Pub Date : 2024-07-29DOI: 10.1016/j.neuro.2024.07.012
Kanglong Cui , Ludi Li , Kai Li , Wusheng Xiao , Qi Wang
Autism spectrum disorder (ASD), also known as autism, is a common, highly hereditary and heterogeneous neurodevelopmental disorder. The global prevalence of ASD among children continues to rise significantly, which is partially attributed to environmental pollution. It has been reported that pre- or post-natal exposure to di-(2-ethylhexyl) phthalate (DEHP) or bisphenol A (BPA), two prevalent environmental endocrine disruptors, increases the risk of ASD in offspring. Yet, the joint action mode linking DEHP and BPA with ASD is incompletely understood. This study aims to unravel the joint action mode of DEHP and BPA co-exposure on the development of ASD. An adverse outcome pathway (AOP) framework was employed to integrate data from multiple public database and construct chemical-gene-phenotype-disease networks (CGPDN) for DEHP- and BPA-related ASD. Topological analysis and comprehensive literature exploration of the CGPDN were performed to build the AOP. By analysis of shared key events (KEs) or phenotypes within the AOP or the CGPDN, we uncovered two AOPs, decreased N-methyl-D-aspartate receptor (NMDAR) and estrogen antagonism that were likely linked to ASD, both with moderate confidence. Our analysis further predicted that the joint action mode of DEHP and BPA related ASD was possibly an additive or synergistic action. Thus, we propose that the co-exposure to BPA and DEHP perhaps additively or synergistically increases the risk of ASD.
{"title":"AOP-based framework for predicting the joint action mode of di-(2-ethylhexyl) phthalate and bisphenol A co-exposure on autism spectrum disorder","authors":"Kanglong Cui , Ludi Li , Kai Li , Wusheng Xiao , Qi Wang","doi":"10.1016/j.neuro.2024.07.012","DOIUrl":"10.1016/j.neuro.2024.07.012","url":null,"abstract":"<div><p>Autism spectrum disorder (ASD), also known as autism, is a common, highly hereditary and heterogeneous neurodevelopmental disorder. The global prevalence of ASD among children continues to rise significantly, which is partially attributed to environmental pollution. It has been reported that pre- or post-natal exposure to di-(2-ethylhexyl) phthalate (DEHP) or bisphenol A (BPA), two prevalent environmental endocrine disruptors, increases the risk of ASD in offspring. Yet, the joint action mode linking DEHP and BPA with ASD is incompletely understood. This study aims to unravel the joint action mode of DEHP and BPA co-exposure on the development of ASD. An adverse outcome pathway (AOP) framework was employed to integrate data from multiple public database and construct chemical-gene-phenotype-disease networks (CGPDN) for DEHP- and BPA-related ASD. Topological analysis and comprehensive literature exploration of the CGPDN were performed to build the AOP. By analysis of shared key events (KEs) or phenotypes within the AOP or the CGPDN, we uncovered two AOPs, decreased N-methyl-D-aspartate receptor (NMDAR) and estrogen antagonism that were likely linked to ASD, both with moderate confidence. Our analysis further predicted that the joint action mode of DEHP and BPA related ASD was possibly an additive or synergistic action. Thus, we propose that the co-exposure to BPA and DEHP perhaps additively or synergistically increases the risk of ASD.</p></div>","PeriodicalId":19189,"journal":{"name":"Neurotoxicology","volume":"104 ","pages":"Pages 75-84"},"PeriodicalIF":3.4,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141860379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-28DOI: 10.1016/j.neuro.2024.07.013
Mariana Bartos , Cristina E. Gallegos , Nina Mónaco , Ileana Lencinas , Sergio Dominguez , Cristina Bras , María del Carmen Esandi , Cecilia Bouzat , Fernanda Gumilar
Exposure to inorganic arsenic (iAs) detrimentally affects the structure and function of the central nervous system. In-utero and postnatal exposure to iAs has been connected to adverse effects on cognitive development. Therefore, this investigation explores neurobehavioral and neurochemical effects of 0.05 and 0.10 mg/L iAs exposure during gestation and lactation periods on 90-day-old female offspring rats. The assessment of anxiety- and depressive-like behaviors was conducted through the application of an elevated plus maze and a forced swim test. The neurochemical changes were evaluated in the prefrontal cortex (PFC) through the determination of enzyme activities and α1 GABAA subunit expression levels. Our findings revealed a notable impact of iAs exposure on anxiety and the induction of depressive-like behavior in 90-day-old female offspring. Furthermore, the antioxidant status within the PFC exhibited discernible alterations in exposed rats. Notably, the activities of acetylcholinesterase and glutamate pyruvate transaminase demonstrated an increase, while glutamate oxaloacetate transaminase activity displayed a decrease within the PFC due to the iAs treatment. Additionally, a distinct downregulation in the mRNA expression of the α1GABAA receptor was observed in this neuronal region. These findings strongly suggest that iAs exposure during early stages of rat development causes significant modifications in brain oxidative stress markers and perturbs the activity of enzymes associated with cholinergic and glutamatergic systems. In parallel, it elicits a discernible reduction in the level of GABA receptors within the PFC. These molecular alterations may play a role in the diminished anxiety levels and the depressive-like behavior outlined in the current investigation.
{"title":"Developmental exposure to arsenic reduces anxiety levels and leads to a depressive-like behavior in female offspring rats: Molecular changes in the prefrontal cortex","authors":"Mariana Bartos , Cristina E. Gallegos , Nina Mónaco , Ileana Lencinas , Sergio Dominguez , Cristina Bras , María del Carmen Esandi , Cecilia Bouzat , Fernanda Gumilar","doi":"10.1016/j.neuro.2024.07.013","DOIUrl":"10.1016/j.neuro.2024.07.013","url":null,"abstract":"<div><p>Exposure to inorganic arsenic (iAs) detrimentally affects the structure and function of the central nervous system. In-utero and postnatal exposure to iAs has been connected to adverse effects on cognitive development. Therefore, this investigation explores neurobehavioral and neurochemical effects of 0.05 and 0.10 mg/L iAs exposure during gestation and lactation periods on 90-day-old female offspring rats. The assessment of anxiety- and depressive-like behaviors was conducted through the application of an elevated plus maze and a forced swim test. The neurochemical changes were evaluated in the prefrontal cortex (PFC) through the determination of enzyme activities and α1 GABA<sub>A</sub> subunit expression levels. Our findings revealed a notable impact of iAs exposure on anxiety and the induction of depressive-like behavior in 90-day-old female offspring. Furthermore, the antioxidant status within the PFC exhibited discernible alterations in exposed rats. Notably, the activities of acetylcholinesterase and glutamate pyruvate transaminase demonstrated an increase, while glutamate oxaloacetate transaminase activity displayed a decrease within the PFC due to the iAs treatment. Additionally, a distinct downregulation in the mRNA expression of the α1GABA<sub>A</sub> receptor was observed in this neuronal region. These findings strongly suggest that iAs exposure during early stages of rat development causes significant modifications in brain oxidative stress markers and perturbs the activity of enzymes associated with cholinergic and glutamatergic systems. In parallel, it elicits a discernible reduction in the level of GABA receptors within the PFC. These molecular alterations may play a role in the diminished anxiety levels and the depressive-like behavior outlined in the current investigation.</p></div>","PeriodicalId":19189,"journal":{"name":"Neurotoxicology","volume":"104 ","pages":"Pages 85-94"},"PeriodicalIF":3.4,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141846861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-24DOI: 10.1016/j.neuro.2024.07.011
Xiaoxiao Song , Jianxing Meng , Jiale Li , Bing Shen , Jinling Li , Miaomiao Xu , Honghai Wang , Lian Gu , Yufei Wei
<div><h3>Background</h3><p>Metal exposure has long been considered a significant risk factor for ischemic stroke. However, existing data on the effects of metal exposure on brain function in ischemic stroke are limited. Therefore, this study aimed to explore the correlation between exposure to various metals and changes in resting-state functional connectivity (rs-FC) in ischemic stroke patients.</p></div><div><h3>Methods</h3><p>This study included 28 acute ischemic stroke patients with hemiplegia and 28 matched healthy controls (HCs). All participants underwent T1-weighted MRI and 3.0 T resting-state functional magnetic resonance imaging (fMRI). After MRI acquisition, the rs-FC between 137 cortical and subcortical regions was extracted and preprocessed. Plasma levels of 19 metals were measured using inductively coupled plasma mass spectrometry (ICP-MS). The Bayesian kernel machine regression (BKMR) model and the weighted quantile sum regression (WQS) model were used to assess the overall effect of metal mixture exposure. The severity of neurological deficits in each acute ischemic stroke patient was evaluated using the National Institutes of Health Stroke Scale (NIHSS). Additionally, the associations between exposure to various metals and modifications in brain functional connectivity were determined using Pearson or Spearman correlation analysis.</p></div><div><h3>Results</h3><p>Bilateral brain connectivity was significantly decreased compared to controls and was associated with neurological impairment in ischemic stroke. In patients with ischemic stroke, the plasma concentrations of Cr (<em>p</em> < 0.001), Cu (<em>p</em> = 0.004), As (<em>p</em> = 0.010), Cs (<em>p</em> = 0.046), Rb (<em>p</em> = 0.041), and Sb (<em>p</em> = 0.001) were significantly higher than those in the HCs, whereas the plasma Tl concentrations (<em>p</em> = 0.022) were significantly lower. The results of the BKMR and WQS models showed that combined exposure to metal mixtures was linked to a higher risk of ischemic stroke. Cr was positively correlated with the rs-FC between the left Rolandic_Oper and the left Supp_Motor_Area (<em>r</em> = 0.414, <em>p</em> = 0.029), while negatively correlated with the rs-FC between the right Parietal_Inf and the left supramarginal (<em>r</em> = −0.398, <em>p</em> = 0.037). Cu was negatively correlated with the rs-FC between the left paracentral lobule and the left thalamus (<em>r</em> = −0.409, <em>p</em> = 0.031). Tl was positively correlated with the rs-FC between the right Parietal_Inf and the left supramarginal cortex (<em>r</em> = 0.590, <em>p</em> = 0.001). A negative correlation was observed between Cs and rs-FC between the right Cingulate_Mid and left Occipital_Sup (<em>r</em> = −0.429, <em>p</em> = 0.024). Sb was negatively correlated with the rs-FC between the left Parietal_Inf and the right SupraMarginal (<em>r</em> = −0.384, <em>p</em> = 0.044), the right Parietal_Inf and the left SupraMarginal (<em>r</em> = −0.583, <em>p
{"title":"Association of plasma metals with resting-state functional connectivity in ischemic stroke","authors":"Xiaoxiao Song , Jianxing Meng , Jiale Li , Bing Shen , Jinling Li , Miaomiao Xu , Honghai Wang , Lian Gu , Yufei Wei","doi":"10.1016/j.neuro.2024.07.011","DOIUrl":"10.1016/j.neuro.2024.07.011","url":null,"abstract":"<div><h3>Background</h3><p>Metal exposure has long been considered a significant risk factor for ischemic stroke. However, existing data on the effects of metal exposure on brain function in ischemic stroke are limited. Therefore, this study aimed to explore the correlation between exposure to various metals and changes in resting-state functional connectivity (rs-FC) in ischemic stroke patients.</p></div><div><h3>Methods</h3><p>This study included 28 acute ischemic stroke patients with hemiplegia and 28 matched healthy controls (HCs). All participants underwent T1-weighted MRI and 3.0 T resting-state functional magnetic resonance imaging (fMRI). After MRI acquisition, the rs-FC between 137 cortical and subcortical regions was extracted and preprocessed. Plasma levels of 19 metals were measured using inductively coupled plasma mass spectrometry (ICP-MS). The Bayesian kernel machine regression (BKMR) model and the weighted quantile sum regression (WQS) model were used to assess the overall effect of metal mixture exposure. The severity of neurological deficits in each acute ischemic stroke patient was evaluated using the National Institutes of Health Stroke Scale (NIHSS). Additionally, the associations between exposure to various metals and modifications in brain functional connectivity were determined using Pearson or Spearman correlation analysis.</p></div><div><h3>Results</h3><p>Bilateral brain connectivity was significantly decreased compared to controls and was associated with neurological impairment in ischemic stroke. In patients with ischemic stroke, the plasma concentrations of Cr (<em>p</em> < 0.001), Cu (<em>p</em> = 0.004), As (<em>p</em> = 0.010), Cs (<em>p</em> = 0.046), Rb (<em>p</em> = 0.041), and Sb (<em>p</em> = 0.001) were significantly higher than those in the HCs, whereas the plasma Tl concentrations (<em>p</em> = 0.022) were significantly lower. The results of the BKMR and WQS models showed that combined exposure to metal mixtures was linked to a higher risk of ischemic stroke. Cr was positively correlated with the rs-FC between the left Rolandic_Oper and the left Supp_Motor_Area (<em>r</em> = 0.414, <em>p</em> = 0.029), while negatively correlated with the rs-FC between the right Parietal_Inf and the left supramarginal (<em>r</em> = −0.398, <em>p</em> = 0.037). Cu was negatively correlated with the rs-FC between the left paracentral lobule and the left thalamus (<em>r</em> = −0.409, <em>p</em> = 0.031). Tl was positively correlated with the rs-FC between the right Parietal_Inf and the left supramarginal cortex (<em>r</em> = 0.590, <em>p</em> = 0.001). A negative correlation was observed between Cs and rs-FC between the right Cingulate_Mid and left Occipital_Sup (<em>r</em> = −0.429, <em>p</em> = 0.024). Sb was negatively correlated with the rs-FC between the left Parietal_Inf and the right SupraMarginal (<em>r</em> = −0.384, <em>p</em> = 0.044), the right Parietal_Inf and the left SupraMarginal (<em>r</em> = −0.583, <em>p","PeriodicalId":19189,"journal":{"name":"Neurotoxicology","volume":"104 ","pages":"Pages 56-65"},"PeriodicalIF":3.4,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141766879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-20DOI: 10.1016/j.neuro.2024.07.009
Katherine A. Walker , Simone T. Rhodes , Deborah A. Liberman , Andrea C. Gore , Margaret R. Bell
Polychlorinated biphenyls are ubiquitous environmental contaminants linkedc with peripheral immune and neural dysfunction. Neuroimmune signaling is critical to brain development and later health; however, effects of PCBs on neuroimmune processes are largely undescribed. This study extends our previous work in neonatal or adolescent rats by investigating longer-term effects of perinatal PCB exposure on later neuroimmune responses to an inflammatory challenge in adulthood. Male and female Sprague-Dawley rats were exposed to a low-dose, environmentally relevant, mixture of PCBs (Aroclors 1242, 1248, and 1254, 1:1:1, 20 μg / kg dam BW per gestational day) or oil control during gestation and via lactation. Upon reaching adulthood, rats were given a mild inflammatory challenge with lipopolysaccharide (LPS, 50 μg / kg BW, ip) or saline control and then euthanized 3 hours later for gene expression analysis or 24 hours later for immunohistochemical labeling of Iba1+ microglia. PCB exposure did not alter gene expression or microglial morphology independently, but instead interacted with the LPS challenge in brain region- and sex–specific ways. In the female hypothalamus, PCB exposure blunted LPS responses of neuroimmune and neuromodulatory genes without changing microglial morphology. In the female prefrontal cortex, PCBs shifted Iba1+ cells from reactive to hyperramified morphology in response to LPS. Conversely, in the male hypothalamus, PCBs shifted cell phenotypes from hyperramified to reactive morphologies in response to LPS. The results highlight the potential for long-lasting effects of environmental contaminants that are differentially revealed over a lifetime, sometimes only after a secondary challenge. These neuroimmune endpoints are possible mechanisms for PCB effects on a range of neural dysfunction in adulthood, including mental health and neurodegenerative disorders. The findings suggest possible interactions with other environmental challenges that also influence neuroimmune systems.
{"title":"Microglial responses to inflammatory challenge in adult rats altered by developmental exposure to polychlorinated biphenyls in a sex-specific manner","authors":"Katherine A. Walker , Simone T. Rhodes , Deborah A. Liberman , Andrea C. Gore , Margaret R. Bell","doi":"10.1016/j.neuro.2024.07.009","DOIUrl":"10.1016/j.neuro.2024.07.009","url":null,"abstract":"<div><p>Polychlorinated biphenyls are ubiquitous environmental contaminants linkedc with peripheral immune and neural dysfunction. Neuroimmune signaling is critical to brain development and later health; however, effects of PCBs on neuroimmune processes are largely undescribed. This study extends our previous work in neonatal or adolescent rats by investigating longer-term effects of perinatal PCB exposure on later neuroimmune responses to an inflammatory challenge in adulthood. Male and female Sprague-Dawley rats were exposed to a low-dose, environmentally relevant, mixture of PCBs (Aroclors 1242, 1248, and 1254, 1:1:1, 20 μg / kg dam BW per gestational day) or oil control during gestation and via lactation. Upon reaching adulthood, rats were given a mild inflammatory challenge with lipopolysaccharide (LPS, 50 μg / kg BW, <em>ip</em>) or saline control and then euthanized 3 hours later for gene expression analysis or 24 hours later for immunohistochemical labeling of Iba1+ microglia. PCB exposure did not alter gene expression or microglial morphology independently, but instead interacted with the LPS challenge in brain region- and sex–specific ways. In the female hypothalamus, PCB exposure blunted LPS responses of neuroimmune and neuromodulatory genes without changing microglial morphology. In the female prefrontal cortex, PCBs shifted Iba1+ cells from reactive to hyperramified morphology in response to LPS. Conversely, in the male hypothalamus, PCBs shifted cell phenotypes from hyperramified to reactive morphologies in response to LPS. The results highlight the potential for long-lasting effects of environmental contaminants that are differentially revealed over a lifetime, sometimes only after a secondary challenge. These neuroimmune endpoints are possible mechanisms for PCB effects on a range of neural dysfunction in adulthood, including mental health and neurodegenerative disorders. The findings suggest possible interactions with other environmental challenges that also influence neuroimmune systems.</p></div>","PeriodicalId":19189,"journal":{"name":"Neurotoxicology","volume":"104 ","pages":"Pages 95-115"},"PeriodicalIF":3.4,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-18DOI: 10.1016/j.neuro.2024.07.010
Fen Li , Lin Zhang , Xingxu Zhang , Qimeng Fang , Yingshun Xu , Hui Wang
Lead (Pb) is harmful to almost all organs, particularly the developmental neural system, and previous studies revealed oxidative stress played an important role in Pb neurotoxicity. Rutin, a type of flavonoid glycoside found in various plants and fruits, is widely used as a dietary supplement due to its antioxidant and anti-inflammatory properties, but whether rutin could protect against Pb neurotoxicity is unclear. In this study, we found rutin treatment significantly alleviated Pb-induced cell death, oxidative stress, and inflammation, resulting in cell survival. Moreover, rutin treatment promoted nuclear factor erythroid 2-related factor 2 (Nrf2) translocation from cytoplasm to nucleus and subsequently activated antioxidant and detoxifying enzymes expression including HO-1. Knocking down Nrf2 by siRNA transfection abolished this protection of rutin against Pb. Overall, rutin could alleviate Pb-induced oxidative stress, inflammation, and cell death by activating the Nrf2/antioxidant response elements (ARE) system.
{"title":"Rutin alleviates Pb-induced oxidative stress, inflammation and cell death via activating Nrf2/ARE system in SH-SY5Y cells","authors":"Fen Li , Lin Zhang , Xingxu Zhang , Qimeng Fang , Yingshun Xu , Hui Wang","doi":"10.1016/j.neuro.2024.07.010","DOIUrl":"10.1016/j.neuro.2024.07.010","url":null,"abstract":"<div><p>Lead (Pb) is harmful to almost all organs, particularly the developmental neural system, and previous studies revealed oxidative stress played an important role in Pb neurotoxicity. Rutin, a type of flavonoid glycoside found in various plants and fruits, is widely used as a dietary supplement due to its antioxidant and anti-inflammatory properties, but whether rutin could protect against Pb neurotoxicity is unclear. In this study, we found rutin treatment significantly alleviated Pb-induced cell death, oxidative stress, and inflammation, resulting in cell survival. Moreover, rutin treatment promoted nuclear factor erythroid 2-related factor 2 (Nrf2) translocation from cytoplasm to nucleus and subsequently activated antioxidant and detoxifying enzymes expression including HO-1. Knocking down Nrf2 by siRNA transfection abolished this protection of rutin against Pb. Overall, rutin could alleviate Pb-induced oxidative stress, inflammation, and cell death by activating the Nrf2/antioxidant response elements (ARE) system.</p></div>","PeriodicalId":19189,"journal":{"name":"Neurotoxicology","volume":"104 ","pages":"Pages 1-10"},"PeriodicalIF":3.4,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141734727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-14DOI: 10.1016/j.neuro.2024.07.003
Angela Pignatelli , Mascia Benedusi , Mario Barbieri , Alessandra Pecorelli , Giuseppe Valacchi
Ozone (O3) forms in the Earth’s atmosphere, both naturally and by reactions of man-made air pollutants. Deleterious effects of O3 have been found in the respiratory system. Here, we examine whether O3 alters olfactory behavior and cellular properties in the olfactory system. For this purpose, mice were exposed to O3 at a concentration found in highly polluted city air [0.8 ppm], and the behavior elicited by social and non-social odors in habituation/dishabituation tests was assessed. In addition, the electrical responses of dopaminergic olfactory bulb (OB) neurons were also evaluated. O3 differentially compromises olfactory perception to odors: it reduces responses to social and non-social odors in Swiss Webster mice, while this effect was observed in C57BL/6 J mice only for some non-social odors. Additionally, O3 reduced the rate of spontaneous spike firing in periglomerular dopaminergic cells (PG-DA) of the OB. Because this effect could reflect changes in excitability and/or synaptic inputs, the ability of O3 to alter PG-DA spontaneous activity was also tested together with cell membrane resistance, membrane potential, rheobase and chronaxie. Taken together, our data suggest the ability of O3 to affect olfactory perception.
{"title":"Tropospheric ozone effect on olfactory perception and olfactory bulb dopaminergic interneuron excitability","authors":"Angela Pignatelli , Mascia Benedusi , Mario Barbieri , Alessandra Pecorelli , Giuseppe Valacchi","doi":"10.1016/j.neuro.2024.07.003","DOIUrl":"10.1016/j.neuro.2024.07.003","url":null,"abstract":"<div><p>Ozone (O<sub>3</sub>) forms in the Earth’s atmosphere, both naturally and by reactions of man-made air pollutants. Deleterious effects of O<sub>3</sub> have been found in the respiratory system. Here, we examine whether O<sub>3</sub> alters olfactory behavior and cellular properties in the olfactory system. For this purpose, mice were exposed to O<sub>3</sub> at a concentration found in highly polluted city air [0.8 ppm], and the behavior elicited by social and non-social odors in habituation/dishabituation tests was assessed. In addition, the electrical responses of dopaminergic olfactory bulb (OB) neurons were also evaluated. O<sub>3</sub> differentially compromises olfactory perception to odors: it reduces responses to social and non-social odors in Swiss Webster mice, while this effect was observed in C57BL/6 J mice only for some non-social odors. Additionally, O<sub>3</sub> reduced the rate of spontaneous spike firing in periglomerular dopaminergic cells (PG-DA) of the OB. Because this effect could reflect changes in excitability and/or synaptic inputs, the ability of O<sub>3</sub> to alter PG-DA spontaneous activity was also tested together with cell membrane resistance, membrane potential, rheobase and chronaxie. Taken together, our data suggest the ability of O<sub>3</sub> to affect olfactory perception.</p></div>","PeriodicalId":19189,"journal":{"name":"Neurotoxicology","volume":"104 ","pages":"Pages 36-44"},"PeriodicalIF":3.4,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0161813X24000755/pdfft?md5=842c416e847f2c4af5704364dee3832e&pid=1-s2.0-S0161813X24000755-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141616898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-11DOI: 10.1016/j.neuro.2024.07.007
Gianna Nossa , Humberto Monsivais , Chang Geun Lee , Grace Francis , Ellen M. Wells , Jae Hong Park , Ulrike Dydak
Inhalation of welding fumes can cause metal accumulation in the brain, leading to Parkinsonian-like symptoms. Metal accumulation and altered neurochemical profiles have been observed using magnetic resonance imaging (MRI) in highly exposed welders, being associated with decreased motor function and cognition. While MRI is impractical to use as a health risk assessment tool in occupational settings, toenail metal levels are easier to assess and have been demonstrated to reflect an exposure window of 7–12 months in the past. Yet, it is unclear whether toenail metal levels are associated with brain metal levels or changes in metabolism, which are the root of potential health concerns. This study investigates whether toenail manganese (Mn) and iron (Fe) levels, assessed at several time points, correlate with brain Mn and Fe levels, measured by MRI, as well as brain GABA, glutamate (Glu), and glutathione (GSH) levels, measured by Magnetic Resonance Spectroscopy (MRS), in seventeen Mn-exposed welders. Quantitative T1 and R2* MRI maps of the whole brain, along with GABA, Glu, and GSH MRS measurements from the thalamus and cerebellum were acquired at baseline (T0). Toenail clippings were collected at T0 and every three months after the MRI for a year to account for different exposure periods being reflected by toenail clippings and MRI. Spearman correlations of toenail metal levels were run against brain metal and metabolite levels, but no significant associations were found for Mn at any timepoint. Cerebellar GSH positively correlated with toenail Fe clipped twelve months after the MRI (p = 0.05), suggesting an association with Fe exposure at the time of the MRI. Neither thalamic GABA nor Glu correlated with toenail Fe levels. In conclusion, this study cannot support toenail Mn as a proxy for brain Mn levels or metabolic changes, while toenail Fe appears linked to brain metabolic alterations, underscoring the importance of considering other metals, including Fe, in studying Mn neurotoxicity.
{"title":"Do toenail manganese and iron levels reflect brain metal levels or brain metabolism in welders?","authors":"Gianna Nossa , Humberto Monsivais , Chang Geun Lee , Grace Francis , Ellen M. Wells , Jae Hong Park , Ulrike Dydak","doi":"10.1016/j.neuro.2024.07.007","DOIUrl":"10.1016/j.neuro.2024.07.007","url":null,"abstract":"<div><p>Inhalation of welding fumes can cause metal accumulation in the brain, leading to Parkinsonian-like symptoms. Metal accumulation and altered neurochemical profiles have been observed using magnetic resonance imaging (MRI) in highly exposed welders, being associated with decreased motor function and cognition. While MRI is impractical to use as a health risk assessment tool in occupational settings, toenail metal levels are easier to assess and have been demonstrated to reflect an exposure window of 7–12 months in the past. Yet, it is unclear whether toenail metal levels are associated with brain metal levels or changes in metabolism, which are the root of potential health concerns. This study investigates whether toenail manganese (Mn) and iron (Fe) levels, assessed at several time points, correlate with brain Mn and Fe levels, measured by MRI, as well as brain GABA, glutamate (Glu), and glutathione (GSH) levels, measured by Magnetic Resonance Spectroscopy (MRS), in seventeen Mn-exposed welders. Quantitative T1 and R2* MRI maps of the whole brain, along with GABA, Glu, and GSH MRS measurements from the thalamus and cerebellum were acquired at baseline (T0). Toenail clippings were collected at T0 and every three months after the MRI for a year to account for different exposure periods being reflected by toenail clippings and MRI. Spearman correlations of toenail metal levels were run against brain metal and metabolite levels, but no significant associations were found for Mn at any timepoint. Cerebellar GSH positively correlated with toenail Fe clipped twelve months after the MRI (p = 0.05), suggesting an association with Fe exposure at the time of the MRI. Neither thalamic GABA nor Glu correlated with toenail Fe levels. In conclusion, this study cannot support toenail Mn as a proxy for brain Mn levels or metabolic changes, while toenail Fe appears linked to brain metabolic alterations, underscoring the importance of considering other metals, including Fe, in studying Mn neurotoxicity.</p></div>","PeriodicalId":19189,"journal":{"name":"Neurotoxicology","volume":"104 ","pages":"Pages 45-55"},"PeriodicalIF":3.4,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141603976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-11DOI: 10.1016/j.neuro.2024.07.004
D.A. Cory-Slechta , E. Marvin , K. Welle , C. Goeke , D. Chalupa , G. Oberdörster , M. Sobolewski
<div><p>Air pollution (AP) exposures have been associated with numerous neurodevelopmental and psychiatric disorders, including autism spectrum disorder, attention deficit hyperactivity disorder and schizophrenia, all male-biased disorders with onsets from early life to late adolescence/early adulthood. While prior experimental studies have focused on effects of AP exposures during early brain development, brain development actually extends well into early adulthood. The current study in mice sought to extend the understanding of developmental brain vulnerability during adolescence, a later but significant period of brain development and maturation to the ultrafine particulate (UFPs) component of AP, considered its most reactive component. Additionally, it examined adolescent response to UFPs when preceded by earlier developmental exposures, to ascertain the trajectory of effects and potential enhancement or mitigation of adverse consequences. Outcomes focused on shared features associated with multiple neurodevelopmental disorders. For this purpose, C57Bl/6 J mice of both sexes were exposed to ambient concentrated UFPs or filtered air from PND (postnatal day) 4–7 and PND10–13, and again at PND39–42 and 45–49, resulting in 3 exposure postnatal/adolescent treatment groups per sex: Air/Air, Air/UFP, and UFP/UFP. Features common to neurodevelopmental disorders were examined at PND50. Mass exposure concentration from postnatal exposure averaged 44.34 μg/m<sup>3</sup> and the adolescent exposure averaged 49.18 μg/m<sup>3</sup>. Male brain showed particular vulnerability to UFP exposures in adolescence, with alterations in frontal cortical and striatal glutamatergic and tryptophan/serotonergic neurotransmitters and concurrent reductions in levels of astrocytes in corpus callosum and in serum cytokine levels, with combined exposures resulting in significant reductions in corpus callosum myelination and serum corticosterone. Reductions in serum corticosterone in males correlated with reductions in neurotransmitter levels, and reductions in striatal glutamatergic function specifically correlated with reductions in corpus callosum astrocytes. UFP-induced changes in neurotransmitter levels in males were mitigated by prior postnatal exposure, suggesting potential adaptation, whereas reductions in corticosterone and in corpus callosum neuropathological effects were further strengthened by combined postnatal and adolescent exposures. UFP-induced changes in females occurred primarily in striatal dopamine systems and as reductions in serum cytokines only in response to combined postnatal and adolescent exposures. Findings in males underscore the importance of more integrated physiological assessments of mechanisms of neurotoxicity. Further, these findings provide biological plausibility for an accumulating epidemiologic literature linking air pollution to neurodevelopmental and psychiatric disorders. As such, they support a need for consideration of the regulati
{"title":"Male-biased vulnerability of mouse brain tryptophan/kynurenine and glutamate systems to adolescent exposures to concentrated ambient ultrafine particle air pollution","authors":"D.A. Cory-Slechta , E. Marvin , K. Welle , C. Goeke , D. Chalupa , G. Oberdörster , M. Sobolewski","doi":"10.1016/j.neuro.2024.07.004","DOIUrl":"10.1016/j.neuro.2024.07.004","url":null,"abstract":"<div><p>Air pollution (AP) exposures have been associated with numerous neurodevelopmental and psychiatric disorders, including autism spectrum disorder, attention deficit hyperactivity disorder and schizophrenia, all male-biased disorders with onsets from early life to late adolescence/early adulthood. While prior experimental studies have focused on effects of AP exposures during early brain development, brain development actually extends well into early adulthood. The current study in mice sought to extend the understanding of developmental brain vulnerability during adolescence, a later but significant period of brain development and maturation to the ultrafine particulate (UFPs) component of AP, considered its most reactive component. Additionally, it examined adolescent response to UFPs when preceded by earlier developmental exposures, to ascertain the trajectory of effects and potential enhancement or mitigation of adverse consequences. Outcomes focused on shared features associated with multiple neurodevelopmental disorders. For this purpose, C57Bl/6 J mice of both sexes were exposed to ambient concentrated UFPs or filtered air from PND (postnatal day) 4–7 and PND10–13, and again at PND39–42 and 45–49, resulting in 3 exposure postnatal/adolescent treatment groups per sex: Air/Air, Air/UFP, and UFP/UFP. Features common to neurodevelopmental disorders were examined at PND50. Mass exposure concentration from postnatal exposure averaged 44.34 μg/m<sup>3</sup> and the adolescent exposure averaged 49.18 μg/m<sup>3</sup>. Male brain showed particular vulnerability to UFP exposures in adolescence, with alterations in frontal cortical and striatal glutamatergic and tryptophan/serotonergic neurotransmitters and concurrent reductions in levels of astrocytes in corpus callosum and in serum cytokine levels, with combined exposures resulting in significant reductions in corpus callosum myelination and serum corticosterone. Reductions in serum corticosterone in males correlated with reductions in neurotransmitter levels, and reductions in striatal glutamatergic function specifically correlated with reductions in corpus callosum astrocytes. UFP-induced changes in neurotransmitter levels in males were mitigated by prior postnatal exposure, suggesting potential adaptation, whereas reductions in corticosterone and in corpus callosum neuropathological effects were further strengthened by combined postnatal and adolescent exposures. UFP-induced changes in females occurred primarily in striatal dopamine systems and as reductions in serum cytokines only in response to combined postnatal and adolescent exposures. Findings in males underscore the importance of more integrated physiological assessments of mechanisms of neurotoxicity. Further, these findings provide biological plausibility for an accumulating epidemiologic literature linking air pollution to neurodevelopmental and psychiatric disorders. As such, they support a need for consideration of the regulati","PeriodicalId":19189,"journal":{"name":"Neurotoxicology","volume":"104 ","pages":"Pages 20-35"},"PeriodicalIF":3.4,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141603977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-07DOI: 10.1016/j.neuro.2024.06.012
The Advanced Oxidative Processes have demonstrated potential for application in the degradation of organic pollutants, such as Paraquat (PQ) from water and wastewater, due to their low price, high efficiency, and non-toxic properties. In this study, we investigated whether the photodegradation of PQ with TiO2 nanotubes reduced its toxicity in Drosophila melanogaster. However, dietary ingestion of degradation products PQ for larvae resulted in a low axial ratio (pupal volume). In the adults, products of photodegradation of PQ exposure markedly diminished climbing ability in a time-dependent manner after 10 days of feeding. In addition, exposure of D. melanogaster to photodegradation of PQ reduced acetylcholinesterase and citrate synthase activities but improved oxidative stress, as evidenced by oxide nitric, protein carbonyl, and lactate production. These results suggest that the photodegradation of PQ with TiO2 nanotubes produced PQ fragments with higher toxicity than PQ, while the precise mechanism of its action needs further investigation.
{"title":"Neurotoxic and behavioral deficit in Drosophila melanogaster exposed to photocatalytic products of Paraquat","authors":"","doi":"10.1016/j.neuro.2024.06.012","DOIUrl":"10.1016/j.neuro.2024.06.012","url":null,"abstract":"<div><p>The Advanced Oxidative Processes have demonstrated potential for application in the degradation of organic pollutants, such as Paraquat (PQ) from water and wastewater, due to their low price, high efficiency, and non-toxic properties. In this study, we investigated whether the photodegradation of PQ with TiO<sub>2</sub> nanotubes reduced its toxicity in <em>Drosophila melanogaster</em>. However, dietary ingestion of degradation products PQ for larvae resulted in a low axial ratio (pupal volume). In the adults, products of photodegradation of PQ exposure markedly diminished climbing ability in a time-dependent manner after 10 days of feeding. In addition, exposure of <em>D. melanogaster</em> to photodegradation of PQ reduced acetylcholinesterase and citrate synthase activities but improved oxidative stress, as evidenced by oxide nitric, protein carbonyl, and lactate production. These results suggest that the photodegradation of PQ with TiO<sub>2</sub> nanotubes produced PQ fragments with higher toxicity than PQ, while the precise mechanism of its action needs further investigation.</p></div>","PeriodicalId":19189,"journal":{"name":"Neurotoxicology","volume":"104 ","pages":"Pages 11-19"},"PeriodicalIF":3.4,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141563924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.neuro.2024.06.017
Parkinson's disease (PD) is the most common neurodegenerative movement disorder worldwide. Current treatments for PD largely center around dopamine replacement therapies and fail to prevent the progression of pathology, underscoring the need for neuroprotective interventions. Approaches that target neuroinflammation, which occurs prior to dopaminergic neuron (DAn) loss in the substantia nigra (SN), represent a promising therapeutic strategy. The glucocorticoid receptor (GR) has been implicated in the neuropathology of PD and modulates numerous neuroinflammatory signaling pathways in the brain. Therefore, we investigated the neuroprotective effects of the novel GR modulator, PT150, in the rotenone mouse model of PD, postulating that inhibition of glial inflammation would protect DAn and reduce accumulation of neurotoxic misfolded ⍺-synuclein protein. C57Bl/6 mice were exposed to 2.5 mg/kg/day rotenone by intraperitoneal injection for 14 days. Upon completion of rotenone dosing, mice were orally treated at day 15 with 30 mg/kg/day or 100 mg/kg/day PT150 in the 14-day post-lesioning incubation period, during which the majority of DAn loss and α-synuclein (α-syn) accumulation occurs. Our results indicate that treatment with PT150 reduced both loss of DAn and microgliosis in the nigrostriatal pathway. Although morphologic features of astrogliosis were not attenuated, PT150 treatment promoted potentially neuroprotective activity in these cells, including increased phagocytosis of hyperphosphorylated α-syn. Ultimately, PT150 treatment reduced the loss of DAn cell bodies in the SN, but not the striatum, and prohibited intra-neuronal accumulation of α-syn. Together, these data indicate that PT150 effectively reduced SN pathology in the rotenone mouse model of PD.
帕金森病(PD)是全球最常见的神经退行性运动障碍疾病。目前治疗帕金森病的方法主要以多巴胺替代疗法为主,但却无法阻止病变的发展,这凸显了神经保护干预措施的必要性。黑质(SN)多巴胺能神经元(DAn)缺失之前会出现神经炎症,针对神经炎症的方法是一种很有前景的治疗策略。糖皮质激素受体(GR)与帕金森病的神经病理学有关,并调节大脑中的多种神经炎症信号通路。因此,我们研究了新型 GR 调节剂 PT150 在鱼藤酮 PD 小鼠模型中的神经保护作用,假设抑制神经胶质炎症将保护 DAn 并减少神经毒性错误折叠的 ⍺-突触核蛋白的积累。C57Bl/6小鼠腹腔注射2.5mg/kg/天的鱼藤酮,连续14天。给小鼠注射完鱼藤酮后,在第15天口服30毫克/千克/天或100毫克/千克/天的PT150进行治疗,这是小鼠脑损伤后14天的潜伏期,DAn的大部分损失和α-突触核蛋白(α-syn)的积累都发生在这一时期。我们的研究结果表明,用 PT150 治疗可减少黑质通路中 DAn 的丢失和小胶质细胞的增生。虽然星形胶质细胞病变的形态特征没有减轻,但 PT150 治疗促进了这些细胞潜在的神经保护活性,包括增加了对高磷酸化 α-syn 的吞噬作用。最终,PT150 治疗减少了神经元上皮细胞体的丢失,但没有减少纹状体上皮细胞体的丢失,并禁止了 α-syn 在神经元内的积聚。这些数据共同表明,PT150 能有效减轻鱼藤酮小鼠帕金森病模型的神经元病理变化。
{"title":"Neuroprotective efficacy of the glucocorticoid receptor modulator PT150 in the rotenone mouse model of Parkinson’s disease","authors":"","doi":"10.1016/j.neuro.2024.06.017","DOIUrl":"10.1016/j.neuro.2024.06.017","url":null,"abstract":"<div><p>Parkinson's disease (PD) is the most common neurodegenerative movement disorder worldwide. Current treatments for PD largely center around dopamine replacement therapies and fail to prevent the progression of pathology, underscoring the need for neuroprotective interventions. Approaches that target neuroinflammation, which occurs prior to dopaminergic neuron (DAn) loss in the substantia nigra (SN), represent a promising therapeutic strategy. The glucocorticoid receptor (GR) has been implicated in the neuropathology of PD and modulates numerous neuroinflammatory signaling pathways in the brain. Therefore, we investigated the neuroprotective effects of the novel GR modulator, PT150, in the rotenone mouse model of PD, postulating that inhibition of glial inflammation would protect DAn and reduce accumulation of neurotoxic misfolded ⍺-synuclein protein. C57Bl/6 mice were exposed to 2.5 mg/kg/day rotenone by intraperitoneal injection for 14 days. Upon completion of rotenone dosing, mice were orally treated at day 15 with 30 mg/kg/day or 100 mg/kg/day PT150 in the 14-day post-lesioning incubation period, during which the majority of DAn loss and α-synuclein (α-syn) accumulation occurs. Our results indicate that treatment with PT150 reduced both loss of DAn and microgliosis in the nigrostriatal pathway. Although morphologic features of astrogliosis were not attenuated, PT150 treatment promoted potentially neuroprotective activity in these cells, including increased phagocytosis of hyperphosphorylated α-syn. Ultimately, PT150 treatment reduced the loss of DAn cell bodies in the SN, but not the striatum, and prohibited intra-neuronal accumulation of α-syn. Together, these data indicate that PT150 effectively reduced SN pathology in the rotenone mouse model of PD.</p></div>","PeriodicalId":19189,"journal":{"name":"Neurotoxicology","volume":"103 ","pages":"Pages 320-334"},"PeriodicalIF":3.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}