Pub Date : 2024-09-05DOI: 10.1016/j.neuro.2024.09.001
Stacy Schkoda , Brian Horman , Shannah Witchey , Genevieve St. Armour , Mason Nelson , Emily Gaeta , Madeline Scott , Heather B. Patisaul
Developmental exposure to chemical flame retardants (FRs) has been linked to a variety of neurodevelopmental disorders and abnormal socioemotional behaviors in human and laboratory animal studies. We have previously shown in Wistar rats that gestational and lactational exposure to the FR mixture Firemaster 550 (FM 550) or its brominated or organophosphate ester (OPFR) components (at 2000 µg, 1000 µg, and 1000 µg oral to the dam respectively (absolute and not by bodyweight)) results in increased anxiety-like behaviors in females and decreased sociality in both sexes. Using their siblings, this study characterized sex and chemical specific targets of disruption in brain regions underlying each behavioral phenotype. Offspring were exposed across gestation and lactation then prepared for either immunohistochemistry or autoradiography at postnatal day 90 to quantify expression of serotonin, estrogen receptor α (ERα), and oxytocin receptor (OTR) in multiple brain regions. No effect of exposure was found in males for any biological target. In females, serotonin innervation was increased in the medial amygdala of FM 550 exposed animals while ERα expression in the bed nucleus of the stria terminalis (BNST) was reduced by FM 550 and OPFR. Evidence of disrupted OTR was observed in males, particularly the BNST but considered an exploratory finding given the small sample size. These results begin to shed light on the mechanisms by which developmental FR exposure alters socioemotional behaviors of relevance to neurodevelopmental disorders.
{"title":"Sex-specific effects on elements of the social brain neural network in Wistar rats from perinatal exposure to FireMaster 550 or its components","authors":"Stacy Schkoda , Brian Horman , Shannah Witchey , Genevieve St. Armour , Mason Nelson , Emily Gaeta , Madeline Scott , Heather B. Patisaul","doi":"10.1016/j.neuro.2024.09.001","DOIUrl":"10.1016/j.neuro.2024.09.001","url":null,"abstract":"<div><p>Developmental exposure to chemical flame retardants (FRs) has been linked to a variety of neurodevelopmental disorders and abnormal socioemotional behaviors in human and laboratory animal studies. We have previously shown in Wistar rats that gestational and lactational exposure to the FR mixture Firemaster 550 (FM 550) or its brominated or organophosphate ester (OPFR) components (at 2000 µg, 1000 µg, and 1000 µg oral to the dam respectively (absolute and not by bodyweight)) results in increased anxiety-like behaviors in females and decreased sociality in both sexes. Using their siblings, this study characterized sex and chemical specific targets of disruption in brain regions underlying each behavioral phenotype. Offspring were exposed across gestation and lactation then prepared for either immunohistochemistry or autoradiography at postnatal day 90 to quantify expression of serotonin, estrogen receptor α (ERα), and oxytocin receptor (OTR) in multiple brain regions. No effect of exposure was found in males for any biological target. In females, serotonin innervation was increased in the medial amygdala of FM 550 exposed animals while ERα expression in the bed nucleus of the stria terminalis (BNST) was reduced by FM 550 and OPFR. Evidence of disrupted OTR was observed in males, particularly the BNST but considered an exploratory finding given the small sample size. These results begin to shed light on the mechanisms by which developmental FR exposure alters socioemotional behaviors of relevance to neurodevelopmental disorders.</p></div>","PeriodicalId":19189,"journal":{"name":"Neurotoxicology","volume":"105 ","pages":"Pages 111-120"},"PeriodicalIF":3.4,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142146062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-30DOI: 10.1016/j.neuro.2024.08.007
Ghada Abd El-Reda , Usama T. Mahmoud , Fatma Abo Zakaib Ali , Fatma M. Abdel-Maksoud , Manal A.M. Mahmoud , F.M. El-Hossary
Cold plasma-activated water (PAW) is a novel technology that was recently used in biomedical research; Despite its potential, PAW's safety remains inadequately assessed. The study explores the impact of PAW on behavioral responses and brain tissue histopathology in mice. Ten-week-old female albino mice were divided into three groups each containing 10 mice (5 replicates, 2 mice/cage) and received either distilled water (DW), or distilled water exposed to cold atmospheric plasma (CAP) for 3 min (PAW-3), or 15 min (PAW-15) by oral gavage in a dose of 200 μL/mice (3 times/week) for four weeks. PAW exhibited altered physicochemical properties compared to DW. Mice exposed to PAW demonstrated reduced burrowing activity, marble burying ability, and novel object recognition compared to controls, indicating potential neurobehavioral alterations. PAW-treated groups displayed notable histological lesions in brain tissues, including nerve cell necrosis, vascular congestion, and Purkinje cell degeneration, confirming neurotoxic effects. Positive reactions for NF-κB and iNOS in brain tissues of PAW-treated mice corroborated the histopathological findings, suggesting neuroinflammation and oxidative stress. The study highlights the need for further investigation into PAW's safety profile and optimal treatment protocols to mitigate potential neurobehavioral toxicity in biomedical research.
{"title":"Neurobehavioral toxicity of Cold plasma activated water following oral gavage in mice","authors":"Ghada Abd El-Reda , Usama T. Mahmoud , Fatma Abo Zakaib Ali , Fatma M. Abdel-Maksoud , Manal A.M. Mahmoud , F.M. El-Hossary","doi":"10.1016/j.neuro.2024.08.007","DOIUrl":"10.1016/j.neuro.2024.08.007","url":null,"abstract":"<div><p>Cold plasma-activated water (PAW) is a novel technology that was recently used in biomedical research; Despite its potential, PAW's safety remains inadequately assessed. The study explores the impact of PAW on behavioral responses and brain tissue histopathology in mice. Ten-week-old female albino mice were divided into three groups each containing 10 mice (5 replicates, 2 mice/cage) and received either distilled water (DW), or distilled water exposed to cold atmospheric plasma (CAP) for 3 min (PAW-3), or 15 min (PAW-15) by oral gavage in a dose of 200 μL/mice (3 times/week) for four weeks. PAW exhibited altered physicochemical properties compared to DW. Mice exposed to PAW demonstrated reduced burrowing activity, marble burying ability, and novel object recognition compared to controls, indicating potential neurobehavioral alterations. PAW-treated groups displayed notable histological lesions in brain tissues, including nerve cell necrosis, vascular congestion, and Purkinje cell degeneration, confirming neurotoxic effects. Positive reactions for NF-κB and iNOS in brain tissues of PAW-treated mice corroborated the histopathological findings, suggesting neuroinflammation and oxidative stress. The study highlights the need for further investigation into PAW's safety profile and optimal treatment protocols to mitigate potential neurobehavioral toxicity in biomedical research.</p></div>","PeriodicalId":19189,"journal":{"name":"Neurotoxicology","volume":"105 ","pages":"Pages 45-57"},"PeriodicalIF":3.4,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142109994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-30DOI: 10.1016/j.neuro.2024.08.005
Ezgi Kargı-Gemici , Aslıhan Şengelen , Yunus Aksüt , Onat Akyol , Selma Şengiz-Erhan , Mehmet Bay , Evren Önay-Uçar , Ayşin Selcan , Serdar Demirgan
General anesthetics exposure, particularly prolonged or repeated exposure, is a crucial cause of neurological injuries. Notably, isoflurane (ISO), used in pediatric anesthesia practice, is toxic to the developing brain. The relatively weak antioxidant system at early ages needs antioxidant support to protect the brain against anesthesia. Cerium oxide nanoparticles (CeO2-NPs, nanoceria) are nano-antioxidants and stand out due to their unique surface chemistry, high stability, and biocompatibility. Although CeO2-NPs have been shown to exhibit neuroprotective and cognitive function-facilitating effects, there are no reports on their protective effects against anesthesia-induced neurotoxicity and cognitive impairments. Herein, Wistar albino rat pups were exposed to ISO (1.5 %, 3-h) at postnatal day (P)7+P9+P11, and the protective properties of CeO2-NP pretreatment (0.5 mg/kg, intraperitoneal route) were investigated for the first time. The control group at P7+9+11 received 50 % O2 (3-h) instead of ISO. Exposure to nanoceria one-hour before ISO protected hippocampal neurons of the developing rat brain against apoptosis [determined by hematoxylin-eosin (HE) staining, immunohistochemistry (IHC) analysis with caspase-3, and immunoblotting with Bax/Bcl2, cleaved caspase-3 and PARP1] oxidative stress, and inflammation [determined by immunoblotting with 4-hydroxynonenal (4HNE), nuclear factor kappa-B (NF-κB), and tumor necrosis factor-alpha (TNF-α)]. CeO2-NP pretreatment also reduced ISO-induced learning (at P28–32) and memory (at P33) deficits evaluated by Morris Water Maze. However, memory deficits and thigmotactic behaviors were detected in the agent-control group; elimination of these harmful effects will be possible with dose studies, thus providing evidence supporting safer use. Overall, our findings support pretreatment with nanoceria application as a simple strategy that might be used for pediatric anesthesia practice to protect infants and children from ISO-induced cell death and learning and memory deficits.
接触全身麻醉剂,尤其是长期或反复接触,是造成神经系统损伤的重要原因。值得注意的是,儿科麻醉实践中使用的异氟醚(ISO)对发育中的大脑具有毒性。幼年时期的抗氧化系统相对较弱,需要抗氧化剂的支持来保护大脑免受麻醉的伤害。纳米氧化铈颗粒(CeO2-NPs,纳米铈)是一种纳米抗氧化剂,因其独特的表面化学性质、高稳定性和生物相容性而脱颖而出。尽管 CeO2-NPs 已被证明具有神经保护和认知功能促进作用,但目前还没有关于其对麻醉诱导的神经毒性和认知障碍的保护作用的报道。本文首次研究了 Wistar 白化大鼠幼崽在出生后第 7+P9+P11 天暴露于 ISO(1.5%,3 小时)的情况,以及 CeO2-NP 预处理(0.5mg/kg,腹腔途径)的保护特性。P7+9+11 对照组接受 50% O2(3 小时)而非 ISO。通过苏木精-伊红(HE)染色、Caspase-3 免疫组织化学(IHC)分析和 Bax 免疫印迹法测定,在 ISO 前一小时接触纳米铈可保护发育中的大鼠大脑海马神经元免受凋亡、氧化应激和炎症[通过 4-羟基壬烯醛(4HNE)、核因子卡巴-B(NF-κB)和肿瘤坏死因子-α(TNF-α)免疫印迹测定]。通过莫里斯水迷宫评估,CeO2-NP 预处理也减少了 ISO 诱导的学习(P28-32)和记忆(P33)缺陷。但是,在药剂对照组中发现了记忆缺陷和蓟马行为;通过剂量研究可以消除这些有害影响,从而为更安全地使用提供证据。总之,我们的研究结果表明,应用纳米铈进行预处理是一种简单的策略,可用于儿科麻醉实践,以保护婴幼儿免受 ISO 引起的细胞死亡以及学习和记忆障碍的影响。
{"title":"Cerium oxide nanoparticles (nanoceria) pretreatment attenuates cell death in the hippocampus and cognitive dysfunction due to repeated isoflurane anesthesia in newborn rats","authors":"Ezgi Kargı-Gemici , Aslıhan Şengelen , Yunus Aksüt , Onat Akyol , Selma Şengiz-Erhan , Mehmet Bay , Evren Önay-Uçar , Ayşin Selcan , Serdar Demirgan","doi":"10.1016/j.neuro.2024.08.005","DOIUrl":"10.1016/j.neuro.2024.08.005","url":null,"abstract":"<div><p>General anesthetics exposure, particularly prolonged or repeated exposure, is a crucial cause of neurological injuries. Notably, isoflurane (ISO), used in pediatric anesthesia practice, is toxic to the developing brain. The relatively weak antioxidant system at early ages needs antioxidant support to protect the brain against anesthesia. Cerium oxide nanoparticles (CeO<sub>2</sub>-NPs, nanoceria) are nano-antioxidants and stand out due to their unique surface chemistry, high stability, and biocompatibility. Although CeO<sub>2</sub>-NPs have been shown to exhibit neuroprotective and cognitive function-facilitating effects, there are no reports on their protective effects against anesthesia-induced neurotoxicity and cognitive impairments. Herein, Wistar albino rat pups were exposed to ISO (1.5 %, 3-h) at postnatal day (P)7+P9+P11, and the protective properties of CeO<sub>2</sub>-NP pretreatment (0.5 mg/kg, intraperitoneal route) were investigated for the first time. The control group at P7+9+11 received 50 % O<sub>2</sub> (3-h) instead of ISO. Exposure to nanoceria one-hour before ISO protected hippocampal neurons of the developing rat brain against apoptosis [determined by hematoxylin-eosin (HE) staining, immunohistochemistry (IHC) analysis with caspase-3, and immunoblotting with Bax/Bcl2, cleaved caspase-3 and PARP1] oxidative stress, and inflammation [determined by immunoblotting with 4-hydroxynonenal (4HNE), nuclear factor kappa-B (NF-κB), and tumor necrosis factor-alpha (TNF-α)]. CeO<sub>2</sub>-NP pretreatment also reduced ISO-induced learning (at P28–32) and memory (at P33) deficits evaluated by Morris Water Maze. However, memory deficits and thigmotactic behaviors were detected in the agent-control group; elimination of these harmful effects will be possible with dose studies, thus providing evidence supporting safer use. Overall, our findings support pretreatment with nanoceria application as a simple strategy that might be used for pediatric anesthesia practice to protect infants and children from ISO-induced cell death and learning and memory deficits.</p></div>","PeriodicalId":19189,"journal":{"name":"Neurotoxicology","volume":"105 ","pages":"Pages 82-93"},"PeriodicalIF":3.4,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142109996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Parkinson’s disease (PD) results from the degeneration of dopaminergic neurons in substantia nigra pars compacta (SNpc). Adenosine A2AR acting through the striato-pallidal pathway has emerged as a non-dopaminergic target in the therapy of PD. In the present work, the anti-parkinsonian potential of (4E)-4-(4-bromobenzylideneamino)-3-phenyl-2,3-dihydro-2-thioxo- thiazole-5-carbonitrile (BBPT) was explored. BBPT exhibited significant antioxidant activity in situ. In the MTT assay, the BBPT treatment showed insignificant toxicity to the primary midbrain neuronal (PMDN) cells. 6-OHDA induced PMDN cells, 3 h post-treated with BBPT showed 80–85 % survival of the cells and restoration of dopamine and TNF-α levels. The acute and sub-acute toxicity test for BBPT was performed with Sprague Dawley (SD) rats. In toxicity assay, any significant physical, hematological, or biochemical changes in the rats were not observed. To evaluate the effect of BBPT in vivo, a 6-OHDA-induced unilaterally lesioned SD rat model of PD was established. We observed that the BBPT treatment improved the behavioral symptoms in 6-OHDA-induced unilaterally lesioned rats. The proteins of 6-OHDA-induced BBPT-treated rats were isolated from the brain tissue to assess the antioxidant effect (GSH, catalase, SOD, lipid-peroxidation, nitrite), dopamine levels, and the restoration in the apoptosis and inflammation. Our results demonstrated that BBPT increased the anti-oxidant enzyme levels, restored the caspase-3/Bcl-2 levels to arrest apoptosis, and attenuated the TNF-α/IL-6 levels, thus restoring the neuronal damage in unilaterally lesioned 6-OHDA-induced SD rats. Precisely, the findings suggested that BBPT possessed significant anti-parkinsonian activity and has the potential to prevent dopaminergic neurodegeneration.
{"title":"BBPT attenuated 6-OHDA-induced toxicity by modulating oxidative stress, apoptotic, and inflammatory proteins in primary neurons and rat models of Parkinson's disease","authors":"Jyoti Mishra, Vaishali Walecha, Tuithung Sophronea, Ankit Singh, Saurabh Agrawal, Pratibha Mehta Luthra","doi":"10.1016/j.neuro.2024.08.008","DOIUrl":"10.1016/j.neuro.2024.08.008","url":null,"abstract":"<div><p>Parkinson’s disease (PD) results from the degeneration of dopaminergic neurons in substantia nigra pars compacta (SNpc). Adenosine A<sub>2A</sub>R acting through the striato-pallidal pathway has emerged as a non-dopaminergic target in the therapy of PD. In the present work, the anti-parkinsonian potential of (4<em>E</em>)-4-(4-bromobenzylideneamino)-3-phenyl-2,3-dihydro-2-thioxo- thiazole-5-carbonitrile (BBPT) was explored. BBPT exhibited significant antioxidant activity in situ. In the MTT assay, the BBPT treatment showed insignificant toxicity to the primary midbrain neuronal (PMDN) cells. 6-OHDA induced PMDN cells, 3 h post-treated with BBPT showed 80–85 % survival of the cells and restoration of dopamine and TNF-α levels. The acute and sub-acute toxicity test for BBPT was performed with Sprague Dawley (SD) rats. In toxicity assay, any significant physical, hematological, or biochemical changes in the rats were not observed. To evaluate the effect of BBPT in vivo, a 6-OHDA-induced unilaterally lesioned SD rat model of PD was established. We observed that the BBPT treatment improved the behavioral symptoms in 6-OHDA-induced unilaterally lesioned rats. The proteins of 6-OHDA-induced BBPT-treated rats were isolated from the brain tissue to assess the antioxidant effect (GSH, catalase, SOD, lipid-peroxidation, nitrite), dopamine levels, and the restoration in the apoptosis and inflammation. Our results demonstrated that BBPT increased the anti-oxidant enzyme levels, restored the caspase-3/Bcl-2 levels to arrest apoptosis, and attenuated the TNF-α/IL-6 levels, thus restoring the neuronal damage in unilaterally lesioned 6-OHDA-induced SD rats. Precisely, the findings suggested that BBPT possessed significant anti-parkinsonian activity and has the potential to prevent dopaminergic neurodegeneration.</p></div>","PeriodicalId":19189,"journal":{"name":"Neurotoxicology","volume":"105 ","pages":"Pages 67-81"},"PeriodicalIF":3.4,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142109995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-30DOI: 10.1016/j.neuro.2024.08.003
Zeina Hussein , Haidy E. Michel , Reem N. El-Naga , Ebtehal El-Demerdash , Eman M. Mantawy
Deterioration in the neurocognitive function of cancer patients referred to as “Chemobrain” is a devastating obstacle associated with cyclophosphamide (CYP). CYP is an alkylating agent, clinically utilized as an efficient anticancer and immunosuppressant. Coenzyme Q10 (CoQ10) is a worthwhile micronutrient with diverse biological activities embracing antioxidant, anti-apoptotic, and neuroprotective effects. The current experiment was designed for investigating the neuroprotective capability of CoQ10 versus CYP-elicited chemobrain in rats besides elucidating the causal molecular mechanisms. Male Sprague Dawley rats received CoQ10 (10 mg/kg, orally, once daily, for 10 days) and/or a single dose of CYP (200 mg/kg i.p. on day 7). CoQ10 counteracted CYP-induced cognitive and motor dysfunction as demonstrated by the findings of neurobehavioral tests (passive avoidance, Y maze, locomotion, and rotarod tests). Histopathological analysis further affirmed the neuroprotective abilities of CoQ10. CoQ10 effectually diminished CYP-provoked oxidative injury by restoring the antioxidant activity of catalase (CAT) enzyme while reducing malondialdehyde (MDA) levels. Besides, CoQ10 efficiently repressed CYP-induced neuronal apoptosis by downregulating the expression of Bax and caspase-3 while upregulating the Bcl-2 expression. Moreover, CoQ10 hampered CYP-provoked upregulation in acetylcholinesterase (AChE) activity. Furthermore, CoQ10 considerably augmented hippocampal neurogenesis by elevating the expressions of brain-derived neurotrophic factor (BDNF) and Ki-67. These promising neuroprotective effects can be credited to upregulating Wnt/β-catenin pathway as evidenced by the elevated expressions of Wnt-3a, β-catenin, and Phoshpo-glycogen synthase kinase-3 β (p-GSK-3β). Collectively, these findings proved the neuroprotective capabilities of CoQ10 against CYP-induced chemobrain through combating oxidative injury, repressing intrinsic apoptosis, boosting neurogenesis, and eventually upregulating the Wnt/β-catenin pathway.
{"title":"Coenzyme Q10 ameliorates cyclophosphamide-induced chemobrain by repressing neuronal apoptosis and preserving hippocampal neurogenesis: Mechanistic roles of Wnt/ β-catenin signaling pathway","authors":"Zeina Hussein , Haidy E. Michel , Reem N. El-Naga , Ebtehal El-Demerdash , Eman M. Mantawy","doi":"10.1016/j.neuro.2024.08.003","DOIUrl":"10.1016/j.neuro.2024.08.003","url":null,"abstract":"<div><p>Deterioration in the neurocognitive function of cancer patients referred to as “Chemobrain” is a devastating obstacle associated with cyclophosphamide (CYP). CYP is an alkylating agent, clinically utilized as an efficient anticancer and immunosuppressant. Coenzyme Q10 (CoQ10) is a worthwhile micronutrient with diverse biological activities embracing antioxidant, anti-apoptotic, and neuroprotective effects. The current experiment was designed for investigating the neuroprotective capability of CoQ10 versus CYP-elicited chemobrain in rats besides elucidating the causal molecular mechanisms. Male Sprague Dawley rats received CoQ10 (10 mg/kg, orally, once daily, for 10 days) and/or a single dose of CYP (200 mg/kg i.p. on day 7). CoQ10 counteracted CYP-induced cognitive and motor dysfunction as demonstrated by the findings of neurobehavioral tests (passive avoidance, Y maze, locomotion, and rotarod tests). Histopathological analysis further affirmed the neuroprotective abilities of CoQ10. CoQ10 effectually diminished CYP-provoked oxidative injury by restoring the antioxidant activity of catalase (CAT) enzyme while reducing malondialdehyde (MDA) levels. Besides, CoQ10 efficiently repressed CYP-induced neuronal apoptosis by downregulating the expression of Bax and caspase-3 while upregulating the Bcl-2 expression. Moreover, CoQ10 hampered CYP-provoked upregulation in acetylcholinesterase (AChE) activity. Furthermore, CoQ10 considerably augmented hippocampal neurogenesis by elevating the expressions of brain-derived neurotrophic factor (BDNF) and Ki-67. These promising neuroprotective effects can be credited to upregulating Wnt/β-catenin pathway as evidenced by the elevated expressions of Wnt-3a, β-catenin, and Phoshpo-glycogen synthase kinase-3 β (p-GSK-3β). Collectively, these findings proved the neuroprotective capabilities of CoQ10 against CYP-induced chemobrain through combating oxidative injury, repressing intrinsic apoptosis, boosting neurogenesis, and eventually upregulating the Wnt/β-catenin pathway.</p></div>","PeriodicalId":19189,"journal":{"name":"Neurotoxicology","volume":"105 ","pages":"Pages 21-33"},"PeriodicalIF":3.4,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142095640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Little is known about the effect of postnatal exposure to heavy metals on children’s behavior problems. This study aimed to investigate the association between metal exposure during different stages of postnatal life and neurobehavioral outcomes in preschool children.
Methods
Urinary concentrations of six metals (arsenic, cadmium, chromium, lead, manganese, and vanadium) were measured using inductively coupled plasma mass spectrometry in 220 participants at two time points: before 1 year and at 5 years of age. Mothers completed the Child Behavior Checklist when the children were 5 years old. Multivariable linear and logistic regression analyses were used to evaluate the association between metal concentrations and behavioral outcomes. We employed Bayesian kernel machine regression (BKMR) to assess possible joint effects and potential interactions between metal mixtures and behavioral outcomes.
Results
Concentrations of urinary arsenic (As) in infants were associated with higher scores for anxious/shy behavior problems (β ranging from 0.03 to 0.23). Further analyses showed that As exposure increased the odds of scores falling into the borderline or clinical range on anxious/depressed, affective, and pervasive developmental problems (ORs: 2.45–3.40). Stratification by sex indicated significance in girls but not in boys. BKMR analysis showed that, among the metal mixtures, As displayed a major effect on behavior scores. Concentrations of urinary cadmium in infants were also associated with higher behavioral scores but did not increase the risk of clinical problems. A cross-sectional survey in 5-year-olds did not show a significant association between concurrent metal exposure and behavioral outcome.
Conclusion
Our results showed that exposure to As and Cd during infancy was associated with emotional problems in children. The effect of arsenic exposure was more pronounced among female infants. We suggest reducing exposure to toxic metals during early postnatal life to prevent behavioral problems in children."
{"title":"Early postnatal and concurrent exposure to metals and neurobehavioral outcomes at 5 years: Associations with individual environmental exposures and mixtures","authors":"Sui-Ling Liao , Shen-Hao Lai , Yuan-Ting Hsu , Li-Chen Chen , Ming-Han Tsai , Man-Chin Hua , Tsung-Chieh Yao , Kuan-Wen Su , Kuo-Wei Yeh , Chih-Yung Chiu , Shau-Ku Huang , Jing-Long Huang","doi":"10.1016/j.neuro.2024.08.006","DOIUrl":"10.1016/j.neuro.2024.08.006","url":null,"abstract":"<div><h3>Background</h3><p>Little is known about the effect of postnatal exposure to heavy metals on children’s behavior problems. This study aimed to investigate the association between metal exposure during different stages of postnatal life and neurobehavioral outcomes in preschool children.</p></div><div><h3>Methods</h3><p>Urinary concentrations of six metals (arsenic, cadmium, chromium, lead, manganese, and vanadium) were measured using inductively coupled plasma mass spectrometry in 220 participants at two time points: before 1 year and at 5 years of age. Mothers completed the Child Behavior Checklist when the children were 5 years old. Multivariable linear and logistic regression analyses were used to evaluate the association between metal concentrations and behavioral outcomes. We employed Bayesian kernel machine regression (BKMR) to assess possible joint effects and potential interactions between metal mixtures and behavioral outcomes.</p></div><div><h3>Results</h3><p>Concentrations of urinary arsenic (As) in infants were associated with higher scores for anxious/shy behavior problems (β ranging from 0.03 to 0.23). Further analyses showed that As exposure increased the odds of scores falling into the borderline or clinical range on anxious/depressed, affective, and pervasive developmental problems (ORs: 2.45–3.40). Stratification by sex indicated significance in girls but not in boys. BKMR analysis showed that, among the metal mixtures, As displayed a major effect on behavior scores. Concentrations of urinary cadmium in infants were also associated with higher behavioral scores but did not increase the risk of clinical problems. A cross-sectional survey in 5-year-olds did not show a significant association between concurrent metal exposure and behavioral outcome.</p></div><div><h3>Conclusion</h3><p>Our results showed that exposure to As and Cd during infancy was associated with emotional problems in children. The effect of arsenic exposure was more pronounced among female infants. We suggest reducing exposure to toxic metals during early postnatal life to prevent behavioral problems in children.\"</p></div>","PeriodicalId":19189,"journal":{"name":"Neurotoxicology","volume":"105 ","pages":"Pages 58-66"},"PeriodicalIF":3.4,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142110001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-28DOI: 10.1016/j.neuro.2024.08.004
Cheng-Wei Lim , Gen Hamanaka , Anna C. Liang , Su Jing Chan , King-Hwa Ling , Eng H. Lo , Ken Arai , Pike See Cheah
JAK-STAT signaling cascade has emerged as an ideal target for the treatment of myeloproliferative diseases, autoimmune diseases, and neurological disorders. Ruxolitinib (Rux), is an orally bioavailable, potent and selective Janus-associated kinase (JAK) inhibitor, proven to be effective to target activated JAK-STAT pathway in the diseases previously described. Unfortunately, limited studies have investigated the potential cytotoxic profile of Rux on other cell populations within the heterogenous CNS microenvironment. Two stem and progenitor cell populations, namely the oligodendrocyte precursor cells (OPCs) and neural stem/progenitor cells (NSPCs), are important for long-term maintenance and post-injury recovery response of the CNS. In light of the limited evidence, this study sought to investigate further the effect of Rux on proliferating and differentiating OPCs and NSPCs populations. In the present study, cultured rat OPCs and NSPCs were treated with various concentrations of Rux, ranging from 2 μM to 20 μM. The effect of Rux on proliferating OPCs (PDGF-R-α+) and proliferating NSPCs (nestin+) was assessed via a 3-day Rux treatment, whereas its effect on differentiating OPCs (MBP+/PDGF-R-α+) and differentiating NSPCs (neurofilament+) was assessed after a 7-day treatment. Cytotoxicity of Rux was also assessed on OPC populations by examining its influence on cell death and DNA synthesis via YO-PRO-1/PI dual-staining and BrdU assay, respectively. The results suggest that Rux at a dosage above 10 μM reduces the number proliferating OPCs, likely via the induction of apoptosis. On the other hand, Rux treatment from 2.5 μM to 20 μM significantly reduces the number of differentiating OPCs by inducing necrosis. Meanwhile, Rux treatment has no observable untoward impact on NSPC cultures within the dosage range tested. Taken together, OPCs appears to be more vulnerable to the dosage effect of Rux, whereas NSPCs are not significantly impacted by Rux, suggesting a differential mechanism of actions of Rux on the cell types.
{"title":"In vitro cytotoxicity assessment of ruxolitinib on oligodendrocyte precursor cell and neural stem/progenitor cell populations","authors":"Cheng-Wei Lim , Gen Hamanaka , Anna C. Liang , Su Jing Chan , King-Hwa Ling , Eng H. Lo , Ken Arai , Pike See Cheah","doi":"10.1016/j.neuro.2024.08.004","DOIUrl":"10.1016/j.neuro.2024.08.004","url":null,"abstract":"<div><p>JAK-STAT signaling cascade has emerged as an ideal target for the treatment of myeloproliferative diseases, autoimmune diseases, and neurological disorders. Ruxolitinib (Rux), is an orally bioavailable, potent and selective Janus-associated kinase (JAK) inhibitor, proven to be effective to target activated JAK-STAT pathway in the diseases previously described. Unfortunately, limited studies have investigated the potential cytotoxic profile of Rux on other cell populations within the heterogenous CNS microenvironment. Two stem and progenitor cell populations, namely the oligodendrocyte precursor cells (OPCs) and neural stem/progenitor cells (NSPCs), are important for long-term maintenance and post-injury recovery response of the CNS. In light of the limited evidence, this study sought to investigate further the effect of Rux on proliferating and differentiating OPCs and NSPCs populations. In the present study, cultured rat OPCs and NSPCs were treated with various concentrations of Rux, ranging from 2 μM to 20 μM. The effect of Rux on proliferating OPCs (PDGF-R-α<sup>+</sup>) and proliferating NSPCs (nestin<sup>+</sup>) was assessed via a 3-day Rux treatment, whereas its effect on differentiating OPCs (MBP<sup>+</sup>/PDGF-R-α<sup>+</sup>) and differentiating NSPCs (neurofilament<sup>+</sup>) was assessed after a 7-day treatment. Cytotoxicity of Rux was also assessed on OPC populations by examining its influence on cell death and DNA synthesis via YO-PRO-1/PI dual-staining and BrdU assay, respectively. The results suggest that Rux at a dosage above 10 μM reduces the number proliferating OPCs, likely via the induction of apoptosis. On the other hand, Rux treatment from 2.5 μM to 20 μM significantly reduces the number of differentiating OPCs by inducing necrosis. Meanwhile, Rux treatment has no observable untoward impact on NSPC cultures within the dosage range tested. Taken together, OPCs appears to be more vulnerable to the dosage effect of Rux, whereas NSPCs are not significantly impacted by Rux, suggesting a differential mechanism of actions of Rux on the cell types.</p></div>","PeriodicalId":19189,"journal":{"name":"Neurotoxicology","volume":"105 ","pages":"Pages 10-20"},"PeriodicalIF":3.4,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142095544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23DOI: 10.1016/j.neuro.2024.08.002
Amanda de Deus Ferreira Alves , Fernanda Carolina Ribeiro Dias , Pabyton Gonçalves Cadena , Valdemiro Amaro Silva-Jr
This systematic review was carried out with the aim of evaluating the use of medicinal Cannabis for the treatment of Parkinson's disease in experimental models. Furthermore, we sought to understand the main intracellular mechanisms capable of promoting the effects of phytocannabinoids on motor disorders, neurodegeneration, neuroinflammation and oxidative stress. The experimental models were developed in mice, rats and marmosets. There was a predominance of using only males in relation to females; in three studies, the authors evaluated treatments in males and females. Drugs were used as inducers of Parkinson's disease: 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), lipopolysaccharide (LPS), and rotenone. Substances capable of promoting catalepsy in animals were also used: haloperidol, L-nitro-N-arginine (L-NOARG), WIN55,212–2, and reserpine. The inducing agent was injected stereotaxically or intraperitoneally. The most commonly used treatments were cannabidiol (CBD), Delta-9-tetrahydrocannabinol (Δ-9 THC) and Delta-9-tetrahydrocannabivarin (Δ-9 THCV), administered intraperitoneally, orally, subcutaneously and intramuscularly. The use of phytocannabinoids improved locomotor activity and involuntary movement and reduced catalepsy. There was an improvement in the evaluation of dopaminergic neurons, while in relation to dopamine content, the treatment had no effect. Inflammation, microglial/astrocyte activation and oxidative stress were reduced after treatment with phytocannabinoids, the same was observed in the results of tests for allodynia and hyperalgesia.
{"title":"Use of phytocanabinoids in animal models of Parkinson's disease: Systematic review","authors":"Amanda de Deus Ferreira Alves , Fernanda Carolina Ribeiro Dias , Pabyton Gonçalves Cadena , Valdemiro Amaro Silva-Jr","doi":"10.1016/j.neuro.2024.08.002","DOIUrl":"10.1016/j.neuro.2024.08.002","url":null,"abstract":"<div><p>This systematic review was carried out with the aim of evaluating the use of medicinal Cannabis for the treatment of Parkinson's disease in experimental models. Furthermore, we sought to understand the main intracellular mechanisms capable of promoting the effects of phytocannabinoids on motor disorders, neurodegeneration, neuroinflammation and oxidative stress. The experimental models were developed in mice, rats and marmosets. There was a predominance of using only males in relation to females; in three studies, the authors evaluated treatments in males and females. Drugs were used as inducers of Parkinson's disease: 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), lipopolysaccharide (LPS), and rotenone. Substances capable of promoting catalepsy in animals were also used: haloperidol, L-nitro-N-arginine (L-NOARG), WIN55,212–2, and reserpine. The inducing agent was injected stereotaxically or intraperitoneally. The most commonly used treatments were cannabidiol (CBD), Delta-9-tetrahydrocannabinol (Δ-9 THC) and Delta-9-tetrahydrocannabivarin (Δ-9 THCV), administered intraperitoneally, orally, subcutaneously and intramuscularly. The use of phytocannabinoids improved locomotor activity and involuntary movement and reduced catalepsy. There was an improvement in the evaluation of dopaminergic neurons, while in relation to dopamine content, the treatment had no effect. Inflammation, microglial/astrocyte activation and oxidative stress were reduced after treatment with phytocannabinoids, the same was observed in the results of tests for allodynia and hyperalgesia.</p></div>","PeriodicalId":19189,"journal":{"name":"Neurotoxicology","volume":"105 ","pages":"Pages 34-44"},"PeriodicalIF":3.4,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142056166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23DOI: 10.1016/j.neuro.2024.08.001
Fei Zeng , Mingxia Zhou , Qiang Li , Huan Hu , Chen Chen
Background
Sevoflurane is a widely used inhalation anesthetic associated with neuronal damage, cognitive impairment and neurodegenerative diseases, with iron overload reported to contribute to these adverse effects. However, the mechanisms of iron-dependent cell death (ferroptosis) in sevoflurane-induced neurotoxicity remain poorly understood.
Methods
The role of PLIN4, a protein associated with neurodegeneration, in sevoflurane-induced neuronal damage was investigated using cultured mouse hippocampal neurons (HT22). PLIN4 knockdown or overexpression was performed through vector transfection, and PLIN4 transcription and expression levels after sevoflurane treatment and knockdown experiments were assessed via RT-qPCR, immunostaining, and western blot to evaluate its impact on ferroptosis. Transmission electron microscopy was used to assess cellular morphology and measure Fe2+ levels.
Results
Sevoflurane treatment significantly increased PLIN4 expression in hippocampal neurons and induced ferroptosis. Silencing PLIN4 reduced ferroptosis and partially reversed sevoflurane's inhibition of the Hippo signaling pathway. Specifically, sevoflurane treatment led to a 2.9-fold increase in PLIN4 mRNA levels. Furthermore, higher PLIN4 levels upregulated ferroptosis in hippocampal neurons by inhibiting the Hippo pathway.
Conclusion
Our study indicates that sevoflurane promotes ferroptosis in neurons by upregulating PLIN4 and modulating the Hippo signaling pathway. These findings provide insights into the potential development of interventions to prevent anesthesia-related cognitive impairments and neurodegeneration.
{"title":"Sevoflurane promotes neuronal ferroptosis via upregulation of PLIN4 to modulate the hippo signaling pathway","authors":"Fei Zeng , Mingxia Zhou , Qiang Li , Huan Hu , Chen Chen","doi":"10.1016/j.neuro.2024.08.001","DOIUrl":"10.1016/j.neuro.2024.08.001","url":null,"abstract":"<div><h3>Background</h3><p>Sevoflurane is a widely used inhalation anesthetic associated with neuronal damage, cognitive impairment and neurodegenerative diseases, with iron overload reported to contribute to these adverse effects. However, the mechanisms of iron-dependent cell death (ferroptosis) in sevoflurane-induced neurotoxicity remain poorly understood.</p></div><div><h3>Methods</h3><p>The role of PLIN4, a protein associated with neurodegeneration, in sevoflurane-induced neuronal damage was investigated using cultured mouse hippocampal neurons (HT22). PLIN4 knockdown or overexpression was performed through vector transfection, and PLIN4 transcription and expression levels after sevoflurane treatment and knockdown experiments were assessed via RT-qPCR, immunostaining, and western blot to evaluate its impact on ferroptosis. Transmission electron microscopy was used to assess cellular morphology and measure Fe<sup>2+</sup> levels.</p></div><div><h3>Results</h3><p>Sevoflurane treatment significantly increased PLIN4 expression in hippocampal neurons and induced ferroptosis. Silencing PLIN4 reduced ferroptosis and partially reversed sevoflurane's inhibition of the Hippo signaling pathway. Specifically, sevoflurane treatment led to a 2.9-fold increase in PLIN4 mRNA levels. Furthermore, higher PLIN4 levels upregulated ferroptosis in hippocampal neurons by inhibiting the Hippo pathway.</p></div><div><h3>Conclusion</h3><p>Our study indicates that sevoflurane promotes ferroptosis in neurons by upregulating PLIN4 and modulating the Hippo signaling pathway. These findings provide insights into the potential development of interventions to prevent anesthesia-related cognitive impairments and neurodegeneration.</p></div>","PeriodicalId":19189,"journal":{"name":"Neurotoxicology","volume":"105 ","pages":"Pages 1-9"},"PeriodicalIF":3.4,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142056142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30DOI: 10.1016/j.neuro.2024.07.014
Huangyingzi Wang , Xuhua Li , Jun Li , Fan Yu , Qi Li , Mijia Qin , Lin Gui , Yajie Qian , Manhong Huang
1-octyl-3-methylimidazolium bromide ([C8mim]Br), one of the ionic liquids (ILs), has been used in various fields as an alternative green solvent of conventional organic solvents. Increased application and stabilization of imidazole ring structure lead to its release into the aquatic environment and long-term retention. Structure-activity relationship consideration suggested that ILs may be acetylcholinesterase inhibitors; however, neurotoxicity in vivo, especially the underlying mechanisms is rarely studied. In this study, the zebrafish were exposed to 2.5–10 mg/L [C8mim]Br for 28 days to comprehensively evaluate the neurotoxicity of ILs on adult zebrafish from the behavioral profiles and neurotransmitter systems for the first time. The results indicate that zebrafish exhibit suppressed spatial working memory and anxious behaviors. To assess the potential neurotoxic mechanisms underlying the behavioral responses of zebrafish, we measured the levels of neurotransmitters and precursors, key enzyme activities, and expression levels of relevant genes. Nissl staining showed significant neural cell death in zebrafish after 28-day [C8mim]Br exposure, with corresponding decreases in the levels of neurotransmitters (acetylcholine, glutamate, 5-hydroxytryptophan, gamma-aminobutyric acid, dopamine, and norepinephrine). Furthermore, these results were associated with mRNA expression levels of the disrupted neurotransmitter key genes (th, tph2, mao, slc6a3, ache, gad67). Overall, our study determined that [C8mim]Br caused potential mental disorders like anxiety and memory deterioration in zebrafish by impairing neurotransmitter systems, providing recommendations for the industrial production and application of [C8mim]Br.
{"title":"Long-term exposure to ionic liquid [C8mim]Br induces the potential risk of anxiety and memory deterioration through disturbing neurotransmitter systems","authors":"Huangyingzi Wang , Xuhua Li , Jun Li , Fan Yu , Qi Li , Mijia Qin , Lin Gui , Yajie Qian , Manhong Huang","doi":"10.1016/j.neuro.2024.07.014","DOIUrl":"10.1016/j.neuro.2024.07.014","url":null,"abstract":"<div><p>1-octyl-3-methylimidazolium bromide ([C<sub>8</sub>mim]Br), one of the ionic liquids (ILs), has been used in various fields as an alternative green solvent of conventional organic solvents. Increased application and stabilization of imidazole ring structure lead to its release into the aquatic environment and long-term retention. Structure-activity relationship consideration suggested that ILs may be acetylcholinesterase inhibitors; however, neurotoxicity in vivo, especially the underlying mechanisms is rarely studied. In this study, the zebrafish were exposed to 2.5–10 mg/L [C<sub>8</sub>mim]Br for 28 days to comprehensively evaluate the neurotoxicity of ILs on adult zebrafish from the behavioral profiles and neurotransmitter systems for the first time. The results indicate that zebrafish exhibit suppressed spatial working memory and anxious behaviors. To assess the potential neurotoxic mechanisms underlying the behavioral responses of zebrafish, we measured the levels of neurotransmitters and precursors, key enzyme activities, and expression levels of relevant genes. Nissl staining showed significant neural cell death in zebrafish after 28-day [C<sub>8</sub>mim]Br exposure, with corresponding decreases in the levels of neurotransmitters (acetylcholine, glutamate, 5-hydroxytryptophan, gamma-aminobutyric acid, dopamine, and norepinephrine). Furthermore, these results were associated with mRNA expression levels of the disrupted neurotransmitter key genes (<em>th</em>, <em>tph2</em>, <em>mao</em>, <em>slc6a3</em>, <em>ache</em>, <em>gad67</em>). Overall, our study determined that [C<sub>8</sub>mim]Br caused potential mental disorders like anxiety and memory deterioration in zebrafish by impairing neurotransmitter systems, providing recommendations for the industrial production and application of [C<sub>8</sub>mim]Br.</p></div>","PeriodicalId":19189,"journal":{"name":"Neurotoxicology","volume":"104 ","pages":"Pages 66-74"},"PeriodicalIF":3.4,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141860380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}