首页 > 最新文献

Neurotherapeutics最新文献

英文 中文
Corrigendum to 'Gut microbiota dysbiosis and neurologic diseases: New Horizon with potential diagnostic and therapeutic impact'.
IF 5.6 2区 医学 Q1 CLINICAL NEUROLOGY Pub Date : 2024-11-29 DOI: 10.1016/j.neurot.2024.e00502
Ali Keshavarzian, Sangram S Sisodia
{"title":"Corrigendum to 'Gut microbiota dysbiosis and neurologic diseases: New Horizon with potential diagnostic and therapeutic impact'.","authors":"Ali Keshavarzian, Sangram S Sisodia","doi":"10.1016/j.neurot.2024.e00502","DOIUrl":"10.1016/j.neurot.2024.e00502","url":null,"abstract":"","PeriodicalId":19159,"journal":{"name":"Neurotherapeutics","volume":" ","pages":"e00502"},"PeriodicalIF":5.6,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142770577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anti-RGMa neutralizing antibody ameliorates vascular cognitive impairment in mice.
IF 5.6 2区 医学 Q1 CLINICAL NEUROLOGY Pub Date : 2024-11-28 DOI: 10.1016/j.neurot.2024.e00500
Masaya Yamamoto, Takahide Itokazu, Hiroki Uno, Takakuni Maki, Nao Shibuya, Toshihide Yamashita

Repulsive Guidance Molecule A (RGMa) is well-recognized for its role in axon guidance. Recent studies have unveiled its diverse functions under pathological conditions within the central nervous system, such as spinal cord injury, multiple sclerosis, and Parkinson's disease. In this study, we explored the involvement of RGMa and the therapeutic effects of an anti-RGMa neutralizing antibody in a mouse model of vascular dementia (VaD). The VaD mouse model was established using the bilateral common carotid artery stenosis (BCAS) method. Immunohistochemical analysis revealed that these mice exhibited increased RGMa expression in the hippocampus, which coincided with reduced neurogenesis and impaired cholinergic innervation. These alterations manifested as cognitive impairments in the BCAS mice. Significantly, treatment with anti-RGMa neutralizing antibody reversed these pathological changes and cognitive deficits. Our findings suggest that RGMa plays a pivotal role in VaD pathology within the hippocampus and propose the anti-RGMa antibody as a promising therapeutic avenue for treating VaD.

{"title":"Anti-RGMa neutralizing antibody ameliorates vascular cognitive impairment in mice.","authors":"Masaya Yamamoto, Takahide Itokazu, Hiroki Uno, Takakuni Maki, Nao Shibuya, Toshihide Yamashita","doi":"10.1016/j.neurot.2024.e00500","DOIUrl":"https://doi.org/10.1016/j.neurot.2024.e00500","url":null,"abstract":"<p><p>Repulsive Guidance Molecule A (RGMa) is well-recognized for its role in axon guidance. Recent studies have unveiled its diverse functions under pathological conditions within the central nervous system, such as spinal cord injury, multiple sclerosis, and Parkinson's disease. In this study, we explored the involvement of RGMa and the therapeutic effects of an anti-RGMa neutralizing antibody in a mouse model of vascular dementia (VaD). The VaD mouse model was established using the bilateral common carotid artery stenosis (BCAS) method. Immunohistochemical analysis revealed that these mice exhibited increased RGMa expression in the hippocampus, which coincided with reduced neurogenesis and impaired cholinergic innervation. These alterations manifested as cognitive impairments in the BCAS mice. Significantly, treatment with anti-RGMa neutralizing antibody reversed these pathological changes and cognitive deficits. Our findings suggest that RGMa plays a pivotal role in VaD pathology within the hippocampus and propose the anti-RGMa antibody as a promising therapeutic avenue for treating VaD.</p>","PeriodicalId":19159,"journal":{"name":"Neurotherapeutics","volume":" ","pages":"e00500"},"PeriodicalIF":5.6,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142755043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identifying neural circuitry abnormalities in neuropathic pain with transcranial magnetic stimulation and electroencephalogram co-registration.
IF 5.6 2区 医学 Q1 CLINICAL NEUROLOGY Pub Date : 2024-11-28 DOI: 10.1016/j.neurot.2024.e00496
Zhimin Huang, Ying Wang, Yongxing Yan, Ying Liu, Jielin Chen, Huili Liu, Jie Li, Zhongming Gao, Xianwei Che

Non-invasive brain stimulation (NIBS) technology such as transcranial magnetic stimulation (TMS) represents a promising treatment for neuropathic pain. However, neural circuitries underlying analgesia remain to be established, which is largely limiting treatment responses. Using TMS and electroencephalogram co-registration (TMS-EEG), this study quantified the circuitry abnormalities in neuropathic pain and their associations with pain symptoms. A group of 21 neuropathic pain individuals and 21 healthy controls were assessed with TMS-EEG delivering to the primary motor cortex (M1). With source modelling, local current density and current propagation were analysed with significant current density (SCD) and scattering (SCS) respectively. The SCS and SCD data converged on higher activities in neuropathic pain individuals than healthy controls, within the emotional affective (perigenual anterior cingulate cortex, pgACC), sensory nociceptive (primary somatosensory cortex, S1), and the attentional cognitive (anterior insula, aINS; supracallosal anterior cingulate cortex, scACC) structures of pain. Moreover, current propagation to the pgACC was associated with lower pain-related negative emotions, while current propagation to the aINS with higher pain-related negative emotions. Using concurrent TMS-EEG, our data identified abnormal pain circuitries that could be utilised to improve treatment efficacy with brain stimulation technologies.

{"title":"Identifying neural circuitry abnormalities in neuropathic pain with transcranial magnetic stimulation and electroencephalogram co-registration.","authors":"Zhimin Huang, Ying Wang, Yongxing Yan, Ying Liu, Jielin Chen, Huili Liu, Jie Li, Zhongming Gao, Xianwei Che","doi":"10.1016/j.neurot.2024.e00496","DOIUrl":"https://doi.org/10.1016/j.neurot.2024.e00496","url":null,"abstract":"<p><p>Non-invasive brain stimulation (NIBS) technology such as transcranial magnetic stimulation (TMS) represents a promising treatment for neuropathic pain. However, neural circuitries underlying analgesia remain to be established, which is largely limiting treatment responses. Using TMS and electroencephalogram co-registration (TMS-EEG), this study quantified the circuitry abnormalities in neuropathic pain and their associations with pain symptoms. A group of 21 neuropathic pain individuals and 21 healthy controls were assessed with TMS-EEG delivering to the primary motor cortex (M1). With source modelling, local current density and current propagation were analysed with significant current density (SCD) and scattering (SCS) respectively. The SCS and SCD data converged on higher activities in neuropathic pain individuals than healthy controls, within the emotional affective (perigenual anterior cingulate cortex, pgACC), sensory nociceptive (primary somatosensory cortex, S1), and the attentional cognitive (anterior insula, aINS; supracallosal anterior cingulate cortex, scACC) structures of pain. Moreover, current propagation to the pgACC was associated with lower pain-related negative emotions, while current propagation to the aINS with higher pain-related negative emotions. Using concurrent TMS-EEG, our data identified abnormal pain circuitries that could be utilised to improve treatment efficacy with brain stimulation technologies.</p>","PeriodicalId":19159,"journal":{"name":"Neurotherapeutics","volume":" ","pages":"e00496"},"PeriodicalIF":5.6,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142754949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intranasal administration of mesenchymal stem cells overexpressing FGF21 demonstrates therapeutic potential in experimental Parkinson's disease.
IF 5.6 2区 医学 Q1 CLINICAL NEUROLOGY Pub Date : 2024-11-27 DOI: 10.1016/j.neurot.2024.e00501
You-Yen Lin, De-Maw Chuang, Cheng-Yu Chi, Shih-Ya Hung

Parkinson's disease (PD) is a prevalent movement disorder characterized by mitochondrial dysfunction and dopaminergic neuronal loss in the substantia nigra of the midbrain. Currently, there are no effective treatments to cure or slow the progression of PD, highlighting an urgent need for new therapeutic strategies. Emerging evidence suggests that mesenchymal stem cells (MSCs) and fibroblast growth factor 21 (FGF21) are potential candidates for PD treatment. This study investigates a therapeutic strategy involving FGF21 delivered via mouse MSCs in the PD model of mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and dopaminergic SH-SY5Y cells exposed to 1-methyl-4-phenylpyridinium (MPP+). FGF21-overexpressing MSCs were administered intranasally, either before or after MPTP treatment in mice. Intranasally delivered FGF21-overexpressing MSCs efficiently migrated to the injured substantia nigra, ameliorated MPTP-induced PD-like motor deficits, reinstated dopaminergic neurons in the substantia nigra and nerve terminals in the striatum, as well as normalized brain-derived neurotrophic factor (BDNF) and FGF21 levels. In contrast, MSCs not overexpressing FGF21 showed limited or no impact on these parameters. In a PD cellular model of MPP+-treated SH-SY5Y cells, FGF21-overexpressing MSCs showed enhanced PD cell viability. Treatment with conditioned medium from FGF21-overexpressing MSCs or exogenous FGF21 prevented cell death, reduced mitochondrial reactive oxygen species (ROS), and restored neuroprotective proteins, including phospho-Akt, BDNF, and Bcl-2. These findings indicate that intranasal delivery of FGF21-overexpressing MSCs holds promise as a potential PD therapy, likely through activating the Akt-BDNF-Bcl-2 pathway, normalizing mitochondrial dysfunction, and mitigating dopaminergic neurodegeneration. Further clinical investigations are essential to validate these promising findings.

{"title":"Intranasal administration of mesenchymal stem cells overexpressing FGF21 demonstrates therapeutic potential in experimental Parkinson's disease.","authors":"You-Yen Lin, De-Maw Chuang, Cheng-Yu Chi, Shih-Ya Hung","doi":"10.1016/j.neurot.2024.e00501","DOIUrl":"https://doi.org/10.1016/j.neurot.2024.e00501","url":null,"abstract":"<p><p>Parkinson's disease (PD) is a prevalent movement disorder characterized by mitochondrial dysfunction and dopaminergic neuronal loss in the substantia nigra of the midbrain. Currently, there are no effective treatments to cure or slow the progression of PD, highlighting an urgent need for new therapeutic strategies. Emerging evidence suggests that mesenchymal stem cells (MSCs) and fibroblast growth factor 21 (FGF21) are potential candidates for PD treatment. This study investigates a therapeutic strategy involving FGF21 delivered via mouse MSCs in the PD model of mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and dopaminergic SH-SY5Y cells exposed to 1-methyl-4-phenylpyridinium (MPP<sup>+</sup>). FGF21-overexpressing MSCs were administered intranasally, either before or after MPTP treatment in mice. Intranasally delivered FGF21-overexpressing MSCs efficiently migrated to the injured substantia nigra, ameliorated MPTP-induced PD-like motor deficits, reinstated dopaminergic neurons in the substantia nigra and nerve terminals in the striatum, as well as normalized brain-derived neurotrophic factor (BDNF) and FGF21 levels. In contrast, MSCs not overexpressing FGF21 showed limited or no impact on these parameters. In a PD cellular model of MPP<sup>+</sup>-treated SH-SY5Y cells, FGF21-overexpressing MSCs showed enhanced PD cell viability. Treatment with conditioned medium from FGF21-overexpressing MSCs or exogenous FGF21 prevented cell death, reduced mitochondrial reactive oxygen species (ROS), and restored neuroprotective proteins, including phospho-Akt, BDNF, and Bcl-2. These findings indicate that intranasal delivery of FGF21-overexpressing MSCs holds promise as a potential PD therapy, likely through activating the Akt-BDNF-Bcl-2 pathway, normalizing mitochondrial dysfunction, and mitigating dopaminergic neurodegeneration. Further clinical investigations are essential to validate these promising findings.</p>","PeriodicalId":19159,"journal":{"name":"Neurotherapeutics","volume":" ","pages":"e00501"},"PeriodicalIF":5.6,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142751396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dehydroervatamine as a promising novel TREM2 agonist, attenuates neuroinflammation.
IF 5.6 2区 医学 Q1 CLINICAL NEUROLOGY Pub Date : 2024-11-27 DOI: 10.1016/j.neurot.2024.e00479
Lin Li, Nan Xu, Yulin He, Mingsui Tang, Binrui Yang, Jun Du, Liang Chen, Xiaowen Mao, Bing Song, Zhou Hua, Benqin Tang, Simon Ming-Yuen Lee

Microglia play a dual role in neuroinflammatory disorders that affect millions of people worldwide. These specialized cells are responsible for the critical clearance of debris and toxic proteins through endocytosis. However, activated microglia can secrete pro-inflammatory mediators, potentially exacerbating neuroinflammation and harming adjacent neurons. TREM2, a cell surface receptor expressed by microglia, is implicated in the modulation of neuroinflammatory responses. In this study, we investigated if and how Dehydroervatamine (DHE), a natural alkaloid, reduced the inflammatory phenotype of microglia and suppressed neuroinflammation. Our findings revealed that DHE was directly bound to and activated TREM2. Moreover, DHE effectively suppressed the production of pro-inflammatory cytokines, restored mitochondrial function, and inhibited NLRP3 inflammasome activation via activating the TREM2/DAP12 signaling pathway in LPS-stimulated BV2 microglial cells. Notably, silencing TREM2 abolished the suppression effect of DHE on the neuroinflammatory response, mitochondrial dysfunction, and NF-κB/NLRP3 pathways in vitro. Additionally, DHE pretreatment exhibited remarkable neuroprotective effects, as evidenced by increased neuronal viability and reduced apoptotic cell numbers in SH-SY5Y neuroblastoma cells co-cultured with LPS-stimulated BV2 microglia. Furthermore, in our zebrafish model, DHE pretreatment effectively alleviated behavioral impairments, reduced neutrophil aggregation, and suppressed neuroinflammation in the brain by regulating TREM2/NF-κB/NLRP3 pathways after intraventricular LPS injection. These findings provide novel insights into the potent protective effects of DHE as a promising novel TREM2 agonist against LPS-induced neuroinflammation, revealing its potential therapeutic role in the treatment of central nervous system diseases associated with neuroinflammation.

{"title":"Dehydroervatamine as a promising novel TREM2 agonist, attenuates neuroinflammation.","authors":"Lin Li, Nan Xu, Yulin He, Mingsui Tang, Binrui Yang, Jun Du, Liang Chen, Xiaowen Mao, Bing Song, Zhou Hua, Benqin Tang, Simon Ming-Yuen Lee","doi":"10.1016/j.neurot.2024.e00479","DOIUrl":"https://doi.org/10.1016/j.neurot.2024.e00479","url":null,"abstract":"<p><p>Microglia play a dual role in neuroinflammatory disorders that affect millions of people worldwide. These specialized cells are responsible for the critical clearance of debris and toxic proteins through endocytosis. However, activated microglia can secrete pro-inflammatory mediators, potentially exacerbating neuroinflammation and harming adjacent neurons. TREM2, a cell surface receptor expressed by microglia, is implicated in the modulation of neuroinflammatory responses. In this study, we investigated if and how Dehydroervatamine (DHE), a natural alkaloid, reduced the inflammatory phenotype of microglia and suppressed neuroinflammation. Our findings revealed that DHE was directly bound to and activated TREM2. Moreover, DHE effectively suppressed the production of pro-inflammatory cytokines, restored mitochondrial function, and inhibited NLRP3 inflammasome activation via activating the TREM2/DAP12 signaling pathway in LPS-stimulated BV2 microglial cells. Notably, silencing TREM2 abolished the suppression effect of DHE on the neuroinflammatory response, mitochondrial dysfunction, and NF-κB/NLRP3 pathways in vitro. Additionally, DHE pretreatment exhibited remarkable neuroprotective effects, as evidenced by increased neuronal viability and reduced apoptotic cell numbers in SH-SY5Y neuroblastoma cells co-cultured with LPS-stimulated BV2 microglia. Furthermore, in our zebrafish model, DHE pretreatment effectively alleviated behavioral impairments, reduced neutrophil aggregation, and suppressed neuroinflammation in the brain by regulating TREM2/NF-κB/NLRP3 pathways after intraventricular LPS injection. These findings provide novel insights into the potent protective effects of DHE as a promising novel TREM2 agonist against LPS-induced neuroinflammation, revealing its potential therapeutic role in the treatment of central nervous system diseases associated with neuroinflammation.</p>","PeriodicalId":19159,"journal":{"name":"Neurotherapeutics","volume":" ","pages":"e00479"},"PeriodicalIF":5.6,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142751395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Small molecule modulation of p75NTR engages the autophagy-lysosomal pathway and reduces huntingtin aggregates in cellular and mouse models of Huntington's disease. 在亨廷顿氏病的细胞模型和小鼠模型中,小分子调节 p75NTR 可参与自噬-溶酶体途径并减少亨廷顿蛋白聚集。
IF 5.6 2区 医学 Q1 CLINICAL NEUROLOGY Pub Date : 2024-11-25 DOI: 10.1016/j.neurot.2024.e00495
Danielle A Simmons, Namitha Alexander, Gloria Cao, Ido Rippin, Yarine Lugassy, Hagit Eldar-Finkelman, Frank M Longo

Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the HTT gene encoding a mutant huntingtin (mHtt) protein. mHtt aggregates within neurons causing degeneration primarily in the striatum. There is currently a need for disease-modifying treatments for HD. Many therapeutic studies have focused on lowering mHtt levels by reducing its production or enhancing its clearance. One way to clear mHtt aggregates is to promote autophagy, which is disrupted in HD. Our previous studies showed that the small molecule p75 neurotrophin receptor (p75NTR) ligand, LM11A-31, prevented HD-related neuropathologies and behavioral deficits in multiple HD mouse models. This study investigated whether modulating p75NTR with LM11A-31, would reduce mHtt aggregates via autophagic/lysosomal mechanisms in HD models. LM11A-31 decreased mHtt aggregates in human neuroblastoma SH-SY5Y cells expressing mHtt (exon 1 with 74 CAG repeats) and in the striatum of R6/2 and zQ175dn mouse models of HD. The LM11A-31 associated decrease in mHtt aggregates in vitro was accompanied by increased autophagic/lysosomal activity as indicated by altered levels of relevant markers including p62/SQSTM1 and the lysosomal protease, mature cathepsin D, and increased autophagy flux. In R6/2 and/or zQ175dn striatum, LM11A-31 increased AMPK activation, normalized p62/SQSTM1 and LC3II levels, and enhanced LAMP1 and decreased LC3B association with mHtt. Thus, LM11A-31 reduces mHtt aggregates and may do so via engaging autophagy/lysosomal systems. LM11A-31 has successfully completed a Phase 2a clinical trial for mild-to-moderate Alzheimer's disease and our results here strengthen its potential as a candidate for HD clinical testing.

亨廷顿氏病(Huntington's disease,HD)是一种神经退行性疾病,由编码突变亨廷丁(huntingtin,mHtt)蛋白的 HTT 基因中的 CAG 重复扩增引起。目前需要针对 HD 的疾病改变疗法。许多治疗研究都侧重于通过减少 mHtt 的产生或提高其清除率来降低其水平。清除 mHtt 聚集物的一种方法是促进自噬,而自噬在 HD 中会受到破坏。我们之前的研究表明,小分子 p75 神经营养素受体(p75NTR)配体 LM11A-31 可以预防多种 HD 小鼠模型中与 HD 相关的神经病理学和行为缺陷。本研究探讨了用 LM11A-31 调节 p75NTR 是否会通过 HD 模型中的自噬/溶酶体机制减少 mHtt 聚集。LM11A-31 可减少表达 mHtt(1 号外显子有 74 个 CAG 重复序列)的人神经母细胞瘤 SH-SY5Y 细胞以及 R6/2 和 zQ175dn HD 小鼠模型纹状体中的 mHtt 聚集。与 LM11A-31 相关的 mHtt 体外聚集体的减少伴随着自噬/溶酶体活性的增加,这表现在相关标记物(包括 p62/SQSTM1 和溶酶体蛋白酶、成熟的 cathepsin D)水平的改变以及自噬通量的增加。在 R6/2 和/或 zQ175dn 纹状体中,LM11A-31 增加了 AMPK 的激活,使 p62/SQSTM1 和 LC3II 水平正常化,并增强了 LAMP1 和减少了 LC3B 与 mHtt 的结合。因此,LM11A-31 可减少 mHtt 的聚集,而且可能是通过自噬/溶酶体系统实现的。LM11A-31 已经成功完成了治疗轻度至中度阿尔茨海默病的 2a 期临床试验,我们的研究结果增强了它作为高清临床试验候选药物的潜力。
{"title":"Small molecule modulation of p75<sup>NTR</sup> engages the autophagy-lysosomal pathway and reduces huntingtin aggregates in cellular and mouse models of Huntington's disease.","authors":"Danielle A Simmons, Namitha Alexander, Gloria Cao, Ido Rippin, Yarine Lugassy, Hagit Eldar-Finkelman, Frank M Longo","doi":"10.1016/j.neurot.2024.e00495","DOIUrl":"https://doi.org/10.1016/j.neurot.2024.e00495","url":null,"abstract":"<p><p>Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the HTT gene encoding a mutant huntingtin (mHtt) protein. mHtt aggregates within neurons causing degeneration primarily in the striatum. There is currently a need for disease-modifying treatments for HD. Many therapeutic studies have focused on lowering mHtt levels by reducing its production or enhancing its clearance. One way to clear mHtt aggregates is to promote autophagy, which is disrupted in HD. Our previous studies showed that the small molecule p75 neurotrophin receptor (p75<sup>NTR</sup>) ligand, LM11A-31, prevented HD-related neuropathologies and behavioral deficits in multiple HD mouse models. This study investigated whether modulating p75<sup>NTR</sup> with LM11A-31, would reduce mHtt aggregates via autophagic/lysosomal mechanisms in HD models. LM11A-31 decreased mHtt aggregates in human neuroblastoma SH-SY5Y cells expressing mHtt (exon 1 with 74 CAG repeats) and in the striatum of R6/2 and zQ175dn mouse models of HD. The LM11A-31 associated decrease in mHtt aggregates in vitro was accompanied by increased autophagic/lysosomal activity as indicated by altered levels of relevant markers including p62/SQSTM1 and the lysosomal protease, mature cathepsin D, and increased autophagy flux. In R6/2 and/or zQ175dn striatum, LM11A-31 increased AMPK activation, normalized p62/SQSTM1 and LC3II levels, and enhanced LAMP1 and decreased LC3B association with mHtt. Thus, LM11A-31 reduces mHtt aggregates and may do so via engaging autophagy/lysosomal systems. LM11A-31 has successfully completed a Phase 2a clinical trial for mild-to-moderate Alzheimer's disease and our results here strengthen its potential as a candidate for HD clinical testing.</p>","PeriodicalId":19159,"journal":{"name":"Neurotherapeutics","volume":" ","pages":"e00495"},"PeriodicalIF":5.6,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142731119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Increase in beta frequency phase synchronization and power after a session of high frequency repetitive transcranial magnetic stimulation to the primary motor cortex. 对初级运动皮层进行高频重复经颅磁刺激后,β 频率相位同步和功率增加。
IF 5.6 2区 医学 Q1 CLINICAL NEUROLOGY Pub Date : 2024-11-24 DOI: 10.1016/j.neurot.2024.e00497
Enrico De Martino, Adenauer Girardi Casali, Bruno Andry Nascimento Couto, Thomas Graven-Nielsen, Daniel Ciampi de Andrade

High-frequency repetitive transcranial magnetic stimulation (rTMS) to the primary motor cortex (M1) is used to treat several neuropsychiatric disorders, but the detailed temporal dynamics of its effects on cortical connectivity remain unclear. Here, we stimulated four cortical targets used for rTMS (M1; dorsolateral-prefrontal cortex, DLPFC; anterior cingulate cortex, ACC; posterosuperior insula, PSI) with TMS coupled with high-density electroencephalography (TMS-EEG) to measure cortical excitability and oscillatory dynamics before and after active- and sham-M1-rTMS. Before and immediately after active or sham M1-rTMS (15 ​min, 3000 pulses at 10 ​Hz), single-pulse TMS-evoked EEG was recorded at the four targets in 20 healthy individuals. Cortical excitability and oscillatory measures were extracted at the main frequency bands (α [8-13 ​Hz], low-β [14-24 ​Hz], high-β [25-35 ​Hz]). Active-M1-rTMS increased high-β synchronization in electrodes near the stimulation area and remotely, in the contralateral hemisphere (p ​= ​0.026). Increased high-β synchronization (48-83 ​ms after TMS-EEG stimulation) was succeeded by enhancement in low-β power (86-144 ​ms after TMS-EEG stimulation) both locally and in the contralateral hemisphere (p ​= ​0.006). No significant differences were observed in stimulating the DLPFC, ACC, or PSI by TMS-EEG. M1-rTMS engaged a sequence of enhanced phase synchronization, followed by an increase in power occurring within M1, which spread to remote areas and persisted after the end of the stimulation session. These results are relevant to understanding the M1 neuroplastic effects of rTMS in health and may help in the development of informed rTMS therapies in disease.

对初级运动皮层(M1)的高频重复经颅磁刺激(rTMS)可用于治疗多种神经精神疾病,但其对皮层连通性影响的详细时间动态仍不清楚。在这里,我们用TMS结合高密度脑电图(TMS-EEG)刺激了用于经颅磁刺激的四个皮层靶点(M1;背外侧-前额叶皮层,DLPFC;前扣带回皮层,ACC;后上岛叶,PSI),以测量主动经颅磁刺激和假经颅磁刺激前后的皮层兴奋性和振荡动态。在主动或假M1-经颅磁刺激(15分钟,3000脉冲,10赫兹)前后,记录了20名健康人在四个目标处的单脉冲TMS诱发脑电图。提取了主要频段(α [8-13 Hz]、低β [14-24 Hz]、高β [25-35 Hz])的皮层兴奋性和振荡测量值。主动-M1-经颅磁刺激增加了刺激区附近电极和对侧半球远程电极的高β同步性(p = 0.026)。高β同步化(TMS-EEG 刺激后 48-83 毫秒)的增加在局部和对侧半球都被低β功率(TMS-EEG 刺激后 86-144 毫秒)的增强所取代(p = 0.006)。通过 TMS-EEG 刺激 DLPFC、ACC 或 PSI 没有观察到明显差异。M1 经颅磁刺激产生了一连串的相位同步增强现象,随后在 M1 内出现了功率增加,这种现象扩散到了远端区域,并在刺激疗程结束后持续存在。这些结果有助于了解经颅磁刺激在健康状态下对 M1 神经可塑性的影响,并有助于开发出适合疾病的经颅磁刺激疗法。
{"title":"Increase in beta frequency phase synchronization and power after a session of high frequency repetitive transcranial magnetic stimulation to the primary motor cortex.","authors":"Enrico De Martino, Adenauer Girardi Casali, Bruno Andry Nascimento Couto, Thomas Graven-Nielsen, Daniel Ciampi de Andrade","doi":"10.1016/j.neurot.2024.e00497","DOIUrl":"10.1016/j.neurot.2024.e00497","url":null,"abstract":"<p><p>High-frequency repetitive transcranial magnetic stimulation (rTMS) to the primary motor cortex (M1) is used to treat several neuropsychiatric disorders, but the detailed temporal dynamics of its effects on cortical connectivity remain unclear. Here, we stimulated four cortical targets used for rTMS (M1; dorsolateral-prefrontal cortex, DLPFC; anterior cingulate cortex, ACC; posterosuperior insula, PSI) with TMS coupled with high-density electroencephalography (TMS-EEG) to measure cortical excitability and oscillatory dynamics before and after active- and sham-M1-rTMS. Before and immediately after active or sham M1-rTMS (15 ​min, 3000 pulses at 10 ​Hz), single-pulse TMS-evoked EEG was recorded at the four targets in 20 healthy individuals. Cortical excitability and oscillatory measures were extracted at the main frequency bands (α [8-13 ​Hz], low-β [14-24 ​Hz], high-β [25-35 ​Hz]). Active-M1-rTMS increased high-β synchronization in electrodes near the stimulation area and remotely, in the contralateral hemisphere (p ​= ​0.026). Increased high-β synchronization (48-83 ​ms after TMS-EEG stimulation) was succeeded by enhancement in low-β power (86-144 ​ms after TMS-EEG stimulation) both locally and in the contralateral hemisphere (p ​= ​0.006). No significant differences were observed in stimulating the DLPFC, ACC, or PSI by TMS-EEG. M1-rTMS engaged a sequence of enhanced phase synchronization, followed by an increase in power occurring within M1, which spread to remote areas and persisted after the end of the stimulation session. These results are relevant to understanding the M1 neuroplastic effects of rTMS in health and may help in the development of informed rTMS therapies in disease.</p>","PeriodicalId":19159,"journal":{"name":"Neurotherapeutics","volume":" ","pages":"e00497"},"PeriodicalIF":5.6,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142710610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Abdominal ultrasound stimulation alleviates DSS-induced colitis and behavioral disorders in mice by mediating the microbiota-gut-brain axis balance. 腹部超声波刺激通过调节微生物群-肠-脑轴平衡,缓解DSS诱导的小鼠结肠炎和行为紊乱。
IF 5.6 2区 医学 Q1 CLINICAL NEUROLOGY Pub Date : 2024-11-22 DOI: 10.1016/j.neurot.2024.e00494
Cong-Yong Gao, Yi-Ju Pan, Wei-Shen Su, Chun-Yi Wu, Ting-Yu Chang, Feng-Yi Yang

Inflammatory bowel disease (IBD) has the potential to induce neuroinflammation, which may increase the risk of developing neurodegenerative disorders. Ultrasound stimulation to the abdomen is a potential treatment for dextran sulfate sodium (DSS)-induced acute colitis. The present study aimed to investigate whether abdominal low-intensity pulsed ultrasound (LIPUS) can alleviate DSS-induced neuroinflammation through the microbiota-gut-brain axis. Male mice were fed DSS to induce ulcerative colitis. LIPUS stimulation was then applied to the abdomen at intensities of 0.5 and 1.0 ​W/cm2. Mouse biological samples were analyzed, and behavior was evaluated. [18F]FEPPA PET/CT imaging was employed to track and quantify inflammation in the abdomen and brain. Changes in the gut microbiota composition were analyzed using 16S rRNA sequencing. Abdominal LIPUS significantly inhibited the DSS-induced inflammatory response, repaired destroyed crypts, and partially preserved the epithelial barrier. [18F]FEPPA accumulation in the colitis-induced neuroinflammation in the abdomen and specific brain regions significantly decreased after LIPUS treatment. LIPUS maintained intestinal integrity by increasing zonula occludens and occludin levels, reduced lipopolysaccharide-binding protein and lipopolysaccharide levels in the serum, and improved behavioral dysfunctions. Moreover, LIPUS, at an intensity of 0.5 ​W/cm2, reshaped the gut microbiota in colitis-induced mice by increasing the relative abundance of the Firmicutes and decreasing the relative abundance of the Bacteroidota. Our findings demonstrated that abdominal LIPUS stimulation has the potential to be a novel therapeutic strategy to improve colitis-induced behavioral disorders through microbiota-gut-brain axis signaling.

炎症性肠病(IBD)有可能诱发神经炎症,从而增加罹患神经退行性疾病的风险。腹部超声波刺激是治疗右旋糖酐硫酸钠(DSS)诱发的急性结肠炎的一种潜在方法。本研究旨在探讨腹部低强度脉冲超声(LIPUS)能否通过微生物群-肠-脑轴缓解右旋糖酐硫酸钠诱导的神经炎症。给雄性小鼠喂食 DSS 以诱发溃疡性结肠炎。然后在腹部施加强度为 0.5 和 1.0 W/cm2 的 LIPUS 刺激。对小鼠的生物样本进行分析,并对其行为进行评估。采用[18F]FEPPA PET/CT 成像来跟踪和量化腹部和大脑中的炎症。利用 16S rRNA 测序分析了肠道微生物群组成的变化。腹腔LIPUS能明显抑制DSS诱导的炎症反应,修复被破坏的隐窝,并部分保留上皮屏障。LIPUS治疗后,结肠炎诱发的腹部神经炎症和特定脑区的[18F]FEPPA积累明显减少。LIPUS通过提高闭锁带和闭锁素的水平来维持肠道完整性,降低血清中脂多糖结合蛋白和脂多糖的水平,并改善行为功能障碍。此外,强度为 0.5 W/cm2 的腹腔 LIPUS 还能重塑结肠炎诱导小鼠的肠道微生物群,提高固有菌群的相对丰度,降低类杆菌群的相对丰度。我们的研究结果表明,腹部LIPUS刺激有可能成为一种新的治疗策略,通过微生物群-肠-脑轴信号转导改善结肠炎引起的行为紊乱。
{"title":"Abdominal ultrasound stimulation alleviates DSS-induced colitis and behavioral disorders in mice by mediating the microbiota-gut-brain axis balance.","authors":"Cong-Yong Gao, Yi-Ju Pan, Wei-Shen Su, Chun-Yi Wu, Ting-Yu Chang, Feng-Yi Yang","doi":"10.1016/j.neurot.2024.e00494","DOIUrl":"https://doi.org/10.1016/j.neurot.2024.e00494","url":null,"abstract":"<p><p>Inflammatory bowel disease (IBD) has the potential to induce neuroinflammation, which may increase the risk of developing neurodegenerative disorders. Ultrasound stimulation to the abdomen is a potential treatment for dextran sulfate sodium (DSS)-induced acute colitis. The present study aimed to investigate whether abdominal low-intensity pulsed ultrasound (LIPUS) can alleviate DSS-induced neuroinflammation through the microbiota-gut-brain axis. Male mice were fed DSS to induce ulcerative colitis. LIPUS stimulation was then applied to the abdomen at intensities of 0.5 and 1.0 ​W/cm<sup>2</sup>. Mouse biological samples were analyzed, and behavior was evaluated. [<sup>18</sup>F]FEPPA PET/CT imaging was employed to track and quantify inflammation in the abdomen and brain. Changes in the gut microbiota composition were analyzed using 16S rRNA sequencing. Abdominal LIPUS significantly inhibited the DSS-induced inflammatory response, repaired destroyed crypts, and partially preserved the epithelial barrier. [<sup>18</sup>F]FEPPA accumulation in the colitis-induced neuroinflammation in the abdomen and specific brain regions significantly decreased after LIPUS treatment. LIPUS maintained intestinal integrity by increasing zonula occludens and occludin levels, reduced lipopolysaccharide-binding protein and lipopolysaccharide levels in the serum, and improved behavioral dysfunctions. Moreover, LIPUS, at an intensity of 0.5 ​W/cm<sup>2</sup>, reshaped the gut microbiota in colitis-induced mice by increasing the relative abundance of the Firmicutes and decreasing the relative abundance of the Bacteroidota. Our findings demonstrated that abdominal LIPUS stimulation has the potential to be a novel therapeutic strategy to improve colitis-induced behavioral disorders through microbiota-gut-brain axis signaling.</p>","PeriodicalId":19159,"journal":{"name":"Neurotherapeutics","volume":" ","pages":"e00494"},"PeriodicalIF":5.6,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142695080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CtBP1 is essential for epigenetic silencing of μ-opioid receptor genes in the dorsal root ganglion in spinal nerve ligation-induced neuropathic pain. CtBP1对脊神经结扎诱导的神经病理性疼痛中背根神经节中μ-阿片受体基因的表观遗传沉默至关重要。
IF 5.6 2区 医学 Q1 CLINICAL NEUROLOGY Pub Date : 2024-11-22 DOI: 10.1016/j.neurot.2024.e00493
Cheng-Yuan Lai, Ming-Chun Hsieh, Chou-Ming Yeh, Tzer-Bin Lin, Dylan Chou, Hsueh-Hsiao Wang, Kuan-Hung Lin, Jen-Kun Cheng, Po-Sheng Yang, Hsien-Yu Peng

Neuropathic pain poses a significant public health challenge, greatly impacting patients' quality of life. Emerging evidence underscores the involvement of epigenetics in dorsal root ganglion (DRG) neurons relevant to pain modulation. C-terminal binding protein 1 (CtBP1) has emerged as a crucial epigenetic transcriptional coregulator. However, the underlying molecular mechanisms of CtBP1-mediated epigenetic regulation in DRG neurons in neuropathic pain remain poorly elucidated. Here, we employed a Sprague‒Dawley rat model of spinal nerve ligation (SNL) to establish a neuropathic pain model. CtBP1 expression in the ipsilateral DRG gradually increased over a three-week period post-SNL. Immunohistochemistry revealed a significant elevation in CtBP1 levels specifically in NeuN-positive neuronal cells in the ipsilateral DRG following SNL. Further characterization demonstrated CtBP1 expression across various subtypes of DRG neurons in SNL rats. Silencing CtBP1 expression with siRNA reversed tactile allodynia in SNL rats and restored both CtBP1 and μ-opioid receptor expression in the DRG in SNL rats. Moreover, Foxp1 was identified to recruit CtBP1 for mediating μ-opioid receptor gene silencing in the DRG in SNL rats. Subsequent investigation unveiled that Foxp1 recruits CtBP1 and associates with HDAC2 to regulate H3K9Ac binding to μ-opioid receptor chromatin regions in the DRG in SNL rats, implicating epigenetic mechanisms in neuropathic pain. Targeting the Foxp1/CtBP1/HDAC2/μ-opioid receptor signaling pathway in the DRG holds promise as a potential therapeutic strategy for managing neuropathic pain.

神经病理性疼痛是一项重大的公共卫生挑战,极大地影响了患者的生活质量。新出现的证据强调,背根神经节(DRG)神经元中的表观遗传学参与了疼痛调节。C-terminal binding protein 1(CtBP1)已成为一种重要的表观遗传转录核心调节因子。然而,CtBP1 介导的神经病理性疼痛 DRG 神经元表观遗传调控的潜在分子机制仍未得到充分阐明。在此,我们采用 Sprague-Dawley 大鼠脊神经结扎(SNL)模型建立了神经病理性疼痛模型。在SNL后的三周内,同侧DRG中的CtBP1表达量逐渐增加。免疫组化显示,SNL后同侧DRG中NeuN阳性神经元细胞的CtBP1水平显著升高。进一步的特征研究表明,CtBP1 的表达遍及 SNL 大鼠 DRG 神经元的各种亚型。用 siRNA 沉默 CtBP1 的表达可逆转 SNL 大鼠的触觉过敏症,并恢复 SNL 大鼠 DRG 中 CtBP1 和 μ - 阿片受体的表达。此外,研究还发现 Foxp1 能招募 CtBP1 来介导 SNL 大鼠 DRG 中的μ-阿片受体基因沉默。随后的研究发现,Foxp1会招募CtBP1并与HDAC2结合,以调节H3K9Ac与SNL大鼠DRG中的μ-阿片受体染色质区域的结合,从而揭示了神经病理性疼痛的表观遗传机制。靶向DRG中的Foxp1/CtBP1/HDAC2/μ-阿片受体信号通路有望成为治疗神经病理性疼痛的一种潜在治疗策略。
{"title":"CtBP1 is essential for epigenetic silencing of μ-opioid receptor genes in the dorsal root ganglion in spinal nerve ligation-induced neuropathic pain.","authors":"Cheng-Yuan Lai, Ming-Chun Hsieh, Chou-Ming Yeh, Tzer-Bin Lin, Dylan Chou, Hsueh-Hsiao Wang, Kuan-Hung Lin, Jen-Kun Cheng, Po-Sheng Yang, Hsien-Yu Peng","doi":"10.1016/j.neurot.2024.e00493","DOIUrl":"10.1016/j.neurot.2024.e00493","url":null,"abstract":"<p><p>Neuropathic pain poses a significant public health challenge, greatly impacting patients' quality of life. Emerging evidence underscores the involvement of epigenetics in dorsal root ganglion (DRG) neurons relevant to pain modulation. C-terminal binding protein 1 (CtBP1) has emerged as a crucial epigenetic transcriptional coregulator. However, the underlying molecular mechanisms of CtBP1-mediated epigenetic regulation in DRG neurons in neuropathic pain remain poorly elucidated. Here, we employed a Sprague‒Dawley rat model of spinal nerve ligation (SNL) to establish a neuropathic pain model. CtBP1 expression in the ipsilateral DRG gradually increased over a three-week period post-SNL. Immunohistochemistry revealed a significant elevation in CtBP1 levels specifically in NeuN-positive neuronal cells in the ipsilateral DRG following SNL. Further characterization demonstrated CtBP1 expression across various subtypes of DRG neurons in SNL rats. Silencing CtBP1 expression with siRNA reversed tactile allodynia in SNL rats and restored both CtBP1 and μ-opioid receptor expression in the DRG in SNL rats. Moreover, Foxp1 was identified to recruit CtBP1 for mediating μ-opioid receptor gene silencing in the DRG in SNL rats. Subsequent investigation unveiled that Foxp1 recruits CtBP1 and associates with HDAC2 to regulate H3K9Ac binding to μ-opioid receptor chromatin regions in the DRG in SNL rats, implicating epigenetic mechanisms in neuropathic pain. Targeting the Foxp1/CtBP1/HDAC2/μ-opioid receptor signaling pathway in the DRG holds promise as a potential therapeutic strategy for managing neuropathic pain.</p>","PeriodicalId":19159,"journal":{"name":"Neurotherapeutics","volume":" ","pages":"e00493"},"PeriodicalIF":5.6,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142695154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intrathecal administration of Anti-Nogo-A antibody in macaque monkeys: Pharmacokinetics, tissue penetration and target interaction. 猕猴鞘内注射抗 Nogo-A 抗体:药代动力学、组织渗透和目标相互作用。
IF 5.6 2区 医学 Q1 CLINICAL NEUROLOGY Pub Date : 2024-11-20 DOI: 10.1016/j.neurot.2024.e00484
Pascal B Kunz, Michael A Maurer, Jannik Vollmer, Matthias Machacek, Oliver Weinmann, Jelena Klisic, Martin E Schwab

Intrathecal drug administration represents a promising method to deliver biologics effectively to the central nervous system (CNS). However, little is known about the tolerability and pharmacokinetics of intrathecally applied antibodies. Hence, the focus of this study was to evaluate the toxicity, pharmacokinetic, and pharmacodynamic properties of an intrathecally administered human monoclonal antibody against the growth inhibitory CNS membrane protein Nogo-A in the non-human primate (NHP). The antibody was repeatedly injected into the lumbar cerebrospinal fluid (CSF) sack of NHPs, Macaca fascicularis (N ​= ​18), at three dose levels (placebo, 75 and 150 ​mg antibody/injection, n ​= ​6/group). CSF and serum samples were collected for pharmacokinetic analysis. The health status was constantly monitored to detect any treatment-related abnormalities. After sacrifice, the CNS tissues were evaluated by immunohistochemistry and biochemistry to study the antibody distribution and target interaction in the spinal cord and brain. No treatment-related side effects were observed, and the treatment was well tolerated by NHPs. After administration, the antibody was rapidly cleared from the CSF with a half-life of 6.4 ​h and accumulated in the serum where it showed a half-life of 13.7 days. The antibody distributed over the spinal cord and brain, penetrated into the CNS parenchyma where it bound to Nogo-A expressing neurons and oligodendrocytes, and induced significant (P ​< ​0.05) downregulation of the target antigen Nogo-A. Collectively, these results support the direct administration of therapeutic antibodies into the CSF and are of relevance for the antibody-based therapeutics currently in development for different CNS diseases.

鞘内给药是将生物制剂有效输送到中枢神经系统(CNS)的一种很有前景的方法。然而,人们对鞘内注射抗体的耐受性和药代动力学知之甚少。因此,本研究的重点是在非人灵长类动物(NHP)体内评估针对生长抑制性中枢神经系统膜蛋白 Nogo-A 的人单克隆抗体的毒性、药代动力学和药效学特性。该抗体以三种剂量水平(安慰剂、75 毫克和 150 毫克抗体/注射液,n = 6/组)反复注入非人灵长类动物猕猴(Macaca fascicularis,N = 18)的腰部脑脊液(CSF)袋中。收集 CSF 和血清样本用于药代动力学分析。对患者的健康状况进行持续监测,以发现任何与治疗相关的异常情况。中枢神经系统组织牺牲后,用免疫组化和生物化学方法评估抗体在脊髓和大脑中的分布和靶点相互作用。没有观察到与治疗相关的副作用,NHP 对治疗的耐受性良好。给药后,抗体迅速从脑脊液中清除,半衰期为 6.4 小时,并在血清中蓄积,半衰期为 13.7 天。抗体分布于脊髓和大脑,渗入中枢神经系统实质,与表达 Nogo-A 的神经元和少突胶质细胞结合,诱导神经元和少突胶质细胞产生显著的(P<0.05)免疫反应。
{"title":"Intrathecal administration of Anti-Nogo-A antibody in macaque monkeys: Pharmacokinetics, tissue penetration and target interaction.","authors":"Pascal B Kunz, Michael A Maurer, Jannik Vollmer, Matthias Machacek, Oliver Weinmann, Jelena Klisic, Martin E Schwab","doi":"10.1016/j.neurot.2024.e00484","DOIUrl":"https://doi.org/10.1016/j.neurot.2024.e00484","url":null,"abstract":"<p><p>Intrathecal drug administration represents a promising method to deliver biologics effectively to the central nervous system (CNS). However, little is known about the tolerability and pharmacokinetics of intrathecally applied antibodies. Hence, the focus of this study was to evaluate the toxicity, pharmacokinetic, and pharmacodynamic properties of an intrathecally administered human monoclonal antibody against the growth inhibitory CNS membrane protein Nogo-A in the non-human primate (NHP). The antibody was repeatedly injected into the lumbar cerebrospinal fluid (CSF) sack of NHPs, Macaca fascicularis (N ​= ​18), at three dose levels (placebo, 75 and 150 ​mg antibody/injection, n ​= ​6/group). CSF and serum samples were collected for pharmacokinetic analysis. The health status was constantly monitored to detect any treatment-related abnormalities. After sacrifice, the CNS tissues were evaluated by immunohistochemistry and biochemistry to study the antibody distribution and target interaction in the spinal cord and brain. No treatment-related side effects were observed, and the treatment was well tolerated by NHPs. After administration, the antibody was rapidly cleared from the CSF with a half-life of 6.4 ​h and accumulated in the serum where it showed a half-life of 13.7 days. The antibody distributed over the spinal cord and brain, penetrated into the CNS parenchyma where it bound to Nogo-A expressing neurons and oligodendrocytes, and induced significant (P ​< ​0.05) downregulation of the target antigen Nogo-A. Collectively, these results support the direct administration of therapeutic antibodies into the CSF and are of relevance for the antibody-based therapeutics currently in development for different CNS diseases.</p>","PeriodicalId":19159,"journal":{"name":"Neurotherapeutics","volume":" ","pages":"e00484"},"PeriodicalIF":5.6,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142686750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Neurotherapeutics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1