Pub Date : 2024-08-27DOI: 10.1007/s12640-024-00718-y
Felipe Schmitz, Luz Elena Durán-Carabali, Alessandra Schmitt Rieder, Josiane S Silveira, Osmar Vieira Ramires Junior, Larissa D Bobermin, André Quincozes-Santos, Vinícius S Alves, Robson Coutinho-Silva, Luiz Eduardo B Savio, Daniella M Coelho, Carmen R Vargas, Carlos Alexandre Netto, Angela T S Wyse
There is a public health concern about the use of methylphenidate (MPH) since the higher prescription for young individuals and non-clinical purposes is addressed to the limited understanding of its neurochemical and psychiatric consequences. This study aimed to evaluate the impact of early and chronic MPH treatment on the striatum focusing on amino acid profile, glutamatergic excitotoxicity, redox status, neuroinflammation and glial cell responses. Male Wistar rats were treated with MPH (2.0 mg/kg) or saline solution from the 15th to the 44th postnatal day. Biochemical and histological analyses were conducted after the last administration. MPH altered the amino acid profile in the striatum, increasing glutamate and ornithine levels, while decreasing the levels of serine, phenylalanine, and branched-chain amino acids (leucine, valine, and isoleucine). Glutamate uptake and Na+,K+-ATPase activity were decreased in the striatum of MPH-treated rats as well as increased ATP levels, as indicator of glutamatergic excitotoxicity. Moreover, MPH caused lipid peroxidation and nitrative stress, increased TNF alpha expression, and induced high levels of astrocytes, and led to a decrease in BDNF levels. In summary, our results suggest that chronic early-age treatment with MPH induces parallel activation of damage-associated pathways in the striatum and increases its vulnerability during the juvenile period. In addition, data presented here contribute to shedding light on the mechanisms underlying MPH-induced striatal damage and its potential implications for neurodevelopmental disorders.
{"title":"Methylphenidate Exposing During Neurodevelopment Alters Amino Acid Profile, Astrocyte Marker and Glutamatergic Excitotoxicity in the Rat Striatum.","authors":"Felipe Schmitz, Luz Elena Durán-Carabali, Alessandra Schmitt Rieder, Josiane S Silveira, Osmar Vieira Ramires Junior, Larissa D Bobermin, André Quincozes-Santos, Vinícius S Alves, Robson Coutinho-Silva, Luiz Eduardo B Savio, Daniella M Coelho, Carmen R Vargas, Carlos Alexandre Netto, Angela T S Wyse","doi":"10.1007/s12640-024-00718-y","DOIUrl":"10.1007/s12640-024-00718-y","url":null,"abstract":"<p><p>There is a public health concern about the use of methylphenidate (MPH) since the higher prescription for young individuals and non-clinical purposes is addressed to the limited understanding of its neurochemical and psychiatric consequences. This study aimed to evaluate the impact of early and chronic MPH treatment on the striatum focusing on amino acid profile, glutamatergic excitotoxicity, redox status, neuroinflammation and glial cell responses. Male Wistar rats were treated with MPH (2.0 mg/kg) or saline solution from the 15th to the 44th postnatal day. Biochemical and histological analyses were conducted after the last administration. MPH altered the amino acid profile in the striatum, increasing glutamate and ornithine levels, while decreasing the levels of serine, phenylalanine, and branched-chain amino acids (leucine, valine, and isoleucine). Glutamate uptake and Na<sup>+</sup>,K<sup>+</sup>-ATPase activity were decreased in the striatum of MPH-treated rats as well as increased ATP levels, as indicator of glutamatergic excitotoxicity. Moreover, MPH caused lipid peroxidation and nitrative stress, increased TNF alpha expression, and induced high levels of astrocytes, and led to a decrease in BDNF levels. In summary, our results suggest that chronic early-age treatment with MPH induces parallel activation of damage-associated pathways in the striatum and increases its vulnerability during the juvenile period. In addition, data presented here contribute to shedding light on the mechanisms underlying MPH-induced striatal damage and its potential implications for neurodevelopmental disorders.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 5","pages":"39"},"PeriodicalIF":2.9,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142073360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23DOI: 10.1007/s12640-024-00716-0
Areej Turkistani, Hayder M Al-Kuraishy, Ali I Al-Gareeb, Walaa A Negm, Mostafa M Bahaa, Mostafa E Metawee, Gaber El-Saber Batiha
Melatonin (MTN) is a neuro-hormone released from the pineal gland. MTN secretion is regulated by different neuronal circuits, including the retinohypothalamic tract and suprachiasmatic nucleus (SCN), which are affected by light. MTN is neuroprotective in various neurodegenerative diseases, including Parkinson's disease (PD). MTN circulating level is highly blunted in PD. However, the underlying causes were not fully clarified. Thus, the present review aims to discuss the potential causes of blunted MTN levels in PD. Distortion of MTN circadian rhythmicity in PD patients causies extreme daytime sleepiness. The underlying mechanism for blunted MTN response may be due to reduction for light exposure, impairment of retinal light transmission, degeneration of circadian pacemaker and dysautonomia. In conclusion, degeneration of SCN and associated neurodegeneration together with neuroinflammation and activation of NF-κB and NLRP3 inflammasome, induce dysregulation of MTN secretion. Therefore, low serum MTN level reflects PD severity and could be potential biomarkers. Preclinical and clinical studies are suggested to clarify the underlying causes of low MTN in PD.
{"title":"Blunted Melatonin Circadian Rhythm in Parkinson's Disease: Express Bewilderment.","authors":"Areej Turkistani, Hayder M Al-Kuraishy, Ali I Al-Gareeb, Walaa A Negm, Mostafa M Bahaa, Mostafa E Metawee, Gaber El-Saber Batiha","doi":"10.1007/s12640-024-00716-0","DOIUrl":"10.1007/s12640-024-00716-0","url":null,"abstract":"<p><p>Melatonin (MTN) is a neuro-hormone released from the pineal gland. MTN secretion is regulated by different neuronal circuits, including the retinohypothalamic tract and suprachiasmatic nucleus (SCN), which are affected by light. MTN is neuroprotective in various neurodegenerative diseases, including Parkinson's disease (PD). MTN circulating level is highly blunted in PD. However, the underlying causes were not fully clarified. Thus, the present review aims to discuss the potential causes of blunted MTN levels in PD. Distortion of MTN circadian rhythmicity in PD patients causies extreme daytime sleepiness. The underlying mechanism for blunted MTN response may be due to reduction for light exposure, impairment of retinal light transmission, degeneration of circadian pacemaker and dysautonomia. In conclusion, degeneration of SCN and associated neurodegeneration together with neuroinflammation and activation of NF-κB and NLRP3 inflammasome, induce dysregulation of MTN secretion. Therefore, low serum MTN level reflects PD severity and could be potential biomarkers. Preclinical and clinical studies are suggested to clarify the underlying causes of low MTN in PD.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 5","pages":"38"},"PeriodicalIF":2.9,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142036451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-05DOI: 10.1007/s12640-024-00715-1
Nwife Getrude Okechukwu, Christian Klein, Hélène Jamann, Michel Maitre, Christine Patte-Mensah, Ayikoé-Guy Mensah-Nyagan
Amyloid-peptide (Aβ) monomeric forms (ABM) occurring in presymptomatic Alzheimer's disease (AD) brain are thought to be devoid of neurotoxicity while the transition/aggregation of ABM into oligomers is determinant for Aβ-induced toxicity since Aβ is predominantly monomeric up to 3 µM and aggregates over this concentration. However, recent imaging and/or histopathological investigations revealed alterations of myelin in prodromal AD brain in absence of aggregated Aβ oligomers, suggesting that ABM may induce toxicity in myelin-producing cells in early AD-stages. To check this hypothesis, here we studied ABM effects on the viability of the Human oligodendrocyte cell line (HOG), a reliable oligodendrocyte model producing myelin proteins. Furthermore, to mimic closely interactions between oligodendrocytes and other glial cells regulating myelination, we investigated also ABM effects on mouse brain primary mixed-glial cell cultures. Various methods were combined to show that ABM concentrations (600 nM-1 µM), extremely lower than 3 µM, significantly decreased HOG cell and mouse brain primary mixed-glial cell survival. Interestingly, flow-cytometry studies using specific cell-type markers demonstrated that oligodendrocytes represent the most vulnerable glial cell population affected by ABM toxicity. Our work also shows that the neurosteroid 3α-O-allyl-allopregnanolone BR351 (250 and 500 nM) efficiently prevented ABM-induced HOG and brain primary glial cell toxicity. Bicuculline (50-100 nM), the GABA-A-receptor antagonist, was unable to block/reduce BR351 effect against ABM-induced HOG and primary glial cell toxicity, suggesting that BR351-evoked neuroprotection of these cells may not depend on GABA-A-receptor allosterically modulated by neurosteroids. Altogether, our results suggest that further exploration of BR351 therapeutic potential may offer interesting perspectives to develop effective neuroprotective strategies.
{"title":"Monomeric Amyloid Peptide-induced Toxicity in Human Oligodendrocyte Cell Line and Mouse Brain Primary Mixed-glial Cell Cultures: Evidence for a Neuroprotective Effect of Neurosteroid 3α-O-allyl-allopregnanolone.","authors":"Nwife Getrude Okechukwu, Christian Klein, Hélène Jamann, Michel Maitre, Christine Patte-Mensah, Ayikoé-Guy Mensah-Nyagan","doi":"10.1007/s12640-024-00715-1","DOIUrl":"10.1007/s12640-024-00715-1","url":null,"abstract":"<p><p>Amyloid-peptide (Aβ) monomeric forms (ABM) occurring in presymptomatic Alzheimer's disease (AD) brain are thought to be devoid of neurotoxicity while the transition/aggregation of ABM into oligomers is determinant for Aβ-induced toxicity since Aβ is predominantly monomeric up to 3 µM and aggregates over this concentration. However, recent imaging and/or histopathological investigations revealed alterations of myelin in prodromal AD brain in absence of aggregated Aβ oligomers, suggesting that ABM may induce toxicity in myelin-producing cells in early AD-stages. To check this hypothesis, here we studied ABM effects on the viability of the Human oligodendrocyte cell line (HOG), a reliable oligodendrocyte model producing myelin proteins. Furthermore, to mimic closely interactions between oligodendrocytes and other glial cells regulating myelination, we investigated also ABM effects on mouse brain primary mixed-glial cell cultures. Various methods were combined to show that ABM concentrations (600 nM-1 µM), extremely lower than 3 µM, significantly decreased HOG cell and mouse brain primary mixed-glial cell survival. Interestingly, flow-cytometry studies using specific cell-type markers demonstrated that oligodendrocytes represent the most vulnerable glial cell population affected by ABM toxicity. Our work also shows that the neurosteroid 3α-O-allyl-allopregnanolone BR351 (250 and 500 nM) efficiently prevented ABM-induced HOG and brain primary glial cell toxicity. Bicuculline (50-100 nM), the GABA-A-receptor antagonist, was unable to block/reduce BR351 effect against ABM-induced HOG and primary glial cell toxicity, suggesting that BR351-evoked neuroprotection of these cells may not depend on GABA-A-receptor allosterically modulated by neurosteroids. Altogether, our results suggest that further exploration of BR351 therapeutic potential may offer interesting perspectives to develop effective neuroprotective strategies.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 4","pages":"37"},"PeriodicalIF":2.9,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141889841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1007/s12640-024-00714-2
Majid Motaghinejad, Manijeh Motevalian, Mohammad Abdollahi, Mansour Heidari, Zahra Madjd
{"title":"Retraction Note to: Topiramate Confers Neuroprotection Against Methylphenidate-Induced Neurodegeneration in Dentate Gyrus and CA1 Regions of Hippocampus via CREB/BDNF Pathway in Rats.","authors":"Majid Motaghinejad, Manijeh Motevalian, Mohammad Abdollahi, Mansour Heidari, Zahra Madjd","doi":"10.1007/s12640-024-00714-2","DOIUrl":"10.1007/s12640-024-00714-2","url":null,"abstract":"","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 4","pages":"36"},"PeriodicalIF":2.9,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141760077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-15DOI: 10.1007/s12640-024-00713-3
Noorul Hasan, Saima Zameer, Abul Kalam Najmi, Suhel Parvez, Mohd Akhtar
{"title":"Retraction Note: Roflumilast Reduces Pathological Symptoms of Sporadic Alzheimer's Disease in Rats Produced by Intracerebroventricular Streptozotocin by Inhibiting NF-κB/BACE-1 Mediated Aβ Production in the Hippocampus and Activating the cAMP/BDNF Signalling Pathway.","authors":"Noorul Hasan, Saima Zameer, Abul Kalam Najmi, Suhel Parvez, Mohd Akhtar","doi":"10.1007/s12640-024-00713-3","DOIUrl":"10.1007/s12640-024-00713-3","url":null,"abstract":"","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 4","pages":"34"},"PeriodicalIF":2.9,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141616935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study elucidates the molecular mechanisms by which FABP3 regulates neuronal apoptosis via mitochondrial autophagy in the context of cerebral ischemia-reperfusion (I/R). Employing a transient mouse model of middle cerebral artery occlusion (MCAO) established using the filament method, brain tissue samples were procured from I/R mice. High-throughput transcriptome sequencing on the Illumina CN500 platform was performed to identify differentially expressed mRNAs. Critical genes were selected by intersecting I/R-related genes from the GeneCards database with the differentially expressed mRNAs. The in vivo mechanism was explored by infecting I/R mice with lentivirus. Brain tissue injury, infarct volume ratio in the ischemic penumbra, neurologic deficits, behavioral abilities, neuronal apoptosis, apoptotic factors, inflammatory factors, and lipid peroxidation markers were assessed using H&E staining, TTC staining, Longa scoring, rotation experiments, immunofluorescence staining, and Western blot. For in vitro validation, an OGD/R model was established using primary neuron cells. Cell viability, apoptosis rate, mitochondrial oxidative stress, morphology, autophagosome formation, membrane potential, LC3 protein levels, and colocalization of autophagosomes and mitochondria were evaluated using MTT assay, LDH release assay, flow cytometry, ROS/MDA/GSH-Px measurement, transmission electron microscopy, MitoTracker staining, JC-1 method, Western blot, and immunofluorescence staining. FABP3 was identified as a critical gene in I/R through integrated transcriptome sequencing and bioinformatics analysis. In vivo experiments revealed that FABP3 silencing mitigated brain tissue damage, reduced infarct volume ratio, improved neurologic deficits, restored behavioral abilities, and attenuated neuronal apoptosis, inflammation, and mitochondrial oxidative stress in I/R mice. In vitro experiments demonstrated that FABP3 silencing restored OGD/R cell viability, reduced neuronal apoptosis, and decreased mitochondrial oxidative stress. Moreover, FABP3 induced mitochondrial autophagy through ROS, which was inhibited by the free radical scavenger NAC. Blocking mitochondrial autophagy with sh-ATG5 lentivirus confirmed that FABP3 induces mitochondrial dysfunction and neuronal apoptosis by activating mitochondrial autophagy. In conclusion, FABP3 activates mitochondrial autophagy through ROS, leading to mitochondrial dysfunction and neuronal apoptosis, thereby promoting cerebral ischemia-reperfusion injury.
{"title":"FABP3 Induces Mitochondrial Autophagy to Promote Neuronal Cell Apoptosis in Brain Ischemia-Reperfusion Injury.","authors":"Fang-Fang Zhong, Bo Wei, Guo-Xiang Bao, Yi-Ping Lou, Ming-Er Wei, Xin-Yue Wang, Xiao Xiao, Jin-Jin Tian","doi":"10.1007/s12640-024-00712-4","DOIUrl":"10.1007/s12640-024-00712-4","url":null,"abstract":"<p><p>This study elucidates the molecular mechanisms by which FABP3 regulates neuronal apoptosis via mitochondrial autophagy in the context of cerebral ischemia-reperfusion (I/R). Employing a transient mouse model of middle cerebral artery occlusion (MCAO) established using the filament method, brain tissue samples were procured from I/R mice. High-throughput transcriptome sequencing on the Illumina CN500 platform was performed to identify differentially expressed mRNAs. Critical genes were selected by intersecting I/R-related genes from the GeneCards database with the differentially expressed mRNAs. The in vivo mechanism was explored by infecting I/R mice with lentivirus. Brain tissue injury, infarct volume ratio in the ischemic penumbra, neurologic deficits, behavioral abilities, neuronal apoptosis, apoptotic factors, inflammatory factors, and lipid peroxidation markers were assessed using H&E staining, TTC staining, Longa scoring, rotation experiments, immunofluorescence staining, and Western blot. For in vitro validation, an OGD/R model was established using primary neuron cells. Cell viability, apoptosis rate, mitochondrial oxidative stress, morphology, autophagosome formation, membrane potential, LC3 protein levels, and colocalization of autophagosomes and mitochondria were evaluated using MTT assay, LDH release assay, flow cytometry, ROS/MDA/GSH-Px measurement, transmission electron microscopy, MitoTracker staining, JC-1 method, Western blot, and immunofluorescence staining. FABP3 was identified as a critical gene in I/R through integrated transcriptome sequencing and bioinformatics analysis. In vivo experiments revealed that FABP3 silencing mitigated brain tissue damage, reduced infarct volume ratio, improved neurologic deficits, restored behavioral abilities, and attenuated neuronal apoptosis, inflammation, and mitochondrial oxidative stress in I/R mice. In vitro experiments demonstrated that FABP3 silencing restored OGD/R cell viability, reduced neuronal apoptosis, and decreased mitochondrial oxidative stress. Moreover, FABP3 induced mitochondrial autophagy through ROS, which was inhibited by the free radical scavenger NAC. Blocking mitochondrial autophagy with sh-ATG5 lentivirus confirmed that FABP3 induces mitochondrial dysfunction and neuronal apoptosis by activating mitochondrial autophagy. In conclusion, FABP3 activates mitochondrial autophagy through ROS, leading to mitochondrial dysfunction and neuronal apoptosis, thereby promoting cerebral ischemia-reperfusion injury.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 4","pages":"35"},"PeriodicalIF":2.9,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141616934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The white matter is an important constituent of the central nervous system, containing axons, oligodendrocytes, and its progenitor cells, astrocytes, and microglial cells. Oligodendrocytes are central for myelin synthesis, the insulating envelope that protects axons and allows normal neural conduction. Both, oligodendrocytes and myelin, are highly vulnerable to toxic factors in many neurodevelopmental and neurodegenerative disorders associated with disturbances of myelination. Here we review the main alterations in oligodendrocytes and myelin observed in some organic acidurias/acidemias, which correspond to inherited neurometabolic disorders biochemically characterized by accumulation of potentially neurotoxic organic acids and their derivatives. The yet incompletely understood mechanisms underlying the high vulnerability of OLs and/or myelin in glutaric acidemia type I, the most prototypical cerebral organic aciduria, are particularly discussed.
白质是中枢神经系统的重要组成部分,包含轴突、少突胶质细胞及其祖细胞、星形胶质细胞和小胶质细胞。少突胶质细胞是髓鞘合成的核心,而髓鞘是保护轴突的绝缘包膜,可实现正常的神经传导。在许多与髓鞘化紊乱有关的神经发育和神经退行性疾病中,少突胶质细胞和髓鞘都极易受到毒性因素的影响。在此,我们回顾了在一些有机酸病/贫血症中观察到的少突胶质细胞和髓鞘的主要变化,这些病症与遗传性神经代谢紊乱相对应,其生物化学特征是潜在神经毒性有机酸及其衍生物的积累。本文特别讨论了戊二酸血症 I 型(最典型的脑有机酸尿症)中的有机酸和/或髓鞘极易受到损伤的机制,但人们对这一机制的理解尚不完全。
{"title":"Cerebral White Matter Alterations Associated With Oligodendrocyte Vulnerability in Organic Acidurias: Insights in Glutaric Aciduria Type I.","authors":"Eugenia Isasi, Moacir Wajner, Juliana Avila Duarte, Silvia Olivera-Bravo","doi":"10.1007/s12640-024-00710-6","DOIUrl":"10.1007/s12640-024-00710-6","url":null,"abstract":"<p><p>The white matter is an important constituent of the central nervous system, containing axons, oligodendrocytes, and its progenitor cells, astrocytes, and microglial cells. Oligodendrocytes are central for myelin synthesis, the insulating envelope that protects axons and allows normal neural conduction. Both, oligodendrocytes and myelin, are highly vulnerable to toxic factors in many neurodevelopmental and neurodegenerative disorders associated with disturbances of myelination. Here we review the main alterations in oligodendrocytes and myelin observed in some organic acidurias/acidemias, which correspond to inherited neurometabolic disorders biochemically characterized by accumulation of potentially neurotoxic organic acids and their derivatives. The yet incompletely understood mechanisms underlying the high vulnerability of OLs and/or myelin in glutaric acidemia type I, the most prototypical cerebral organic aciduria, are particularly discussed.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 4","pages":"33"},"PeriodicalIF":2.9,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-29DOI: 10.1007/s12640-024-00711-5
Guilhian Leipnitz, Jaqueline Santana da Rosa, Moacir Wajner
Nonketotic hyperglycinemia (NKH) is an inherited disorder of amino acid metabolism biochemically characterized by the accumulation of glycine (Gly) predominantly in the brain. Affected patients usually manifest with neurological symptoms including hypotonia, seizures, epilepsy, lethargy, and coma, the pathophysiology of which is still not completely understood. Treatment is limited and based on lowering Gly levels aiming to reduce overstimulation of N-methyl-D-aspartate (NMDA) receptors. Mounting in vitro and in vivo animal and human evidence have recently suggested that excitotoxicity, oxidative stress, and bioenergetics disruption induced by Gly are relevant mechanisms involved in the neuropathology of NKH. This brief review gives emphasis to the deleterious effects of Gly in the brain of patients and animal models of NKH that may offer perspectives for the development of novel adjuvant treatments for this disorder.
{"title":"The Role of Excitotoxicity, Oxidative Stress and Bioenergetics Disruption in the Neuropathology of Nonketotic Hyperglycinemia.","authors":"Guilhian Leipnitz, Jaqueline Santana da Rosa, Moacir Wajner","doi":"10.1007/s12640-024-00711-5","DOIUrl":"10.1007/s12640-024-00711-5","url":null,"abstract":"<p><p>Nonketotic hyperglycinemia (NKH) is an inherited disorder of amino acid metabolism biochemically characterized by the accumulation of glycine (Gly) predominantly in the brain. Affected patients usually manifest with neurological symptoms including hypotonia, seizures, epilepsy, lethargy, and coma, the pathophysiology of which is still not completely understood. Treatment is limited and based on lowering Gly levels aiming to reduce overstimulation of N-methyl-D-aspartate (NMDA) receptors. Mounting in vitro and in vivo animal and human evidence have recently suggested that excitotoxicity, oxidative stress, and bioenergetics disruption induced by Gly are relevant mechanisms involved in the neuropathology of NKH. This brief review gives emphasis to the deleterious effects of Gly in the brain of patients and animal models of NKH that may offer perspectives for the development of novel adjuvant treatments for this disorder.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 4","pages":"32"},"PeriodicalIF":2.9,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141469703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Endoplasmic reticulum (ER) stress and oxidative stress (OS) are often related states in pathological conditions including Parkinson's disease (PD). This study investigates the role of anti-oxidant protein paraoxonase 2 (PON2) in ER stress and OS in PD, along with its regulatory molecule. PD was induced in C57BL/6 mice using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) treatment and in SH-SY5Y cells using 1-methyl-4-phenylpyridinium. PON2 was found to be poorly expressed in the substantia nigra pars compacta (SNc) of PD mice, and its overexpression improved motor coordination of mice. Through the evaluation of tyrosine hydroxylase, dopamine transporter, reactive oxygen species (ROS), and C/EBP homologous protein (CHOP) levels and neuronal loss in mice, as well as the examination of CHOP, glucose-regulated protein 94 (GRP94), GRP78, caspase-12, sarco/endoplasmic reticulum calcium ATPase 2, malondialdehyde, and superoxide dismutase levels in SH-SY5Y cells, we observed that PON2 overexpression mitigated ER stress, OS, and neuronal apoptosis both in vivo and in vitro. Forkhead box A1 (FOXA1) was identified as a transcription factor binding to the PON2 promoter to activate its transcription. Upregulation of FOXA1 similarly protected against neuronal loss by alleviating ER stress and OS, while the protective roles were abrogated by additional PON2 silencing. In conclusion, this study demonstrates that FOXA1-mediated transcription of PON2 alleviates ER stress and OS, ultimately reducing neuronal apoptosis in PD.
{"title":"FOXA1 Suppresses Endoplasmic Reticulum Stress, Oxidative Stress, and Neuronal Apoptosis in Parkinson's Disease by Activating PON2 Transcription.","authors":"Jiahui Liu, Yu Fan, Jinyu Chen, Meili Zhao, Changchun Jiang","doi":"10.1007/s12640-024-00709-z","DOIUrl":"10.1007/s12640-024-00709-z","url":null,"abstract":"<p><p>Endoplasmic reticulum (ER) stress and oxidative stress (OS) are often related states in pathological conditions including Parkinson's disease (PD). This study investigates the role of anti-oxidant protein paraoxonase 2 (PON2) in ER stress and OS in PD, along with its regulatory molecule. PD was induced in C57BL/6 mice using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) treatment and in SH-SY5Y cells using 1-methyl-4-phenylpyridinium. PON2 was found to be poorly expressed in the substantia nigra pars compacta (SNc) of PD mice, and its overexpression improved motor coordination of mice. Through the evaluation of tyrosine hydroxylase, dopamine transporter, reactive oxygen species (ROS), and C/EBP homologous protein (CHOP) levels and neuronal loss in mice, as well as the examination of CHOP, glucose-regulated protein 94 (GRP94), GRP78, caspase-12, sarco/endoplasmic reticulum calcium ATPase 2, malondialdehyde, and superoxide dismutase levels in SH-SY5Y cells, we observed that PON2 overexpression mitigated ER stress, OS, and neuronal apoptosis both in vivo and in vitro. Forkhead box A1 (FOXA1) was identified as a transcription factor binding to the PON2 promoter to activate its transcription. Upregulation of FOXA1 similarly protected against neuronal loss by alleviating ER stress and OS, while the protective roles were abrogated by additional PON2 silencing. In conclusion, this study demonstrates that FOXA1-mediated transcription of PON2 alleviates ER stress and OS, ultimately reducing neuronal apoptosis in PD.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 4","pages":"31"},"PeriodicalIF":2.9,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141458396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-17DOI: 10.1007/s12640-024-00708-0
Xin Li, Yue Shen, Dan Li, Kun Zhang, Jia Liu, Lu Yao, Jun Yang, Jiao Qian
Central nervous system oxygen toxicity (CNS-OT) is a complication of hyperbaric oxygen (HBO) treatment, with limited prevention and treatment options available. In this study, we aimed to explore the effect of polyethylene glycol 300 (PEG300) on CNS-OT and underlying mechanisms. Motor and cognitive functions of mice in normobaric conditions were evaluated by Morris water maze, passive active avoidance, and rotarod tests. HBO was applied at 6 atmospheres absolute (ATA) for 30 min after drug administration. The latency period of convulsion in mice was recorded, and hippocampal tissues were extracted for biochemical experiments. Our experimental results showed that PEG300 extended the convulsion latencies in CNS-OT mice, reduced oxidative stress and inflammation levels in hippocampal tissues. Furthermore, PEG300 preserved mitochondrial integrity and maintained mitochondrial membrane potential in hippocampal tissue by upregulating Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha (PGC-1α). This protective effect was enhanced following the administration of ZLN005, an agonist of PGC-1a. Hence, our study suggests that PEG300 might exert protective effects by upregulating PGC-1α expression and preserving mitochondrial health, offering promising prospects for CNS-OT treatment.
{"title":"PEG300 Protects Mitochondrial Function By Upregulating PGC-1α to Delay Central Nervous System Oxygen Toxicity in Mice.","authors":"Xin Li, Yue Shen, Dan Li, Kun Zhang, Jia Liu, Lu Yao, Jun Yang, Jiao Qian","doi":"10.1007/s12640-024-00708-0","DOIUrl":"10.1007/s12640-024-00708-0","url":null,"abstract":"<p><p>Central nervous system oxygen toxicity (CNS-OT) is a complication of hyperbaric oxygen (HBO) treatment, with limited prevention and treatment options available. In this study, we aimed to explore the effect of polyethylene glycol 300 (PEG300) on CNS-OT and underlying mechanisms. Motor and cognitive functions of mice in normobaric conditions were evaluated by Morris water maze, passive active avoidance, and rotarod tests. HBO was applied at 6 atmospheres absolute (ATA) for 30 min after drug administration. The latency period of convulsion in mice was recorded, and hippocampal tissues were extracted for biochemical experiments. Our experimental results showed that PEG300 extended the convulsion latencies in CNS-OT mice, reduced oxidative stress and inflammation levels in hippocampal tissues. Furthermore, PEG300 preserved mitochondrial integrity and maintained mitochondrial membrane potential in hippocampal tissue by upregulating Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha (PGC-1α). This protective effect was enhanced following the administration of ZLN005, an agonist of PGC-1a. Hence, our study suggests that PEG300 might exert protective effects by upregulating PGC-1α expression and preserving mitochondrial health, offering promising prospects for CNS-OT treatment.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 4","pages":"30"},"PeriodicalIF":2.9,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141331504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}