Pub Date : 2024-09-01DOI: 10.1016/j.neurot.2024.e00378
James F. Howard Jr. , Tuan Vu , George Li , Denis Korobko , Marek Smilowski , Li Liu , Fien Gistelinck , Sophie Steeland , Jan Noukens , Benjamin Van Hoorick , Jana Podhorna , Filip Borgions , Yuebing Li , Kimiaki Utsugisawa , Heinz Wiendl , Jan L. De Bleecker , Renato Mantegazza , the ADAPT-SC and ADAPT-SC+ Study Groups
ADAPT-SC (NCT04735432) was designed to evaluate noninferiority of subcutaneous (SC) efgartigimod PH20 to intravenous (IV) efgartigimod in participants with generalized myasthenia gravis (gMG). ADAPT-SC+ (NCT04818671) is an open-label extension study designed to assess long-term safety, tolerability, and efficacy of efgartigimod PH20 SC. Adult participants in ADAPT-SC were randomly assigned to receive a treatment cycle of 4 once-weekly administrations of efgartigimod PH20 SC 1000 mg or efgartigimod IV 10 mg/kg, followed by 7 weeks of follow-up. Primary endpoint was percentage change from baseline in total immunoglobulin G (IgG) level at week 4 (1 week after the fourth administration). Secondary efficacy endpoints assessed number and percentage of Myasthenia Gravis Activities of Daily Living (MG-ADL) and Quantitative Myasthenia Gravis (QMG) responders and mean change from baseline in total score for each measure. The primary endpoint was met, demonstrating noninferiority in total IgG reduction between efgartigimod PH20 SC 1000 mg and efgartigimod IV 10 mg/kg. Clinically meaningful improvements were seen as early as 1 week following the first administration in both treatment arms, with maximal improvements at week 4. Continued treatment cycles of efgartigimod PH20 SC in ADAPT-SC+ have demonstrated long-term safety and consistent improvements in MG-ADL total score. Findings from ADAPT-SC and ADAPT-SC+ demonstrate similar safety and efficacy as observed in the placebo-controlled ADAPT study. Collectively, these findings support noninferiority between efgartigimod PH20 SC 1000 mg and efgartigimod IV 10 mg/kg, as well as long-term safety, tolerability, and efficacy of efgartigimod PH20 SC for treatment of a broad population of patients with gMG.
{"title":"Subcutaneous efgartigimod PH20 in generalized myasthenia gravis: A phase 3 randomized noninferiority study (ADAPT-SC) and interim analyses of a long-term open-label extension study (ADAPT-SC+)","authors":"James F. Howard Jr. , Tuan Vu , George Li , Denis Korobko , Marek Smilowski , Li Liu , Fien Gistelinck , Sophie Steeland , Jan Noukens , Benjamin Van Hoorick , Jana Podhorna , Filip Borgions , Yuebing Li , Kimiaki Utsugisawa , Heinz Wiendl , Jan L. De Bleecker , Renato Mantegazza , the ADAPT-SC and ADAPT-SC+ Study Groups","doi":"10.1016/j.neurot.2024.e00378","DOIUrl":"10.1016/j.neurot.2024.e00378","url":null,"abstract":"<div><div>ADAPT-SC (NCT04735432) was designed to evaluate noninferiority of subcutaneous (SC) efgartigimod PH20 to intravenous (IV) efgartigimod in participants with generalized myasthenia gravis (gMG). ADAPT-SC+ (NCT04818671) is an open-label extension study designed to assess long-term safety, tolerability, and efficacy of efgartigimod PH20 SC. Adult participants in ADAPT-SC were randomly assigned to receive a treatment cycle of 4 once-weekly administrations of efgartigimod PH20 SC 1000 mg or efgartigimod IV 10 mg/kg, followed by 7 weeks of follow-up. Primary endpoint was percentage change from baseline in total immunoglobulin G (IgG) level at week 4 (1 week after the fourth administration). Secondary efficacy endpoints assessed number and percentage of Myasthenia Gravis Activities of Daily Living (MG-ADL) and Quantitative Myasthenia Gravis (QMG) responders and mean change from baseline in total score for each measure. The primary endpoint was met, demonstrating noninferiority in total IgG reduction between efgartigimod PH20 SC 1000 mg and efgartigimod IV 10 mg/kg. Clinically meaningful improvements were seen as early as 1 week following the first administration in both treatment arms, with maximal improvements at week 4. Continued treatment cycles of efgartigimod PH20 SC in ADAPT-SC+ have demonstrated long-term safety and consistent improvements in MG-ADL total score. Findings from ADAPT-SC and ADAPT-SC+ demonstrate similar safety and efficacy as observed in the placebo-controlled ADAPT study. Collectively, these findings support noninferiority between efgartigimod PH20 SC 1000 mg and efgartigimod IV 10 mg/kg, as well as long-term safety, tolerability, and efficacy of efgartigimod PH20 SC for treatment of a broad population of patients with gMG.</div></div>","PeriodicalId":19159,"journal":{"name":"Neurotherapeutics","volume":"21 5","pages":"Article e00378"},"PeriodicalIF":5.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.neurot.2024.e00428
Ying Wang , Kang Xie , Junyu Wang , Fenghua Chen , Xi Li , Longbo Zhang
Intracranial aneurysm (IA) is the most prevalent type of cerebral vascular disease causing life-threatening subarachnoid hemorrhages (SAH). A long-term vascular structure remodeling is considered as the main pathophysiological feature of IAs. However, the causal factors triggering the pathophysiological process are not clear. Recently, the abnormalities of peripheral circulating proteins and metabolites have been found in IAs patients and associated with the ruptures. We comprehensively investigated the potential causal relationship between blood metabolites and proteins and IAs using the mendelian randomization (MR) analysis. We applied two-sample MR to explore the potential causal association between peripheral circulating metabolites (191 blood metabolites) and proteins (1398 proteins) and IAs using data from the FinnGen study and the GWAS datasets published by Bakker et al. We identified palmitoylcarnitine, stearoylcarnitine and 2-tetradecenoylcarnitine as causal contributors of IAs and ruptures. Further two-step mediation MR analysis suggested that hypertension as one of the contributors of IAs and ruptures mediated the causal relationship between palmitoylcarnitine, stearoylcarnitine and 2-tetradecenoylcarnitine and IAs. Together, our study demonstrates that blood metabolic palmitoylcarnitine, stearoylcarnitine and 2-tetradecenoylcarnitine are causally linked to the formation and rupture of IAs. Hypertension partially mediates the causal effects.
{"title":"Mendelian randomization demonstrates a causal link between peripheral circulating acylcarnitines and intracranial aneurysms","authors":"Ying Wang , Kang Xie , Junyu Wang , Fenghua Chen , Xi Li , Longbo Zhang","doi":"10.1016/j.neurot.2024.e00428","DOIUrl":"10.1016/j.neurot.2024.e00428","url":null,"abstract":"<div><div>Intracranial aneurysm (IA) is the most prevalent type of cerebral vascular disease causing life-threatening subarachnoid hemorrhages (SAH). A long-term vascular structure remodeling is considered as the main pathophysiological feature of IAs. However, the causal factors triggering the pathophysiological process are not clear. Recently, the abnormalities of peripheral circulating proteins and metabolites have been found in IAs patients and associated with the ruptures. We comprehensively investigated the potential causal relationship between blood metabolites and proteins and IAs using the mendelian randomization (MR) analysis. We applied two-sample MR to explore the potential causal association between peripheral circulating metabolites (191 blood metabolites) and proteins (1398 proteins) and IAs using data from the FinnGen study and the GWAS datasets published by Bakker et al. We identified palmitoylcarnitine, stearoylcarnitine and 2-tetradecenoylcarnitine as causal contributors of IAs and ruptures. Further two-step mediation MR analysis suggested that hypertension as one of the contributors of IAs and ruptures mediated the causal relationship between palmitoylcarnitine, stearoylcarnitine and 2-tetradecenoylcarnitine and IAs. Together, our study demonstrates that blood metabolic palmitoylcarnitine, stearoylcarnitine and 2-tetradecenoylcarnitine are causally linked to the formation and rupture of IAs. Hypertension partially mediates the causal effects.</div></div>","PeriodicalId":19159,"journal":{"name":"Neurotherapeutics","volume":"21 5","pages":"Article e00428"},"PeriodicalIF":5.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141889833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.neurot.2024.e00422
The mechanisms of action of Vagus Nerve Stimulation (VNS) and the biological prerequisites to respond to the treatment are currently under investigation. It is hypothesized that thalamocortical tracts play a central role in the antiseizure effects of VNS by disrupting the genesis of pathological activity in the brain. This pilot study explored whether in vivo microstructural features of thalamocortical tracts may differentiate Drug-Resistant Epilepsy (DRE) patients responding and not responding to VNS treatment. Eighteen patients with DRE (37.11 ± 10.13 years, 10 females), including 11 responders or partial responders and 7 non-responders to VNS, were recruited for this high-gradient multi-shell diffusion Magnetic Resonance Imaging (MRI) study. Using Diffusion Tensor Imaging (DTI) and multi-compartment models - Neurite Orientation Dispersion and Density Imaging (NODDI) and Microstructure Fingerprinting (MF), we extracted microstructural features in 12 subsegments of thalamocortical tracts. These characteristics were compared between responders/partial responders and non-responders. Subsequently, a Support Vector Machine (SVM) classifier was built, incorporating microstructural features and 12 clinical covariates (including age, sex, duration of VNS therapy, number of antiseizure medications, benzodiazepine intake, epilepsy duration, epilepsy onset age, epilepsy type - focal or generalized, presence of an epileptic syndrome - no syndrome or Lennox-Gastaut syndrome, etiology of epilepsy - structural, genetic, viral, or unknown, history of brain surgery, and presence of a brain lesion detected on structural MRI images). Multiple diffusion metrics consistently demonstrated significantly higher white matter fiber integrity in patients with a better response to VNS (pFDR < 0.05) in different subsegments of thalamocortical tracts. The SVM model achieved a classification accuracy of 94.12%. The inclusion of clinical covariates did not improve the classification performance. The results suggest that the structural integrity of thalamocortical tracts may be linked to therapeutic effectiveness of VNS. This study reveals the great potential of diffusion MRI in improving our understanding of the biological factors associated with the response to VNS therapy.
{"title":"Identifying responders to vagus nerve stimulation based on microstructural features of thalamocortical tracts in drug-resistant epilepsy","authors":"","doi":"10.1016/j.neurot.2024.e00422","DOIUrl":"10.1016/j.neurot.2024.e00422","url":null,"abstract":"<div><div>The mechanisms of action of Vagus Nerve Stimulation (VNS) and the biological prerequisites to respond to the treatment are currently under investigation. It is hypothesized that thalamocortical tracts play a central role in the antiseizure effects of VNS by disrupting the genesis of pathological activity in the brain. This pilot study explored whether <em>in vivo</em> microstructural features of thalamocortical tracts may differentiate Drug-Resistant Epilepsy (DRE) patients responding and not responding to VNS treatment. Eighteen patients with DRE (37.11 ± 10.13 years, 10 females), including 11 responders or partial responders and 7 non-responders to VNS, were recruited for this high-gradient multi-shell diffusion Magnetic Resonance Imaging (MRI) study. Using Diffusion Tensor Imaging (DTI) and multi-compartment models - Neurite Orientation Dispersion and Density Imaging (NODDI) and Microstructure Fingerprinting (MF), we extracted microstructural features in 12 subsegments of thalamocortical tracts. These characteristics were compared between responders/partial responders and non-responders. Subsequently, a Support Vector Machine (SVM) classifier was built, incorporating microstructural features and 12 clinical covariates (including age, sex, duration of VNS therapy, number of antiseizure medications, benzodiazepine intake, epilepsy duration, epilepsy onset age, epilepsy type - focal or generalized, presence of an epileptic syndrome - no syndrome or Lennox-Gastaut syndrome, etiology of epilepsy - structural, genetic, viral, or unknown, history of brain surgery, and presence of a brain lesion detected on structural MRI images). Multiple diffusion metrics consistently demonstrated significantly higher white matter fiber integrity in patients with a better response to VNS (p<sub>FDR</sub> < 0.05) in different subsegments of thalamocortical tracts. The SVM model achieved a classification accuracy of 94.12%. The inclusion of clinical covariates did not improve the classification performance. The results suggest that the structural integrity of thalamocortical tracts may be linked to therapeutic effectiveness of VNS. This study reveals the great potential of diffusion MRI in improving our understanding of the biological factors associated with the response to VNS therapy.</div></div>","PeriodicalId":19159,"journal":{"name":"Neurotherapeutics","volume":"21 5","pages":"Article e00422"},"PeriodicalIF":5.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141534918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leptomeningeal anastomoses or pial collateral arteries are crucial for restoring cerebral blood flow (CBF) after an ischemic stroke. Vascular smooth muscle cells (VSMCs) are hypothesized to regulate the extent of this adaptive response, while the specific molecular mechanisms underlying this process are still being investigated. SNHG12, a long non-coding RNA, has been shown to influence several diseases related angiogenesis, including osteosarcoma and gastric cancer. However, the role of SNHG12 in contractile VSMC dedifferentiation during collateral arteriogenesis-related strokes remains unclear. Here we demonstrated that SNHG12 is a positive regulator of MMP9 and VSMC dedifferentiation, which enhances pial collateral arteriogenesis following cerebrovascular occlusion. Pial collateral remodeling is limited by the crosstalk between SNHG12-MMP9 signaling in VSMCs, which is mediated through repulsive guidance molecule a (RGMa) regulation. Thus, targeting SNHG12 may represent a therapeutic strategy for improving collateral function, neural tissue health, and functional recovery following ischemic stroke.
{"title":"Long non-coding RNA SNHG12 regulates leptomeningeal collateral remodeling via RGMa after ischemic stroke","authors":"Anan Jiang , Zijie Wang , Ruiqi Cheng , Shaoru Zhang , Qisi Wu, Xinyue Qin","doi":"10.1016/j.neurot.2024.e00429","DOIUrl":"10.1016/j.neurot.2024.e00429","url":null,"abstract":"<div><div>Leptomeningeal anastomoses or pial collateral arteries are crucial for restoring cerebral blood flow (CBF) after an ischemic stroke. Vascular smooth muscle cells (VSMCs) are hypothesized to regulate the extent of this adaptive response, while the specific molecular mechanisms underlying this process are still being investigated. SNHG12, a long non-coding RNA, has been shown to influence several diseases related angiogenesis, including osteosarcoma and gastric cancer. However, the role of SNHG12 in contractile VSMC dedifferentiation during collateral arteriogenesis-related strokes remains unclear. Here we demonstrated that SNHG12 is a positive regulator of MMP9 and VSMC dedifferentiation, which enhances pial collateral arteriogenesis following cerebrovascular occlusion. Pial collateral remodeling is limited by the crosstalk between SNHG12-MMP9 signaling in VSMCs, which is mediated through repulsive guidance molecule a (RGMa) regulation. Thus, targeting SNHG12 may represent a therapeutic strategy for improving collateral function, neural tissue health, and functional recovery following ischemic stroke.</div></div>","PeriodicalId":19159,"journal":{"name":"Neurotherapeutics","volume":"21 5","pages":"Article e00429"},"PeriodicalIF":5.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141976239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.neurot.2024.e00376
The neurodevelopmental disorder Pitt Hopkins syndrome (PTHS) causes clinical symptoms similar to Rett syndrome (RTT) patients. However, RTT is caused by MECP2 mutations whereas mutations in the TCF4 gene lead to PTHS. The mechanistic commonalities underling these two disorders are unknown, but their shared symptomology suggest that convergent pathway-level disruption likely exists. We reprogrammed patient skin derived fibroblasts into induced neuronal progenitor cells. Interestingly, we discovered that MeCP2 levels were decreased in PTHS patient iNPCs relative to healthy controls and that both iNPCs and iAstrocytes displayed defects in function and differentiation in a mutation-specific manner. When Tcf4+/− mice were genetically crossed with mice overexpressing MeCP2, molecular and phenotypic defects were significantly ameliorated, underlining and important role of MeCP2 in PTHS pathology. Importantly, post-natal intracerebroventricular gene replacement therapy with adeno-associated viral vector serotype 9 (AAV9)-expressing MeCP2 (AAV9.P546.MeCP2) significantly improved iNPC and iAstrocyte function and effectively ameliorated histological and behavioral defects in Tcf4+/− mice. Combined, our data suggest a previously unknown role of MeCP2 in PTHS pathology and common pathways that might be affected in multiple neurodevelopmental disorders. Our work highlights potential novel therapeutic targets for PTHS, including upregulation of MeCP2 expression or its downstream targets or, potentially, MeCP2-based gene therapy.
{"title":"MeCP2 gene therapy ameliorates disease phenotype in mouse model for Pitt Hopkins syndrome","authors":"","doi":"10.1016/j.neurot.2024.e00376","DOIUrl":"10.1016/j.neurot.2024.e00376","url":null,"abstract":"<div><div>The neurodevelopmental disorder Pitt Hopkins syndrome (PTHS) causes clinical symptoms similar to Rett syndrome (RTT) patients. However, RTT is caused by <em>MECP2</em> mutations whereas mutations in the <em>TCF4</em> gene lead to PTHS. The mechanistic commonalities underling these two disorders are unknown, but their shared symptomology suggest that convergent pathway-level disruption likely exists. We reprogrammed patient skin derived fibroblasts into induced neuronal progenitor cells. Interestingly, we discovered that MeCP2 levels were decreased in PTHS patient iNPCs relative to healthy controls and that both iNPCs and iAstrocytes displayed defects in function and differentiation in a mutation-specific manner. When <em>Tcf4</em><sup><em>+/−</em></sup> mice were genetically crossed with mice overexpressing MeCP2, molecular and phenotypic defects were significantly ameliorated, underlining and important role of MeCP2 in PTHS pathology. Importantly, post-natal intracerebroventricular gene replacement therapy with adeno-associated viral vector serotype 9 (AAV9)-expressing MeCP2 (AAV9.P546.MeCP2) significantly improved iNPC and iAstrocyte function and effectively ameliorated histological and behavioral defects in <em>Tcf4</em><sup><em>+/−</em></sup> mice. Combined, our data suggest a previously unknown role of MeCP2 in PTHS pathology and common pathways that might be affected in multiple neurodevelopmental disorders. Our work highlights potential novel therapeutic targets for PTHS, including upregulation of MeCP2 expression or its downstream targets or, potentially, MeCP2-based gene therapy.</div></div>","PeriodicalId":19159,"journal":{"name":"Neurotherapeutics","volume":"21 5","pages":"Article e00376"},"PeriodicalIF":5.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141321308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.neurot.2024.e00383
Neuropathic pain (NP), a severe chronic pain condition, remains a substantial clinical challenge due to its complex pathophysiology and limited effective treatments. An association between the members of the Fibroblast Growth Factors (FGFs), particularly Fgf3, and the development of NP has become evident. In this study, utilizing a mouse model of NP, we observed a time-dependent increase in Fgf3 expression at both mRNA and protein levels within the dorsal root ganglia (DRG). Functional studies revealed that blocking Fgf3 expression mitigated nerve injury induced nociceptive hypersensitivity, suggesting its pivotal role in pain modulation. Moreover, our findings elucidate that Fgf3 contributes to pain hypersensitivity through the activation of the Akt/mTOR signaling in injured DRG neurons. These results not only shed light on the involvement of Fgf3 in nerve injury-induced NP but also highlight its potential as a promising therapeutic target for pain management. This study thereby advances our understanding of the molecular mechanisms underlying NP and opens new avenues for the development of effective treatment strategies.
{"title":"Fibroblast growth factor 3 contributes to neuropathic pain through Akt/mTOR signaling in mouse primary sensory neurons","authors":"","doi":"10.1016/j.neurot.2024.e00383","DOIUrl":"10.1016/j.neurot.2024.e00383","url":null,"abstract":"<div><div>Neuropathic pain (NP), a severe chronic pain condition, remains a substantial clinical challenge due to its complex pathophysiology and limited effective treatments. An association between the members of the Fibroblast Growth Factors (FGFs), particularly Fgf3, and the development of NP has become evident. In this study, utilizing a mouse model of NP, we observed a time-dependent increase in Fgf3 expression at both mRNA and protein levels within the dorsal root ganglia (DRG). Functional studies revealed that blocking Fgf3 expression mitigated nerve injury induced nociceptive hypersensitivity, suggesting its pivotal role in pain modulation. Moreover, our findings elucidate that Fgf3 contributes to pain hypersensitivity through the activation of the Akt/mTOR signaling in injured DRG neurons. These results not only shed light on the involvement of Fgf3 in nerve injury-induced NP but also highlight its potential as a promising therapeutic target for pain management. This study thereby advances our understanding of the molecular mechanisms underlying NP and opens new avenues for the development of effective treatment strategies.</div></div>","PeriodicalId":19159,"journal":{"name":"Neurotherapeutics","volume":"21 5","pages":"Article e00383"},"PeriodicalIF":5.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.neurot.2024.e00439
Nuria Sánchez-Fernández , Laura Gómez-Acero , Anna Castañé , Albert Adell , Leticia Campa , Jordi Bonaventura , Verónica Brito , Silvia Ginés , Francisco Queiróz , Henrique Silva , João Pedro Lopes , Cátia R. Lopes , Marija Radošević , Xavier Gasull , Rodrigo A. Cunha , Attila Köfalvi , Samira G. Ferreira , Francisco Ciruela , Ester Aso
A combination of Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) at non-psychoactive doses was previously demonstrated to reduce cognitive decline in APP/PS1 mice, an animal model of Alzheimer's disease (AD). However, the neurobiological substrates underlying these therapeutic properties of Δ9-THC and CBD are not fully understood. Considering that dysregulation of glutamatergic activity contributes to cognitive impairment in AD, the present study evaluates the hypothesis that the combination of these two natural cannabinoids might reverse the alterations in glutamate dynamics within the hippocampus of this animal model of AD. Interestingly, our findings reveal that chronic treatment with Δ9-THC and CBD, but not with any of them alone, reduces extracellular glutamate levels and the basal excitability of the hippocampus in APP/PS1 mice. These effects are not related to significant changes in the function and structure of glutamate synapses, as no relevant changes in synaptic plasticity, glutamate signaling or in the levels of key components of these synapses were observed in cannabinoid-treated mice. Our data instead indicate that these cannabinoid effects are associated with the control of glutamate uptake and/or to the regulation of the hippocampal network. Taken together, these results support the potential therapeutic properties of combining these natural cannabinoids against the excitotoxicity that occurs in AD brains.
{"title":"A combination of Δ9-tetrahydrocannabinol and cannabidiol modulates glutamate dynamics in the hippocampus of an animal model of Alzheimer's disease","authors":"Nuria Sánchez-Fernández , Laura Gómez-Acero , Anna Castañé , Albert Adell , Leticia Campa , Jordi Bonaventura , Verónica Brito , Silvia Ginés , Francisco Queiróz , Henrique Silva , João Pedro Lopes , Cátia R. Lopes , Marija Radošević , Xavier Gasull , Rodrigo A. Cunha , Attila Köfalvi , Samira G. Ferreira , Francisco Ciruela , Ester Aso","doi":"10.1016/j.neurot.2024.e00439","DOIUrl":"10.1016/j.neurot.2024.e00439","url":null,"abstract":"<div><div>A combination of Δ<sup>9</sup>-tetrahydrocannabinol (Δ<sup>9</sup>-THC) and cannabidiol (CBD) at non-psychoactive doses was previously demonstrated to reduce cognitive decline in APP/PS1 mice, an animal model of Alzheimer's disease (AD). However, the neurobiological substrates underlying these therapeutic properties of Δ<sup>9</sup>-THC and CBD are not fully understood. Considering that dysregulation of glutamatergic activity contributes to cognitive impairment in AD, the present study evaluates the hypothesis that the combination of these two natural cannabinoids might reverse the alterations in glutamate dynamics within the hippocampus of this animal model of AD. Interestingly, our findings reveal that chronic treatment with Δ<sup>9</sup>-THC and CBD, but not with any of them alone, reduces extracellular glutamate levels and the basal excitability of the hippocampus in APP/PS1 mice. These effects are not related to significant changes in the function and structure of glutamate synapses, as no relevant changes in synaptic plasticity, glutamate signaling or in the levels of key components of these synapses were observed in cannabinoid-treated mice. Our data instead indicate that these cannabinoid effects are associated with the control of glutamate uptake and/or to the regulation of the hippocampal network. Taken together, these results support the potential therapeutic properties of combining these natural cannabinoids against the excitotoxicity that occurs in AD brains.</div></div>","PeriodicalId":19159,"journal":{"name":"Neurotherapeutics","volume":"21 5","pages":"Article e00439"},"PeriodicalIF":5.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142133347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.neurot.2024.e00414
T.J. Stalvey M.P.H., M.B.A., Jeffrey A. Loeb M.D., Ph.D.
{"title":"Repurposing an Old Drug for a New Disease-modifying Therapy for Epileptic Disorders with Brain Calcifications","authors":"T.J. Stalvey M.P.H., M.B.A., Jeffrey A. Loeb M.D., Ph.D.","doi":"10.1016/j.neurot.2024.e00414","DOIUrl":"10.1016/j.neurot.2024.e00414","url":null,"abstract":"","PeriodicalId":19159,"journal":{"name":"Neurotherapeutics","volume":"21 4","pages":"Article e00414"},"PeriodicalIF":5.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1878747924001004/pdfft?md5=d66531fb1db4793ba280117fa96cbea6&pid=1-s2.0-S1878747924001004-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.neurot.2024.e00411
Jeffrey A. Loeb M.D., Ph.D., Michael T. Flavin Ph.D., Fei Song M.D., Ph.D.
{"title":"GlyB4: Novel Biologic to Stop ]Neuroinflammation and Neurodegeneration in ALS and Alzheimer’s Disease","authors":"Jeffrey A. Loeb M.D., Ph.D., Michael T. Flavin Ph.D., Fei Song M.D., Ph.D.","doi":"10.1016/j.neurot.2024.e00411","DOIUrl":"10.1016/j.neurot.2024.e00411","url":null,"abstract":"","PeriodicalId":19159,"journal":{"name":"Neurotherapeutics","volume":"21 4","pages":"Article e00411"},"PeriodicalIF":5.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1878747924000977/pdfft?md5=f1ef9794b0f63d529dacc66883f05ffe&pid=1-s2.0-S1878747924000977-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.neurot.2024.e00368
Qingsheng Li , Lingfei Yang , Kaixin Wang , Ziyi Chen , Huimin Liu , Xuan Yang , Yudi Xu , Yufei Chen , Zhe Gong , Yanjie Jia
In the context of stroke and revascularization therapy, brain ischemia-reperfusion injury is a significant challenge that leads to oxidative stress and inflammation. Central to the cell's intrinsic immunity is the cGAS-STING pathway, which is typically activated by unusual DNA structures. The involvement of oxidized mitochondrial DNA (ox-mtDNA)—an oxidative stress byproduct—in this type of neurological damage has not been fully explored. This study is among the first to examine the effect of ox-mtDNA on the innate immunity of neurons following ischemia-reperfusion injury. Using a rat model of transient middle cerebral artery occlusion and a cellular model of oxygen-glucose deprivation/reoxygenation, we have discovered that ox-mtDNA activates the cGAS-STING pathway in neurons. Importantly, pharmacologically limiting the release of ox-mtDNA into the cytoplasm reduces inflammation and improves neurological functions. Our findings suggest that targeting ox-mtDNA release may be a valuable strategy to attenuate brain ischemia-reperfusion injury following revascularization therapy for acute ischemic stroke.
在中风和血管再通疗法中,脑缺血再灌注损伤是一项重大挑战,会导致氧化应激和炎症。细胞内在免疫的核心是 cGAS-STING 通路,它通常会被不寻常的 DNA 结构激活。氧化线粒体DNA(ox-mtDNA)--一种氧化应激副产物--与这类神经损伤的关系尚未得到充分探讨。本研究是首次研究氧化线粒体 DNA 对缺血再灌注损伤后神经元先天性免疫的影响。利用大鼠短暂性大脑中动脉闭塞模型和氧-葡萄糖剥夺/再氧细胞模型,我们发现 ox-mtDNA 可激活神经元中的 cGAS-STING 通路。重要的是,通过药物限制 ox-mtDNA 释放到细胞质中可减轻炎症反应并改善神经功能。我们的研究结果表明,针对 ox-mtDNA 的释放可能是减轻急性缺血性脑卒中血管再通治疗后脑缺血再灌注损伤的一种有价值的策略。
{"title":"Oxidized mitochondrial DNA activates the cGAS-STING pathway in the neuronal intrinsic immune system after brain ischemia-reperfusion injury","authors":"Qingsheng Li , Lingfei Yang , Kaixin Wang , Ziyi Chen , Huimin Liu , Xuan Yang , Yudi Xu , Yufei Chen , Zhe Gong , Yanjie Jia","doi":"10.1016/j.neurot.2024.e00368","DOIUrl":"10.1016/j.neurot.2024.e00368","url":null,"abstract":"<div><p>In the context of stroke and revascularization therapy, brain ischemia-reperfusion injury is a significant challenge that leads to oxidative stress and inflammation. Central to the cell's intrinsic immunity is the cGAS-STING pathway, which is typically activated by unusual DNA structures. The involvement of oxidized mitochondrial DNA (ox-mtDNA)—an oxidative stress byproduct—in this type of neurological damage has not been fully explored. This study is among the first to examine the effect of ox-mtDNA on the innate immunity of neurons following ischemia-reperfusion injury. Using a rat model of transient middle cerebral artery occlusion and a cellular model of oxygen-glucose deprivation/reoxygenation, we have discovered that ox-mtDNA activates the cGAS-STING pathway in neurons. Importantly, pharmacologically limiting the release of ox-mtDNA into the cytoplasm reduces inflammation and improves neurological functions. Our findings suggest that targeting ox-mtDNA release may be a valuable strategy to attenuate brain ischemia-reperfusion injury following revascularization therapy for acute ischemic stroke.</p></div>","PeriodicalId":19159,"journal":{"name":"Neurotherapeutics","volume":"21 4","pages":"Article e00368"},"PeriodicalIF":5.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1878747924000540/pdfft?md5=f9b38205ee66fa3fcdee74114df81530&pid=1-s2.0-S1878747924000540-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140869619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}