This case report presents the clinical course of an eight-year-old boy diagnosed with febrile infection-related epilepsy syndrome (FIRES) at the age of four. Following a febrile infection, the patient experienced his initial episode of serial generalized clonic seizures. The severity of his condition led to 11 hospital admissions, totaling 157 days of hospitalization. Anakinra was initially administered during the acute phase in 2019 but was discontinued after 29 days. In 2022, the patient experienced a chronic-phase exacerbation and underwent a second course of anakinra treatment, which demonstrated a positive effect on seizure activity. With a year of anakinra therapy, the patient exhibited significant improvement in both seizure frequency and severity. This report adds to the existing evidence supporting the potential use of anakinra in the treatment of FIRES, highlighting its effectiveness during the chronic phase and suggesting the potential benefits of subsequent administration.
Coagulation and fibrinolytic system disorders are conditions in which the blood's ability to clot is impaired, resulting in an increased risk of thrombosis or bleeding. Although these disorders are the expression of two opposing tendencies, they can often be associated with or be a consequence of each other, contributing to making the prognosis of acute cerebrovascular events more difficult. It is important to recognize those conditions that are characterized by dual alterations in the coagulation and fibrinolytic systems to reduce the prognostic impact of clinical conditions with difficult treatment and often unfortunate outcomes. Management of these individuals can be challenging, as clinicians must balance the need to prevent bleeding episodes with the potential risk of clot formation. Treatment decisions should be made on an individual basis, considering the specific bleeding disorder, its severity, and the patient's general medical condition. This review aims to deal with all those forms in which coagulation and fibrinolysis represent two sides of the same media in the correct management of patients with acute neurological syndrome. Precision medicine, personalized treatment, advanced anticoagulant strategies, and innovations in bleeding control represent future directions in the management of these complex pathologies in which stroke can be the evolution of two different acute events or be the first manifestation of an occult or unknown underlying pathology.
The Clinical Rating Scale for Tremor (CRST) is commonly used to evaluate essential tremor (ET) during focused ultrasound (FUS) thalamotomy. However, it faces challenges such as the ceiling effect and test-retest variability. This study explored the utility of videographic motion analysis as an evaluation index for ET. Forty-three patients with ET performed postural tremor and line-drawing tasks recorded on video, and the data were analyzed using motion analysis software. The test-retest and inter-rater reliability, correlations with the CRST and tremor scores, and pre/post-FUS treatment comparisons were analyzed. The video motion analysis showed excellent test-retest and inter-rater reliability. In the postural tremor tasks, video parameter amplitude significantly correlated with the CRST and tremor scores. Similarly, for the line-drawing task, video parameter amplitude showed significant correlations with CRST and tremor scores, effectively addressing the ceiling effect. Regarding post-FUS treatment improvements, changes in the CRST and tremor scores were significantly associated with changes in video parameter amplitude. In conclusion, quantitative analysis of the video motion of ET enables precise evaluation of kinematic characteristics and effectively resolves the ceiling effect and test-retest variability. The video motion analysis score accurately reflected the tremor severity and treatment effects, demonstrating its high clinical utility.
Transcranial direct current stimulation (tDCS) came into consideration in recent years as a promising, non-invasive form of neuromodulation for individuals suffering from mild cognitive impairment (MCI). MCI represents a transitional stage between normal cognitive aging and more severe cognitive decline, which appears in neurodegenerative diseases, such as Alzheimer's disease. Numerous studies have shown that tDCS can have several useful effects in patients with MCI. It is believed to enhance cognitive functions, including memory and attention, potentially slowing down the progression of neurodegeneration and cognitive decline. tDCS is believed to work by modulating neuronal activity and promoting synaptic plasticity in the brain regions associated with cognition. Moreover, tDCS is generally considered safe and well-tolerated, making it an attractive option for long-term therapeutic use in MCI. However, further research is needed to determine the optimal stimulation parameters and long-term effects of tDCS in this population, as well as its potential to serve as a complementary therapy alongside other interventions for MCI. In this review, we included 16 randomized clinical trials containing patients with MCI who were treated with tDCS. We aim to provide important evidence for the cognitive enhancement using tDCS in patients with MCI, summarizing the effects and conclusions found in several clinical trials, and discuss its main mechanisms.
Neuromonitoring is a critical tool for emergency rooms and intensive care units to promptly identify and treat brain injuries. The case report of a patient with status epilepticus necessitating orotracheal intubation and intravenous lorazepam administration is presented. A pattern of epileptiform activity was detected in the left temporal region, and intravenous Acyclovir was administered based on the diagnostic hypothesis of herpetic meningoencephalitis. The neurointensivist opted for multimodal non-invasive bedside neuromonitoring due to the complexity of the patient's condition. A Brain4care (B4C) non-invasive intracranial compliance monitor was utilized alongside the assessment of an optic nerve sheath diameter (ONSD) and transcranial Doppler (TCD). Based on the collected data, a diagnosis of intracranial hypertension (ICH) was made and a treatment plan was developed. After the neurosurgery team's evaluation, a stereotaxic biopsy of the temporal lesion revealed a grade 2 diffuse astrocytoma, and an urgent total resection was performed. Research suggests that monitoring patients in a dedicated neurologic intensive care unit (Neuro ICU) can lead to improved outcomes and shorter hospital stays. In addition to being useful for patients with a primary brain injury, neuromonitoring may also be advantageous for those at risk of cerebral hemodynamic impairment. Lastly, it is essential to note that neuromonitoring technologies are non-invasive, less expensive, safe, and bedside-accessible approaches with significant diagnostic and monitoring potential for patients at risk of brain abnormalities. Multimodal neuromonitoring is a vital tool in critical care units for the identification and management of acute brain trauma as well as for patients at risk of cerebral hemodynamic impairment.