent than later. Besides, the high-intensity stimulation at ST36 or normal stimulation at two sham acupoints did not mimic the similar efficacy of analgesia in the combined group. Acupuncture stimulation in single and combined groups both activated the endogenous opioid system. The ECS was only activated in the combined group. Naloxone totally blocked the analgesic effect of single-acupoint EA; however, it did not attenuate that of combined-acupoint EA unless coadministered with CBR antagonists. Hence, in the CCI-induced neuropathic pain model, combined-acupoint EA at ST36 and GB30 is more effective in analgesia than the single-acupoint EA at ST36. EA stimulation at GB30 alone neither provided a superior analgesic effect to EA treatment at ST36 nor altered the content of AEA, 2-AG, CB1 receptor, or CB2 receptor compared with the CCI group. Activation of the ECS is the main contributor of the better analgesia by the combined acupoint stimulation than that induced by single acupoint stimulation.</p>","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":"2022 ","pages":"7670629"},"PeriodicalIF":3.1,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9499800/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33484502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-29eCollection Date: 2022-01-01DOI: 10.1155/2022/8057854
Jie Liu, Jingyao Huang, Zhenjiang Zhang, Rui Zhang, Zhihao Zhang, Yongxin Liu, Baoyu Ma
Chronic pain is an enormous modern public health problem, with significant numbers of people debilitated by chronic pain from a variety of etiologies. Translocator protein 18 kDa (TSPO) was discovered in 1977 as a peripheral benzodiazepine receptor. It is a five transmembrane domain protein, mainly localized in the outer mitochondrial membrane. Recent and increasing studies have found changes in TSPO and its ligands in various chronic pain models. Reversing their expressions has been shown to alleviate chronic pain in these models, illustrating the effects of TSPO and its ligands. Herein, we review recent evidence and the mechanisms of TSPO in the development of chronic pain associated with peripheral nerve injury, spinal cord injury, cancer, and inflammatory responses. The cumulative evidence indicates that TSPO-based therapy may become an alternative strategy for treating chronic pain.
{"title":"Translocator Protein 18 kDa (TSPO) as a Novel Therapeutic Target for Chronic Pain.","authors":"Jie Liu, Jingyao Huang, Zhenjiang Zhang, Rui Zhang, Zhihao Zhang, Yongxin Liu, Baoyu Ma","doi":"10.1155/2022/8057854","DOIUrl":"https://doi.org/10.1155/2022/8057854","url":null,"abstract":"<p><p>Chronic pain is an enormous modern public health problem, with significant numbers of people debilitated by chronic pain from a variety of etiologies. Translocator protein 18 kDa (TSPO) was discovered in 1977 as a peripheral benzodiazepine receptor. It is a five transmembrane domain protein, mainly localized in the outer mitochondrial membrane. Recent and increasing studies have found changes in TSPO and its ligands in various chronic pain models. Reversing their expressions has been shown to alleviate chronic pain in these models, illustrating the effects of TSPO and its ligands. Herein, we review recent evidence and the mechanisms of TSPO in the development of chronic pain associated with peripheral nerve injury, spinal cord injury, cancer, and inflammatory responses. The cumulative evidence indicates that TSPO-based therapy may become an alternative strategy for treating chronic pain.</p>","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":"2022 ","pages":"8057854"},"PeriodicalIF":3.1,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9444456/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33447845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-12eCollection Date: 2022-01-01DOI: 10.1155/2022/4416672
Xinglou Li, Meiling Luo, Yan Gong, Ning Xu, Congcong Huo, Hui Xie, Shouwei Yue, Zengyong Li, Yonghui Wang
Myofascial trigger point (MTrP), an iconic characteristic of myofascial pain syndrome (MPS), can induce cerebral cortex changes including altered cortical excitability and connectivity. The corresponding characteristically reactive cortex is still ambiguous. Seventeen participants with latent MTrPs underwent functional near-infrared spectroscopy (fNIRS) to collect cerebral oxygenation hemoglobin (Δ[oxy-Hb]) signals. The Δ[oxy-Hb] signals of the left/right prefrontal cortex (L/R PFC), left/right motor cortex (L/R MC), and left/right occipital lobe (L/R OL) of the subjects were measured using functional near-infrared spectroscopy (fNIRS) in the resting state, nonmyofascial trigger point (NMTrP), state and MTrP state. The data investigated the latent MTrP-induced changes in brain activity and effective connectivity (EC) within the nonsensory cortex. The parameter wavelet amplitude (WA) was used to describe cortical activation, EC to show brain network connectivity, and main coupling direction (mCD) to exhibit the dominant connectivity direction in different frequency bands. An increasing trend of WA and a decreasing trend of EC values were observed in the PFC. The interregional mCD was primarily shifted from a unidirectional to bidirectional connection, especially from PFC to MC or OL, when responding to manual stimulation during the MTrP state compared with resting state and NMTrP state in the intervals III, IV, and V. This study demonstrates that the nonsensory cortex PFC, MC, and OL can participate in the cortical reactions induced by stimulation of a latent MTrP. Additionally, the PFC shows nonnegligible higher activation and weakened regulation than other brain regions. Thus, the PFC may be responsible for the central cortical regulation of a latent MTrP. This trial is registered with ChiCTR2100048433.
{"title":"Altered Brain Activity and Effective Connectivity within the Nonsensory Cortex during Stimulation of a Latent Myofascial Trigger Point.","authors":"Xinglou Li, Meiling Luo, Yan Gong, Ning Xu, Congcong Huo, Hui Xie, Shouwei Yue, Zengyong Li, Yonghui Wang","doi":"10.1155/2022/4416672","DOIUrl":"https://doi.org/10.1155/2022/4416672","url":null,"abstract":"<p><p>Myofascial trigger point (MTrP), an iconic characteristic of myofascial pain syndrome (MPS), can induce cerebral cortex changes including altered cortical excitability and connectivity. The corresponding characteristically reactive cortex is still ambiguous. Seventeen participants with latent MTrPs underwent functional near-infrared spectroscopy (fNIRS) to collect cerebral oxygenation hemoglobin (<i>Δ</i>[oxy-Hb]) signals. The <i>Δ</i>[oxy-Hb] signals of the left/right prefrontal cortex (L/R PFC), left/right motor cortex (L/R MC), and left/right occipital lobe (L/R OL) of the subjects were measured using functional near-infrared spectroscopy (fNIRS) in the resting state, nonmyofascial trigger point (NMTrP), state and MTrP state. The data investigated the latent MTrP-induced changes in brain activity and effective connectivity (EC) within the nonsensory cortex. The parameter wavelet amplitude (WA) was used to describe cortical activation, EC to show brain network connectivity, and main coupling direction (mCD) to exhibit the dominant connectivity direction in different frequency bands. An increasing trend of WA and a decreasing trend of EC values were observed in the PFC. The interregional mCD was primarily shifted from a unidirectional to bidirectional connection, especially from PFC to MC or OL, when responding to manual stimulation during the MTrP state compared with resting state and NMTrP state in the intervals III, IV, and V. This study demonstrates that the nonsensory cortex PFC, MC, and OL can participate in the cortical reactions induced by stimulation of a latent MTrP. Additionally, the PFC shows nonnegligible higher activation and weakened regulation than other brain regions. Thus, the PFC may be responsible for the central cortical regulation of a latent MTrP. This trial is registered with ChiCTR2100048433.</p>","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":" ","pages":"4416672"},"PeriodicalIF":3.1,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9391196/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40716123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objective: To explore the efficacy of high-frequency repetitive transcranial magnetic stimulation (rTMS) of the swallowing motor area of the cerebellum in patients with dysphagia after brainstem stroke.
Methods: A total of 36 patients with dysphagia after brainstem stroke were recruited and divided into 3 groups. Before stimulation, single-pulse transcranial magnetic stimulation (TMS) was used to determine the swallowing dominant cerebellar hemisphere and the representation of the mylohyoid muscle. The three groups of patients received bilateral cerebellar sham stimulation, dominant cerebellar rTMS + contralateral sham stimulation, or bilateral cerebellar rTMS. The stimulus plan for each side was 10 Hz, 80% resting movement threshold (rMT), 250 pulses, 1 s per stimulus, and 9 s intervals. Sham rTMS was performed with the coil held at 90° to the scalp. The changes in the motor evoked potential (MEP) amplitude and the clinical swallowing function scales of the patients after stimulation were compared among the three groups.
Results: 34 patients were finally included for statistical analysis. The scores of penetration aspiration scale (PAS) and functional dysphagia scale (FDS) of the patients after 2 weeks of rTMS in the unilateral stimulation group and bilateral stimulation group were better than that in the sham stimulation group, and there was no significant difference between the two groups. The increase in the MEP amplitude of the cerebral hemisphere in the bilateral stimulation group was higher than that in the other two groups, and the increase in the MEP amplitude in the unilateral stimulation group was higher than that in sham stimulation group. There was no correlation between the improvement in patients' clinical swallowing function (PAS scores and FDS scores) and the increase in MEP amplitude in either the unilateral stimulation group or the bilateral stimulation group.
Conclusion: High-frequency rTMS in the cerebellum can improve swallowing function in PSD patients and increase the excitability of the representation of swallowing in the bilateral cerebral hemispheres. Compared with unilateral cerebellar rTMS, bilateral stimulation increased the excitability of the cerebral swallowing cortex more significantly, but there was no significant difference in clinical swallowing function.
{"title":"High-Frequency Cerebellar rTMS Improves the Swallowing Function of Patients with Dysphagia after Brainstem Stroke.","authors":"Ling-Hui Dong, Xiaona Pan, Yuyang Wang, Guangtao Bai, Chao Han, Qiang Wang, Pingping Meng","doi":"10.1155/2022/6259693","DOIUrl":"https://doi.org/10.1155/2022/6259693","url":null,"abstract":"<p><strong>Objective: </strong>To explore the efficacy of high-frequency repetitive transcranial magnetic stimulation (rTMS) of the swallowing motor area of the cerebellum in patients with dysphagia after brainstem stroke.</p><p><strong>Methods: </strong>A total of 36 patients with dysphagia after brainstem stroke were recruited and divided into 3 groups. Before stimulation, single-pulse transcranial magnetic stimulation (TMS) was used to determine the swallowing dominant cerebellar hemisphere and the representation of the mylohyoid muscle. The three groups of patients received bilateral cerebellar sham stimulation, dominant cerebellar rTMS + contralateral sham stimulation, or bilateral cerebellar rTMS. The stimulus plan for each side was 10 Hz, 80% resting movement threshold (rMT), 250 pulses, 1 s per stimulus, and 9 s intervals. Sham rTMS was performed with the coil held at 90° to the scalp. The changes in the motor evoked potential (MEP) amplitude and the clinical swallowing function scales of the patients after stimulation were compared among the three groups.</p><p><strong>Results: </strong>34 patients were finally included for statistical analysis. The scores of penetration aspiration scale (PAS) and functional dysphagia scale (FDS) of the patients after 2 weeks of rTMS in the unilateral stimulation group and bilateral stimulation group were better than that in the sham stimulation group, and there was no significant difference between the two groups. The increase in the MEP amplitude of the cerebral hemisphere in the bilateral stimulation group was higher than that in the other two groups, and the increase in the MEP amplitude in the unilateral stimulation group was higher than that in sham stimulation group. There was no correlation between the improvement in patients' clinical swallowing function (PAS scores and FDS scores) and the increase in MEP amplitude in either the unilateral stimulation group or the bilateral stimulation group.</p><p><strong>Conclusion: </strong>High-frequency rTMS in the cerebellum can improve swallowing function in PSD patients and increase the excitability of the representation of swallowing in the bilateral cerebral hemispheres. Compared with unilateral cerebellar rTMS, bilateral stimulation increased the excitability of the cerebral swallowing cortex more significantly, but there was no significant difference in clinical swallowing function.</p>","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":" ","pages":"6259693"},"PeriodicalIF":3.1,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9388260/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40716124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}