Pub Date : 2024-01-31DOI: 10.1007/s12640-024-00690-7
Tareq Saleh, Randa Naffa, Noor A Barakat, Mohammad A Ismail, Moureq R Alotaibi, Mohammad Alsalem
Therapy-Induced Senescence (TIS) is a form of senescence that is typically described in malignant cells in response to the exposure of cancer chemotherapy or radiation but can also be precipitated in non-malignant cells. TIS has been shown to contribute to the development of several cancer therapy-related adverse effects; however, evidence on its role in mediating chemotherapy-induced neurotoxicity, such as Chemotherapy-induced Peripheral Neuropathy (CIPN), is limited. We here show that cisplatin treatment over two cycles (cumulative dose of 23 mg/kg) provoked mechanical allodynia and thermal hyperalgesia in Sprague-Dawley rats. Isolation of dorsal root ganglia (DRG) from the cisplatin-treated rats demonstrated robust SA-β-gal upregulation at both day 8 (after the first cycle) and day 18 (after the second cycle), decreased lmnb1 expression, increased expression of cdkn1a and cdkn2a, and of several factors of the Senescence-associated Secretory Phenotype (SASP) (Il6, Il1b, and mmp9). Moreover, single-cell calcium imaging of cultured DRGs revealed a significant increase in terms of the magnitude of KCl-evoked calcium responses in cisplatin-treated rats compared to vehicle-treated rats. No significant change was observed in terms of the magnitude of capsaicin-evoked calcium responses in cisplatin-treated rats compared to vehicle-treated rats but with decreased area under the curve of the responses in cisplatin-treated rats. Further evidence to support the contribution of TIS to therapy adverse effects is required but should encourage the use of senescence-modulating agents (senotherapeutics) as novel palliative approaches to mitigate chemotherapy-induced neurotoxicity.
{"title":"Cisplatin Provokes Peripheral Nociception and Neuronal Features of Therapy-Induced Senescence and Calcium Dysregulation in Rats.","authors":"Tareq Saleh, Randa Naffa, Noor A Barakat, Mohammad A Ismail, Moureq R Alotaibi, Mohammad Alsalem","doi":"10.1007/s12640-024-00690-7","DOIUrl":"10.1007/s12640-024-00690-7","url":null,"abstract":"<p><p>Therapy-Induced Senescence (TIS) is a form of senescence that is typically described in malignant cells in response to the exposure of cancer chemotherapy or radiation but can also be precipitated in non-malignant cells. TIS has been shown to contribute to the development of several cancer therapy-related adverse effects; however, evidence on its role in mediating chemotherapy-induced neurotoxicity, such as Chemotherapy-induced Peripheral Neuropathy (CIPN), is limited. We here show that cisplatin treatment over two cycles (cumulative dose of 23 mg/kg) provoked mechanical allodynia and thermal hyperalgesia in Sprague-Dawley rats. Isolation of dorsal root ganglia (DRG) from the cisplatin-treated rats demonstrated robust SA-β-gal upregulation at both day 8 (after the first cycle) and day 18 (after the second cycle), decreased lmnb1 expression, increased expression of cdkn1a and cdkn2a, and of several factors of the Senescence-associated Secretory Phenotype (SASP) (Il6, Il1b, and mmp9). Moreover, single-cell calcium imaging of cultured DRGs revealed a significant increase in terms of the magnitude of KCl-evoked calcium responses in cisplatin-treated rats compared to vehicle-treated rats. No significant change was observed in terms of the magnitude of capsaicin-evoked calcium responses in cisplatin-treated rats compared to vehicle-treated rats but with decreased area under the curve of the responses in cisplatin-treated rats. Further evidence to support the contribution of TIS to therapy adverse effects is required but should encourage the use of senescence-modulating agents (senotherapeutics) as novel palliative approaches to mitigate chemotherapy-induced neurotoxicity.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 1","pages":"10"},"PeriodicalIF":3.7,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139642595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-25DOI: 10.1007/s12640-024-00688-1
Shrishti Singh, Maheshkumar R Borkar, Lokesh Kumar Bhatt
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are characterized by the progressive loss of neuronal function and structure. While several genetic and environmental factors have been implicated in the pathogenesis of these disorders, emerging evidence suggests that transposable elements (TEs), once considered "junk DNA," play a significant role in their development and progression. TEs are mobile genetic elements capable of moving within the genome, and their dysregulation has been associated with genomic instability, altered gene expression, and neuroinflammation. This review provides an overview of TEs, including long interspersed nuclear elements (LINEs), short interspersed nuclear elements (SINEs), and endogenous retroviruses (ERVs), mechanisms of repression and derepression, and their potential impact on neurodegeneration. The evidence linking TEs to AD, PD, and ALS by shedding light on the complex interactions between TEs and neurodegeneration has been discussed. Furthermore, the therapeutic potential of targeting TEs in neurodegenerative diseases has been explored. Understanding the role of TEs in neurodegeneration holds promise for developing novel therapeutic strategies aimed at mitigating disease progression and preserving neuronal health.
阿尔茨海默病(AD)、帕金森病(PD)和肌萎缩侧索硬化症(ALS)等神经退行性疾病的特征是神经元功能和结构的逐渐丧失。虽然这些疾病的发病机制与多种遗传和环境因素有关,但新出现的证据表明,曾被视为 "垃圾 DNA "的可转座元件(TE)在这些疾病的发生和发展中起着重要作用。转座元件是能够在基因组内移动的可移动遗传元件,它们的失调与基因组不稳定性、基因表达改变和神经炎症有关。本综述概述了TEs(包括长穿插核元素(LINEs)、短穿插核元素(SINEs)和内源性逆转录病毒(ERVs))、抑制和解除抑制的机制及其对神经退行性变的潜在影响。通过揭示 TEs 与神经退行性病变之间复杂的相互作用,讨论了 TEs 与 AD、PD 和 ALS 相关的证据。此外,还探讨了针对神经退行性疾病中 TEs 的治疗潜力。了解 TEs 在神经退行性变中的作用有望开发出新型治疗策略,以缓解疾病进展并保护神经元健康。
{"title":"Transposable Elements: Emerging Therapeutic Targets in Neurodegenerative Diseases.","authors":"Shrishti Singh, Maheshkumar R Borkar, Lokesh Kumar Bhatt","doi":"10.1007/s12640-024-00688-1","DOIUrl":"10.1007/s12640-024-00688-1","url":null,"abstract":"<p><p>Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are characterized by the progressive loss of neuronal function and structure. While several genetic and environmental factors have been implicated in the pathogenesis of these disorders, emerging evidence suggests that transposable elements (TEs), once considered \"junk DNA,\" play a significant role in their development and progression. TEs are mobile genetic elements capable of moving within the genome, and their dysregulation has been associated with genomic instability, altered gene expression, and neuroinflammation. This review provides an overview of TEs, including long interspersed nuclear elements (LINEs), short interspersed nuclear elements (SINEs), and endogenous retroviruses (ERVs), mechanisms of repression and derepression, and their potential impact on neurodegeneration. The evidence linking TEs to AD, PD, and ALS by shedding light on the complex interactions between TEs and neurodegeneration has been discussed. Furthermore, the therapeutic potential of targeting TEs in neurodegenerative diseases has been explored. Understanding the role of TEs in neurodegeneration holds promise for developing novel therapeutic strategies aimed at mitigating disease progression and preserving neuronal health.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 1","pages":"9"},"PeriodicalIF":3.7,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139547064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemotherapy-induced neuropathic pain (CIPN) is a common side effect of antitumor chemotherapeutic agents. It describes a pathological state of pain related to the cumulative dosage of the drug, significantly limiting the efficacy of antitumor treatment. Sofas strategies alleviating CIPN still lack. Calcitonin gene-related peptide (CGRP) is a neuropeptide involved in many pathologic pains. In this study, we explored the effects of CGRP blocking on CIPN and potential mechanisms. Total dose of 20.7 mg/kg cisplatin was used to establish a CIPN mouse model. Mechanical and thermal hypersensitivity was measured using von Frey hairs and tail flick test. Western blot and immunofluorescence were utilized to evaluate the levels of CGRP and activated astrocytes in mouse spinal cord, respectively. In addition, real-time quantitative PCR (RT-qPCR) was used to detect the level of inflammatory cytokines such as IL-6, IL-1β, and NLRP3 in vitro and in vivo. There are markedly increased CGRP expression and astrocyte activation in the spinal cord of mice following cisplatin treatment. Pretreatment with a monoclonal antibody targeting CGRP (ZR8 mAb) effectively reduced cisplatin-induced mechanical hypersensitivity and thermal nociceptive sensitization and attenuated neuroinflammation as marked by downregulated expression of IL-6, IL-1β, and NLRP3 in the mice spinal cord and spleen. Lastly, ZR8 mAb does not interfere with the antitumor effects of cisplatin in tumor-bearing mice. Our findings indicate that neutralizing CGRP with monoclonal antibody could effectively alleviate CIPN by attenuating neuroinflammation. CGRP is a promising therapeutic target for CIPN.
{"title":"Monoclonal Antibody Targeting CGRP Relieves Cisplatin-Induced Neuropathic Pain by Attenuating Neuroinflammation.","authors":"Shun Xie, Zhenfang Gao, Jiale Zhang, Cong Xing, Yanxin Dong, Lanyin Wang, Zhiding Wang, Yuxiang Li, Ge Li, Gencheng Han, Taiqian Gong","doi":"10.1007/s12640-023-00685-w","DOIUrl":"10.1007/s12640-023-00685-w","url":null,"abstract":"<p><p>Chemotherapy-induced neuropathic pain (CIPN) is a common side effect of antitumor chemotherapeutic agents. It describes a pathological state of pain related to the cumulative dosage of the drug, significantly limiting the efficacy of antitumor treatment. Sofas strategies alleviating CIPN still lack. Calcitonin gene-related peptide (CGRP) is a neuropeptide involved in many pathologic pains. In this study, we explored the effects of CGRP blocking on CIPN and potential mechanisms. Total dose of 20.7 mg/kg cisplatin was used to establish a CIPN mouse model. Mechanical and thermal hypersensitivity was measured using von Frey hairs and tail flick test. Western blot and immunofluorescence were utilized to evaluate the levels of CGRP and activated astrocytes in mouse spinal cord, respectively. In addition, real-time quantitative PCR (RT-qPCR) was used to detect the level of inflammatory cytokines such as IL-6, IL-1β, and NLRP3 in vitro and in vivo. There are markedly increased CGRP expression and astrocyte activation in the spinal cord of mice following cisplatin treatment. Pretreatment with a monoclonal antibody targeting CGRP (ZR8 mAb) effectively reduced cisplatin-induced mechanical hypersensitivity and thermal nociceptive sensitization and attenuated neuroinflammation as marked by downregulated expression of IL-6, IL-1β, and NLRP3 in the mice spinal cord and spleen. Lastly, ZR8 mAb does not interfere with the antitumor effects of cisplatin in tumor-bearing mice. Our findings indicate that neutralizing CGRP with monoclonal antibody could effectively alleviate CIPN by attenuating neuroinflammation. CGRP is a promising therapeutic target for CIPN.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 1","pages":"8"},"PeriodicalIF":3.7,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139403811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-26DOI: 10.1007/s12640-023-00683-y
Wanda Campos Eusebi, Tomas Iorii, Antonella Presti, Rafael Grimson, Pablo Vázquez-Borsetti
Rattus norvegicus is the second most used laboratory species and the most widely used model in neuroscience. Nonetheless, there is still no agreement regarding the temporal relationship of development between humans and rats. We addressed this question by examining the time required to reach a set of homologous developmental milestones in both species. With this purpose, a database was generated with data collected through a bibliographic survey. This database was in turn compared with other databases about the same topic present in the literature. Finally, the databases were combined, covering for the first time the entire development of the rat including the prenatal, perinatal, and postnatal periods. This combined database includes 362 dates of 181 developmental events for each species. The developmental relationship between humans and rats was better fit by a logarithmic function than by a linear function. As development progresses, an increase in the dispersion of the data is observed. Developmental relationships should not be interpreted as a univocal equivalence. In this work is proposed an alternative interpretation where the age of one species is translated into a range of ages in the other.
{"title":"Divergent Pattern of Development in Rats and Humans.","authors":"Wanda Campos Eusebi, Tomas Iorii, Antonella Presti, Rafael Grimson, Pablo Vázquez-Borsetti","doi":"10.1007/s12640-023-00683-y","DOIUrl":"10.1007/s12640-023-00683-y","url":null,"abstract":"<p><p>Rattus norvegicus is the second most used laboratory species and the most widely used model in neuroscience. Nonetheless, there is still no agreement regarding the temporal relationship of development between humans and rats. We addressed this question by examining the time required to reach a set of homologous developmental milestones in both species. With this purpose, a database was generated with data collected through a bibliographic survey. This database was in turn compared with other databases about the same topic present in the literature. Finally, the databases were combined, covering for the first time the entire development of the rat including the prenatal, perinatal, and postnatal periods. This combined database includes 362 dates of 181 developmental events for each species. The developmental relationship between humans and rats was better fit by a logarithmic function than by a linear function. As development progresses, an increase in the dispersion of the data is observed. Developmental relationships should not be interpreted as a univocal equivalence. In this work is proposed an alternative interpretation where the age of one species is translated into a range of ages in the other.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 1","pages":"7"},"PeriodicalIF":3.7,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139037928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-22DOI: 10.1007/s12640-023-00684-x
Ellen Irrsack, Sidar Aydin, Katja Bleckmann, Julia Schuller, Ralf Dringen, Michael Koch
Iron oxide nanoparticles (IONPs) have come into focus for their use in medical applications although possible health risks for humans, especially in terms of brain functions, have not yet been fully clarified. The present study investigates the effects of IONPs on neurobehavioural functions in rats. For this purpose, we infused dimercaptosuccinic acid-coated IONPs into the medial prefrontal cortex (mPFC) and caudate putamen (CPu). Saline (VEH) and ferric ammonium citrate (FAC) were administered as controls. One- and 4-week post-surgery mPFC-infused animals were tested for their working memory performance in the delayed alternation T-maze task and in the open field (OF) for motor activity, and CPu-infused rats were tested for their motor activity in the OF. After completion of the experiments, the brains were examined histologically and immunohistochemically. We did not observe any behavioural or structural abnormalities in the rats after administration of IONPs in the mPFC and the CPu. In contrast, administration of FAC into the CPu resulted in decreased motor activity and increased the number of microglia in the mPFC. Perls' Prussian blue staining revealed that FAC- and IONP-treated rats had more iron-containing ramified cells than VEH-treated rats, indicating iron uptake by microglia. Our results demonstrate that local infusions of IONPs into selected brain regions have no adverse impact on locomotor behaviour and working memory.
氧化铁纳米粒子(IONPs)因其在医疗领域的应用而备受关注,但其对人类可能造成的健康风险,尤其是对大脑功能的影响,尚未完全明确。本研究调查了 IONP 对大鼠神经行为功能的影响。为此,我们将涂有二巯基丁二酸的 IONPs 注入内侧前额叶皮层(mPFC)和尾状核丘脑(CPu)。对照组为生理盐水(VEH)和柠檬酸铁铵(FAC)。手术后 1 周和 4 周,对注射了 mPFC 的大鼠进行了延迟交替 T 迷宫任务工作记忆能力测试和开阔地(OF)运动活动测试,对注射了 CPu 的大鼠进行了开阔地运动活动测试。实验结束后,对大鼠大脑进行了组织学和免疫组化检查。在 mPFC 和 CPu 中注射 IONPs 后,我们没有观察到大鼠出现任何行为或结构异常。相反,在 CPu 中注射 FAC 会导致运动活动减少,并增加 mPFC 中的小胶质细胞数量。珀尔斯普鲁士蓝染色显示,FAC和IONP处理的大鼠比VEH处理的大鼠有更多的含铁柱状细胞,这表明小胶质细胞摄取了铁。我们的研究结果表明,将 IONPs 局部注入选定的脑区不会对运动行为和工作记忆产生不利影响。
{"title":"Local Administrations of Iron Oxide Nanoparticles in the Prefrontal Cortex and Caudate Putamen of Rats Do Not Compromise Working Memory and Motor Activity.","authors":"Ellen Irrsack, Sidar Aydin, Katja Bleckmann, Julia Schuller, Ralf Dringen, Michael Koch","doi":"10.1007/s12640-023-00684-x","DOIUrl":"10.1007/s12640-023-00684-x","url":null,"abstract":"<p><p>Iron oxide nanoparticles (IONPs) have come into focus for their use in medical applications although possible health risks for humans, especially in terms of brain functions, have not yet been fully clarified. The present study investigates the effects of IONPs on neurobehavioural functions in rats. For this purpose, we infused dimercaptosuccinic acid-coated IONPs into the medial prefrontal cortex (mPFC) and caudate putamen (CPu). Saline (VEH) and ferric ammonium citrate (FAC) were administered as controls. One- and 4-week post-surgery mPFC-infused animals were tested for their working memory performance in the delayed alternation T-maze task and in the open field (OF) for motor activity, and CPu-infused rats were tested for their motor activity in the OF. After completion of the experiments, the brains were examined histologically and immunohistochemically. We did not observe any behavioural or structural abnormalities in the rats after administration of IONPs in the mPFC and the CPu. In contrast, administration of FAC into the CPu resulted in decreased motor activity and increased the number of microglia in the mPFC. Perls' Prussian blue staining revealed that FAC- and IONP-treated rats had more iron-containing ramified cells than VEH-treated rats, indicating iron uptake by microglia. Our results demonstrate that local infusions of IONPs into selected brain regions have no adverse impact on locomotor behaviour and working memory.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 1","pages":"6"},"PeriodicalIF":3.7,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10746586/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138830681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-22DOI: 10.1007/s12640-023-00678-9
Muhammed Adam, Sibel Ozcan, Semih Dalkilic, Nalan Kaya Tektemur, Suat Tekin, Batuhan Bilgin, Munevver Gizem Hekim, Ferah Bulut, Muhammed Mirac Kelestemur, Sinan Canpolat, Mete Ozcan
Asprosin, a hormone secreted from adipose tissue, has been implicated in the modulation of cell viability. Current studies suggest that neurological impairments are increased in individuals with obesity-linked diabetes, likely due to the presence of excess adipose tissue, but the precise molecular mechanism behind this association remains poorly understood. In this study, our hypothesis that asprosin has the potential to mitigate neuronal damage in a high glucose (HG) environment while also regulating the expression of microRNA (miRNA)-181a, which is involved in critical biological processes such as cellular survival, apoptosis, and autophagy. To investigate this, dorsal root ganglion (DRG) neurons were exposed to asprosin in a HG (45 mmol/L) environment for 24 hours, with a focus on the role of the protein kinase A (PKA) pathway. Expression of miRNA-181a was measured by using real-time polymerase chain reaction (RT-PCR) in diabetic DRG. Our findings revealed a decline in cell viability and an upregulation of apoptosis under HG conditions. However, pretreatment with asprosin in sensory neurons effectively improved cell viability and reduced apoptosis by activating the PKA pathway. Furthermore, we observed that asprosin modulated the expression of miRNA-181a in diabetic DRG. Our study demonstrates that asprosin has the potential to protect DRG neurons from HG-induced damage while influencing miRNA-181a expression in diabetic DRG. These findings provide valuable insights for the development of clinical interventions targeting neurotoxicity in diabetes, with asprosin emerging as a promising therapeutic target for managing neurological complications in affected individuals.
{"title":"Modulation of Neuronal Damage in DRG by Asprosin in a High-Glucose Environment and Its Impact on miRNA181-a Expression in Diabetic DRG.","authors":"Muhammed Adam, Sibel Ozcan, Semih Dalkilic, Nalan Kaya Tektemur, Suat Tekin, Batuhan Bilgin, Munevver Gizem Hekim, Ferah Bulut, Muhammed Mirac Kelestemur, Sinan Canpolat, Mete Ozcan","doi":"10.1007/s12640-023-00678-9","DOIUrl":"10.1007/s12640-023-00678-9","url":null,"abstract":"<p><p>Asprosin, a hormone secreted from adipose tissue, has been implicated in the modulation of cell viability. Current studies suggest that neurological impairments are increased in individuals with obesity-linked diabetes, likely due to the presence of excess adipose tissue, but the precise molecular mechanism behind this association remains poorly understood. In this study, our hypothesis that asprosin has the potential to mitigate neuronal damage in a high glucose (HG) environment while also regulating the expression of microRNA (miRNA)-181a, which is involved in critical biological processes such as cellular survival, apoptosis, and autophagy. To investigate this, dorsal root ganglion (DRG) neurons were exposed to asprosin in a HG (45 mmol/L) environment for 24 hours, with a focus on the role of the protein kinase A (PKA) pathway. Expression of miRNA-181a was measured by using real-time polymerase chain reaction (RT-PCR) in diabetic DRG. Our findings revealed a decline in cell viability and an upregulation of apoptosis under HG conditions. However, pretreatment with asprosin in sensory neurons effectively improved cell viability and reduced apoptosis by activating the PKA pathway. Furthermore, we observed that asprosin modulated the expression of miRNA-181a in diabetic DRG. Our study demonstrates that asprosin has the potential to protect DRG neurons from HG-induced damage while influencing miRNA-181a expression in diabetic DRG. These findings provide valuable insights for the development of clinical interventions targeting neurotoxicity in diabetes, with asprosin emerging as a promising therapeutic target for managing neurological complications in affected individuals.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 1","pages":"5"},"PeriodicalIF":3.7,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138830682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-16DOI: 10.1007/s12640-023-00681-0
Francisca Villavicencio-Tejo, Margrethe A. Olesen, Laura Navarro, Nancy Calisto, Cristian Iribarren, Katherine García, Gino Corsini, Rodrigo A. Quintanilla
Abstract
The gut-brain axis is an essential communication pathway between the central nervous system (CNS) and the gastrointestinal tract. The human microbiota is composed of a diverse and abundant microbial community that compasses more than 100 trillion microorganisms that participate in relevant physiological functions such as host nutrient metabolism, structural integrity, maintenance of the gut mucosal barrier, and immunomodulation. Recent evidence in animal models has been instrumental in demonstrating the possible role of the microbiota in neurodevelopment, neuroinflammation, and behavior. Furthermore, clinical studies suggested that adverse changes in the microbiota can be considered a susceptibility factor for neurological disorders (NDs), such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS). In this review, we will discuss evidence describing the role of gut microbes in health and disease as a relevant risk factor in the pathogenesis of neurodegenerative disorders, including AD, PD, HD, and ALS.
{"title":"Gut-Brain Axis Deregulation and Its Possible Contribution to Neurodegenerative Disorders","authors":"Francisca Villavicencio-Tejo, Margrethe A. Olesen, Laura Navarro, Nancy Calisto, Cristian Iribarren, Katherine García, Gino Corsini, Rodrigo A. Quintanilla","doi":"10.1007/s12640-023-00681-0","DOIUrl":"https://doi.org/10.1007/s12640-023-00681-0","url":null,"abstract":"<h3>Abstract</h3> <p>The gut-brain axis is an essential communication pathway between the central nervous system (CNS) and the gastrointestinal tract. The human microbiota is composed of a diverse and abundant microbial community that compasses more than 100 trillion microorganisms that participate in relevant physiological functions such as host nutrient metabolism, structural integrity, maintenance of the gut mucosal barrier, and immunomodulation. Recent evidence in animal models has been instrumental in demonstrating the possible role of the microbiota in neurodevelopment, neuroinflammation, and behavior. Furthermore, clinical studies suggested that adverse changes in the microbiota can be considered a susceptibility factor for neurological disorders (NDs), such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS). In this review, we will discuss evidence describing the role of gut microbes in health and disease as a relevant risk factor in the pathogenesis of neurodegenerative disorders, including AD, PD, HD, and ALS.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"14 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138685099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-14DOI: 10.1007/s12640-023-00682-z
Yousef Tizabi, Bruk Getachew, Michael Aschner
Toxic exposures to heavy metals, such as iron (Fe) and manganese (Mn), can result in long-range neurological diseases and are therefore of significant environmental and medical concerns. We have previously reported that damage to neuroblastoma-derived dopaminergic cells (SH-SY5Y) by both Fe and Mn could be prevented by pre-treatment with nicotine. Moreover, butyrate, a short chain fatty acid (SCFA) provided protection against salsolinol, a selective dopaminergic toxin, in the same cell line. Here, we broadened the investigation to determine whether butyrate might also protect against Fe and/or Mn, and whether, if combined with nicotine, an additive or synergistic effect might be observed. Both butyrate and nicotine concentration-dependently blocked Fe and Mn toxicities. Ineffective concentrations of nicotine and butyrate, when combined, provided full protection against both Fe and Mn. Moreover, the effects of nicotine but not butyrate could be blocked by mecamylamine, a non-selective nicotinic antagonist. On the other hand, the effects of butyrate, but not nicotine, could be blocked by beta-hydroxy butyrate, a fatty acid-3 receptor antagonist. These results not only provide further support for neuroprotective effects of both nicotine and butyrate but also indicate distinct mechanisms of action for each one. Furthermore, potential utility of butyrate and nicotine combination against heavy metal toxicities is suggested.
{"title":"Butyrate Protects and Synergizes with Nicotine against Iron- and Manganese-induced Toxicities in Cell Culture","authors":"Yousef Tizabi, Bruk Getachew, Michael Aschner","doi":"10.1007/s12640-023-00682-z","DOIUrl":"https://doi.org/10.1007/s12640-023-00682-z","url":null,"abstract":"<p>Toxic exposures to heavy metals, such as iron (Fe) and manganese (Mn), can result in long-range neurological diseases and are therefore of significant environmental and medical concerns. We have previously reported that damage to neuroblastoma-derived dopaminergic cells (SH-SY5Y) by both Fe and Mn could be prevented by pre-treatment with nicotine. Moreover, butyrate, a short chain fatty acid (SCFA) provided protection against salsolinol, a selective dopaminergic toxin, in the same cell line. Here, we broadened the investigation to determine whether butyrate might also protect against Fe and/or Mn, and whether, if combined with nicotine, an additive or synergistic effect might be observed. Both butyrate and nicotine concentration-dependently blocked Fe and Mn toxicities. Ineffective concentrations of nicotine and butyrate, when combined, provided full protection against both Fe and Mn. Moreover, the effects of nicotine but not butyrate could be blocked by mecamylamine, a non-selective nicotinic antagonist. On the other hand, the effects of butyrate, but not nicotine, could be blocked by beta-hydroxy butyrate, a fatty acid-3 receptor antagonist. These results not only provide further support for neuroprotective effects of both nicotine and butyrate but also indicate distinct mechanisms of action for each one. Furthermore, potential utility of butyrate and nicotine combination against heavy metal toxicities is suggested.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"32 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138628221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-14DOI: 10.1007/s12640-023-00679-8
Emilli Caroline Garcia Frachini, Jean Bezerra Silva, Barbara Fornaciari, Maurício S. Baptista, Henning Ulrich, Denise Freitas Siqueira Petri
A feature in neurodegenerative disorders is the loss of neurons, caused by several factors including oxidative stress induced by reactive oxygen species (ROS). In this work, static magnetic field (SMF) was applied in vitro to evaluate its effect on the viability, proliferation, and migration of human neuroblastoma SH-SY5Y cells, and on the toxicity induced by hydrogen peroxide (H2O2), tert-butyl hydroperoxide (tBHP), H2O2/sodium azide (NaN3) and photosensitized oxidations by photodynamic therapy (PDT) photosensitizers. The SMF increased almost twofold the cell expression of the proliferation biomarker Ki-67 compared to control cells after 7 days of exposure. Exposure to SMF accelerated the wound healing of scratched cell monolayers and significantly reduced the H2O2-induced and the tBHP-induced cell deaths. Interestingly, SMF was able to revert the effects of NaN3 (a catalase inhibitor), suggesting an increased activity of catalase under the influence of the magnetic field. In agreement with this hypothesis, SMF significantly reduced the oxidation of DCF-H2, indicating a lower level of intracellular ROS. When the redox imbalance was triggered through photosensitized oxidation, no protection was observed. This observation aligns with the proposed role of catalase in cellular proctetion under SMF. Exposition to SMF should be further validated in vitro and in vivo as a potential therapeutic approach for neurodegenerative disorders.
{"title":"Static Magnetic Field Reduces Intracellular ROS Levels and Protects Cells Against Peroxide-Induced Damage: Suggested Roles for Catalase","authors":"Emilli Caroline Garcia Frachini, Jean Bezerra Silva, Barbara Fornaciari, Maurício S. Baptista, Henning Ulrich, Denise Freitas Siqueira Petri","doi":"10.1007/s12640-023-00679-8","DOIUrl":"https://doi.org/10.1007/s12640-023-00679-8","url":null,"abstract":"<p>A feature in neurodegenerative disorders is the loss of neurons, caused by several factors including oxidative stress induced by reactive oxygen species (ROS). In this work, static magnetic field (SMF) was applied in vitro to evaluate its effect on the viability, proliferation, and migration of human neuroblastoma SH-SY5Y cells, and on the toxicity induced by hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), tert-butyl hydroperoxide (tBHP), H<sub>2</sub>O<sub>2</sub>/sodium azide (NaN<sub>3</sub>) and photosensitized oxidations by photodynamic therapy (PDT) photosensitizers. The SMF increased almost twofold the cell expression of the proliferation biomarker Ki-67 compared to control cells after 7 days of exposure. Exposure to SMF accelerated the wound healing of scratched cell monolayers and significantly reduced the H<sub>2</sub>O<sub>2</sub>-induced and the tBHP-induced cell deaths. Interestingly, SMF was able to revert the effects of NaN<sub>3</sub> (a catalase inhibitor), suggesting an increased activity of catalase under the influence of the magnetic field. In agreement with this hypothesis, SMF significantly reduced the oxidation of DCF-H2, indicating a lower level of intracellular ROS. When the redox imbalance was triggered through photosensitized oxidation, no protection was observed. This observation aligns with the proposed role of catalase in cellular proctetion under SMF. Exposition to SMF should be further validated in vitro and in vivo as a potential therapeutic approach for neurodegenerative disorders.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"4 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138628273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-13DOI: 10.1007/s12640-023-00680-1
Heena Khan, Annu Bangar, Amarjot Kaur Grewal, Thakur Gurjeet Singh
Ischemia-reperfusion (IR) injury is a damage to an organ when the blood supply is less than the demand required for normal functioning, leading to exacerbation of cellular dysfunction and death. IR injury occurs in different organs like the kidney, liver, heart, brain, etc., and may not only involve the ischemic organ but also cause systemic damage to distant organs. Oxygen-glucose deprivation in cells causes oxidative stress, calcium overloading, inflammation, and apoptosis. CREB is an essential integrator of the body’s various physiological systems, and it is widely accepted that dysfunction of CREB signaling is involved in many diseases, including ischemia-reperfusion injury. The activation of CREB can provide life to a cell and increase the cell’s survival after ischemia. Hence, GSK/CREB signaling pathway can provide significant protection to cells of different organs after ischemia and emerges as a futuristic strategy for managing ischemia-reperfusion injury. Different signaling pathways such as MAPK/ERK, TLR4/MyD88, RISK, Nrf2, and NF-κB, get altered during IR injury by the modulation of GSK-3 and CREB (cyclic AMP response element (CRE)–binding protein). GSK-3 (protein kinase B) and CREB are the downstream targets for fulfilling the roles of various signaling pathways. Calcium overloading during ischemia increases the expression of calcium-calmodulin-dependent protein kinase (CaMK), which subsequently activates CREB-mediated transcription, thus promoting the survival of cells. Furthermore, this review highlights the crosstalk between GSK-3 and CREB, promoting survival and rendering the cells resistant to subsequent severe ischemia.
{"title":"Mechanistic Implications of GSK and CREB Crosstalk in Ischemia Injury","authors":"Heena Khan, Annu Bangar, Amarjot Kaur Grewal, Thakur Gurjeet Singh","doi":"10.1007/s12640-023-00680-1","DOIUrl":"https://doi.org/10.1007/s12640-023-00680-1","url":null,"abstract":"<p>Ischemia-reperfusion (IR) injury is a damage to an organ when the blood supply is less than the demand required for normal functioning, leading to exacerbation of cellular dysfunction and death. IR injury occurs in different organs like the kidney, liver, heart, brain, etc., and may not only involve the ischemic organ but also cause systemic damage to distant organs. Oxygen-glucose deprivation in cells causes oxidative stress, calcium overloading, inflammation, and apoptosis. CREB is an essential integrator of the body’s various physiological systems, and it is widely accepted that dysfunction of CREB signaling is involved in many diseases, including ischemia-reperfusion injury. The activation of CREB can provide life to a cell and increase the cell’s survival after ischemia. Hence, GSK/CREB signaling pathway can provide significant protection to cells of different organs after ischemia and emerges as a futuristic strategy for managing ischemia-reperfusion injury. Different signaling pathways such as MAPK/ERK, TLR4/MyD88, RISK, Nrf2, and NF-κB, get altered during IR injury by the modulation of GSK-3 and CREB (cyclic AMP response element (CRE)–binding protein). GSK-3 (protein kinase B) and CREB are the downstream targets for fulfilling the roles of various signaling pathways. Calcium overloading during ischemia increases the expression of calcium-calmodulin-dependent protein kinase (CaMK), which subsequently activates CREB-mediated transcription, thus promoting the survival of cells. Furthermore, this review highlights the crosstalk between GSK-3 and CREB, promoting survival and rendering the cells resistant to subsequent severe ischemia.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"84 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138580960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}