Pub Date : 2024-04-06DOI: 10.1038/s41525-024-00408-w
Ali AlMail, Ahmed Jamjoom, Amy Pan, Min Yi Feng, Vann Chau, Alissa M. D’Gama, Katherine Howell, Nicole S. Y. Liang, Amy McTague, Annapurna Poduri, Kimberly Wiltrout, Anne S. Bassett, John Christodoulou, Lucie Dupuis, Peter Gill, Tess Levy, Paige Siper, Zornitza Stark, Jacob A. S. Vorstman, Catherine Diskin, Natalie Jewitt, Danielle Baribeau, Gregory Costain
Genome-wide sequencing and genetic matchmaker services are propelling a new era of genotype-driven ascertainment of novel genetic conditions. The degree to which reported phenotype data in discovery-focused studies address informational priorities for clinicians and families is unclear. We identified reports published from 2017 to 2021 in 10 genetics journals of novel Mendelian disorders. We adjudicated the quality and detail of the phenotype data via 46 questions pertaining to six priority domains: (I) Development, cognition, and mental health; (II) Feeding and growth; (III) Medication use and treatment history; (IV) Pain, sleep, and quality of life; (V) Adulthood; and (VI) Epilepsy. For a subset of articles, all subsequent published follow-up case descriptions were identified and assessed in a similar manner. A modified Delphi approach was used to develop consensus reporting guidelines, with input from content experts across four countries. In total, 200 of 3243 screened publications met inclusion criteria. Relevant phenotypic details across each of the 6 domains were rated superficial or deficient in >87% of papers. For example, less than 10% of publications provided details regarding neuropsychiatric diagnoses and “behavioural issues”, or about the type/nature of feeding problems. Follow-up reports (n = 95) rarely contributed this additional phenotype data. In summary, phenotype information relevant to clinical management, genetic counselling, and the stated priorities of patients and families is lacking for many newly described genetic diseases. The PHELIX (PHEnotype LIsting fiX) reporting guideline checklists were developed to improve phenotype reporting in the genomic era.
{"title":"Consensus reporting guidelines to address gaps in descriptions of ultra-rare genetic conditions","authors":"Ali AlMail, Ahmed Jamjoom, Amy Pan, Min Yi Feng, Vann Chau, Alissa M. D’Gama, Katherine Howell, Nicole S. Y. Liang, Amy McTague, Annapurna Poduri, Kimberly Wiltrout, Anne S. Bassett, John Christodoulou, Lucie Dupuis, Peter Gill, Tess Levy, Paige Siper, Zornitza Stark, Jacob A. S. Vorstman, Catherine Diskin, Natalie Jewitt, Danielle Baribeau, Gregory Costain","doi":"10.1038/s41525-024-00408-w","DOIUrl":"https://doi.org/10.1038/s41525-024-00408-w","url":null,"abstract":"<p>Genome-wide sequencing and genetic matchmaker services are propelling a new era of genotype-driven ascertainment of novel genetic conditions. The degree to which reported phenotype data in discovery-focused studies address informational priorities for clinicians and families is unclear. We identified reports published from 2017 to 2021 in 10 genetics journals of novel Mendelian disorders. We adjudicated the quality and detail of the phenotype data via 46 questions pertaining to six priority domains: (I) Development, cognition, and mental health; (II) Feeding and growth; (III) Medication use and treatment history; (IV) Pain, sleep, and quality of life; (V) Adulthood; and (VI) Epilepsy. For a subset of articles, all subsequent published follow-up case descriptions were identified and assessed in a similar manner. A modified Delphi approach was used to develop consensus reporting guidelines, with input from content experts across four countries. In total, 200 of 3243 screened publications met inclusion criteria. Relevant phenotypic details across each of the 6 domains were rated superficial or deficient in >87% of papers. For example, less than 10% of publications provided details regarding neuropsychiatric diagnoses and “behavioural issues”, or about the type/nature of feeding problems. Follow-up reports (<i>n</i> = 95) rarely contributed this additional phenotype data. In summary, phenotype information relevant to clinical management, genetic counselling, and the stated priorities of patients and families is lacking for many newly described genetic diseases. The PHELIX (PHEnotype LIsting fiX) reporting guideline checklists were developed to improve phenotype reporting in the genomic era.</p>","PeriodicalId":19273,"journal":{"name":"NPJ Genomic Medicine","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140591631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-03DOI: 10.1038/s41525-024-00412-0
Jianbang Chiang, Ziyang Chua, Jia Ying Chan, Ashita Ashish Sule, Wan Hsein Loke, Elaine Lum, Marcus Eng Hock Ong, Nicholas Graves, Joanne Ngeow
Hereditary cancer syndromes constitute approximately 10% of all cancers. Cascade testing involves testing of at-risk relatives to determine if they carry the familial pathogenic variant. Despite growing efforts targeted at improving cascade testing uptake, current literature continues to reflect poor rates of uptake, typically below 30%. This study aims to systematically review current literature on intervention strategies to improve cascade testing, assess the quality of intervention descriptions and evaluate the implementation outcomes of listed interventions. We searched major databases using keywords and subject heading of “cascade testing”. Interventions proposed in each study were classified according to the Effective Practice and Organization of Care (EPOC) taxonomy. Quality of intervention description was assessed using the TIDieR checklist, and evaluation of implementation outcomes was performed using Proctor’s Implementation Outcomes Framework. Improvements in rates of genetic testing uptake was seen in interventions across the different EPOC taxonomy strategies. The average TIDieR score was 7.3 out of 12. Items least reported include modifications (18.5%), plans to assess fidelity/adherence (7.4%) and actual assessment of fidelity/adherence (7.4%). An average of 2.9 out of 8 aspects of implementation outcomes were examined. The most poorly reported outcomes were cost, fidelity and sustainability, with only 3.7% of studies reporting them. Most interventions have demonstrated success in improving cascade testing uptake. Uptake of cascade testing was highest with delivery arrangement (68%). However, the quality of description of interventions and assessment of implementation outcomes are often suboptimal, hindering their replication and implementation downstream. Therefore, further adoption of standardized guidelines in reporting of interventions and formal assessment of implementation outcomes may help promote translation of these interventions into routine practice.
{"title":"Strategies to improve implementation of cascade testing in hereditary cancer syndromes: a systematic review","authors":"Jianbang Chiang, Ziyang Chua, Jia Ying Chan, Ashita Ashish Sule, Wan Hsein Loke, Elaine Lum, Marcus Eng Hock Ong, Nicholas Graves, Joanne Ngeow","doi":"10.1038/s41525-024-00412-0","DOIUrl":"https://doi.org/10.1038/s41525-024-00412-0","url":null,"abstract":"<p>Hereditary cancer syndromes constitute approximately 10% of all cancers. Cascade testing involves testing of at-risk relatives to determine if they carry the familial pathogenic variant. Despite growing efforts targeted at improving cascade testing uptake, current literature continues to reflect poor rates of uptake, typically below 30%. This study aims to systematically review current literature on intervention strategies to improve cascade testing, assess the quality of intervention descriptions and evaluate the implementation outcomes of listed interventions. We searched major databases using keywords and subject heading of “cascade testing”. Interventions proposed in each study were classified according to the Effective Practice and Organization of Care (EPOC) taxonomy. Quality of intervention description was assessed using the TIDieR checklist, and evaluation of implementation outcomes was performed using Proctor’s Implementation Outcomes Framework. Improvements in rates of genetic testing uptake was seen in interventions across the different EPOC taxonomy strategies. The average TIDieR score was 7.3 out of 12. Items least reported include modifications (18.5%), plans to assess fidelity/adherence (7.4%) and actual assessment of fidelity/adherence (7.4%). An average of 2.9 out of 8 aspects of implementation outcomes were examined. The most poorly reported outcomes were cost, fidelity and sustainability, with only 3.7% of studies reporting them. Most interventions have demonstrated success in improving cascade testing uptake. Uptake of cascade testing was highest with delivery arrangement (68%). However, the quality of description of interventions and assessment of implementation outcomes are often suboptimal, hindering their replication and implementation downstream. Therefore, further adoption of standardized guidelines in reporting of interventions and formal assessment of implementation outcomes may help promote translation of these interventions into routine practice.</p>","PeriodicalId":19273,"journal":{"name":"NPJ Genomic Medicine","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140591622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-30DOI: 10.1038/s41525-024-00407-x
Tatiane Yanes, Jane Tiller, Casey M Haining, Courtney Wallingford, Margaret Otlowski, Louise Keogh, Aideen McInerney-Leo, Paul Lacaze
{"title":"Future implications of polygenic risk scores for life insurance underwriting.","authors":"Tatiane Yanes, Jane Tiller, Casey M Haining, Courtney Wallingford, Margaret Otlowski, Louise Keogh, Aideen McInerney-Leo, Paul Lacaze","doi":"10.1038/s41525-024-00407-x","DOIUrl":"10.1038/s41525-024-00407-x","url":null,"abstract":"","PeriodicalId":19273,"journal":{"name":"NPJ Genomic Medicine","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10981684/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140330041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-27DOI: 10.1038/s41525-024-00405-z
K M Ingley, M Zatzman, A M Fontebasso, W Lo, V Subasri, A Goldenberg, Y Li, S Davidson, N Kanwar, L Waldman, L Brunga, Y Babichev, E G Demicco, A Gupta, M Szybowska, S Thipphavong, D Malkin, A Villani, A Shlien, R A Gladdy, R H Kim
Familial gastrointestinal stromal tumors (GIST) are rare. We present a kindred with multiple family members affected with multifocal GIST who underwent whole genome sequencing of the germline and tumor. Affected individuals with GIST harbored a germline variant found within exon 13 of the KIT gene (c.1965T>G; p.Asn655Lys, p.N655K) and a variant in the MSR1 gene (c.877 C > T; p.Arg293*, pR293X). Multifocal GISTs in the proband and her mother were treated with preoperative imatinib, which resulted in severe intolerance. The clinical features of multifocal GIST, cutaneous mastocytosis, allergies, and gut motility disorders seen in the affected individuals may represent manifestations of the multifunctional roles of KIT in interstitial cells of Cajal or mast cells and/or may be suggestive of additional molecular pathways which can contribute to tumorigenesis.
{"title":"Genomic and clinical characterization of a familial GIST kindred intolerant to imatinib.","authors":"K M Ingley, M Zatzman, A M Fontebasso, W Lo, V Subasri, A Goldenberg, Y Li, S Davidson, N Kanwar, L Waldman, L Brunga, Y Babichev, E G Demicco, A Gupta, M Szybowska, S Thipphavong, D Malkin, A Villani, A Shlien, R A Gladdy, R H Kim","doi":"10.1038/s41525-024-00405-z","DOIUrl":"10.1038/s41525-024-00405-z","url":null,"abstract":"<p><p>Familial gastrointestinal stromal tumors (GIST) are rare. We present a kindred with multiple family members affected with multifocal GIST who underwent whole genome sequencing of the germline and tumor. Affected individuals with GIST harbored a germline variant found within exon 13 of the KIT gene (c.1965T>G; p.Asn655Lys, p.N655K) and a variant in the MSR1 gene (c.877 C > T; p.Arg293*, pR293X). Multifocal GISTs in the proband and her mother were treated with preoperative imatinib, which resulted in severe intolerance. The clinical features of multifocal GIST, cutaneous mastocytosis, allergies, and gut motility disorders seen in the affected individuals may represent manifestations of the multifunctional roles of KIT in interstitial cells of Cajal or mast cells and/or may be suggestive of additional molecular pathways which can contribute to tumorigenesis.</p>","PeriodicalId":19273,"journal":{"name":"NPJ Genomic Medicine","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10973472/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140306358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-27DOI: 10.1038/s41525-024-00410-2
Vaidehi Jobanputra, Brock Schroeder, Heidi L Rehm, Wei Shen, Elizabeth Spiteri, Ghunwa Nakouzi, Stacie Taylor, Christian R Marshall, Linyan Meng, Stephen F Kingsmore, Katarzyna Ellsworth, Euan Ashley, Ryan J Taft
{"title":"Advancing access to genome sequencing for rare genetic disorders: recent progress and call to action.","authors":"Vaidehi Jobanputra, Brock Schroeder, Heidi L Rehm, Wei Shen, Elizabeth Spiteri, Ghunwa Nakouzi, Stacie Taylor, Christian R Marshall, Linyan Meng, Stephen F Kingsmore, Katarzyna Ellsworth, Euan Ashley, Ryan J Taft","doi":"10.1038/s41525-024-00410-2","DOIUrl":"10.1038/s41525-024-00410-2","url":null,"abstract":"","PeriodicalId":19273,"journal":{"name":"NPJ Genomic Medicine","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10973466/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140306357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-26DOI: 10.1038/s41525-024-00413-z
Josephina A N Meester, Anne Hebert, Maaike Bastiaansen, Laura Rabaut, Jarl Bastianen, Nele Boeckx, Kathryn Ashcroft, Paldeep S Atwal, Antoine Benichou, Clarisse Billon, Jan D Blankensteijn, Paul Brennan, Stephanie A Bucks, Ian M Campbell, Solène Conrad, Stephanie L Curtis, Majed Dasouki, Carolyn L Dent, James Eden, Himanshu Goel, Verity Hartill, Arjan C Houweling, Bertrand Isidor, Nicola Jackson, Pieter Koopman, Anita Korpioja, Minna Kraatari-Tiri, Liina Kuulavainen, Kelvin Lee, Karen J Low, Alan C Lu, Morgan L McManus, Stephen P Oakley, James Oliver, Nicole M Organ, Eline Overwater, Nicole Revencu, Alison H Trainer, Bhavya Trivedi, Claire L S Turner, Rebecca Whittington, Andreas Zankl, Dominica Zentner, Lut Van Laer, Aline Verstraeten, Bart L Loeys
Pathogenic loss-of-function variants in BGN, an X-linked gene encoding biglycan, are associated with Meester-Loeys syndrome (MRLS), a thoracic aortic aneurysm/dissection syndrome. Since the initial publication of five probands in 2017, we have considerably expanded our MRLS cohort to a total of 18 probands (16 males and 2 females). Segregation analyses identified 36 additional BGN variant-harboring family members (9 males and 27 females). The identified BGN variants were shown to lead to loss-of-function by cDNA and Western Blot analyses of skin fibroblasts or were strongly predicted to lead to loss-of-function based on the nature of the variant. No (likely) pathogenic missense variants without additional (predicted) splice effects were identified. Interestingly, a male proband with a deletion spanning the coding sequence of BGN and the 5' untranslated region of the downstream gene (ATP2B3) presented with a more severe skeletal phenotype. This may possibly be explained by expressional activation of the downstream ATPase ATP2B3 (normally repressed in skin fibroblasts) driven by the remnant BGN promotor. This study highlights that aneurysms and dissections in MRLS extend beyond the thoracic aorta, affecting the entire arterial tree, and cardiovascular symptoms may coincide with non-specific connective tissue features. Furthermore, the clinical presentation is more severe and penetrant in males compared to females. Extensive analysis at RNA, cDNA, and/or protein level is recommended to prove a loss-of-function effect before determining the pathogenicity of identified BGN missense and non-canonical splice variants. In conclusion, distinct mechanisms may underlie the wide phenotypic spectrum of MRLS patients carrying loss-of-function variants in BGN.
{"title":"Expanding the clinical spectrum of biglycan-related Meester-Loeys syndrome.","authors":"Josephina A N Meester, Anne Hebert, Maaike Bastiaansen, Laura Rabaut, Jarl Bastianen, Nele Boeckx, Kathryn Ashcroft, Paldeep S Atwal, Antoine Benichou, Clarisse Billon, Jan D Blankensteijn, Paul Brennan, Stephanie A Bucks, Ian M Campbell, Solène Conrad, Stephanie L Curtis, Majed Dasouki, Carolyn L Dent, James Eden, Himanshu Goel, Verity Hartill, Arjan C Houweling, Bertrand Isidor, Nicola Jackson, Pieter Koopman, Anita Korpioja, Minna Kraatari-Tiri, Liina Kuulavainen, Kelvin Lee, Karen J Low, Alan C Lu, Morgan L McManus, Stephen P Oakley, James Oliver, Nicole M Organ, Eline Overwater, Nicole Revencu, Alison H Trainer, Bhavya Trivedi, Claire L S Turner, Rebecca Whittington, Andreas Zankl, Dominica Zentner, Lut Van Laer, Aline Verstraeten, Bart L Loeys","doi":"10.1038/s41525-024-00413-z","DOIUrl":"10.1038/s41525-024-00413-z","url":null,"abstract":"<p><p>Pathogenic loss-of-function variants in BGN, an X-linked gene encoding biglycan, are associated with Meester-Loeys syndrome (MRLS), a thoracic aortic aneurysm/dissection syndrome. Since the initial publication of five probands in 2017, we have considerably expanded our MRLS cohort to a total of 18 probands (16 males and 2 females). Segregation analyses identified 36 additional BGN variant-harboring family members (9 males and 27 females). The identified BGN variants were shown to lead to loss-of-function by cDNA and Western Blot analyses of skin fibroblasts or were strongly predicted to lead to loss-of-function based on the nature of the variant. No (likely) pathogenic missense variants without additional (predicted) splice effects were identified. Interestingly, a male proband with a deletion spanning the coding sequence of BGN and the 5' untranslated region of the downstream gene (ATP2B3) presented with a more severe skeletal phenotype. This may possibly be explained by expressional activation of the downstream ATPase ATP2B3 (normally repressed in skin fibroblasts) driven by the remnant BGN promotor. This study highlights that aneurysms and dissections in MRLS extend beyond the thoracic aorta, affecting the entire arterial tree, and cardiovascular symptoms may coincide with non-specific connective tissue features. Furthermore, the clinical presentation is more severe and penetrant in males compared to females. Extensive analysis at RNA, cDNA, and/or protein level is recommended to prove a loss-of-function effect before determining the pathogenicity of identified BGN missense and non-canonical splice variants. In conclusion, distinct mechanisms may underlie the wide phenotypic spectrum of MRLS patients carrying loss-of-function variants in BGN.</p>","PeriodicalId":19273,"journal":{"name":"NPJ Genomic Medicine","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10966070/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140294073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-22DOI: 10.1038/s41525-024-00411-1
Marta Viggiano, Fabiola Ceroni, Paola Visconti, Annio Posar, Maria Cristina Scaduto, Laura Sandoni, Irene Baravelli, Cinzia Cameli, Magali J Rochat, Alessandra Maresca, Alessandro Vaisfeld, Davide Gentilini, Luciano Calzari, Valerio Carelli, Michael C Zody, Elena Maestrini, Elena Bacchelli
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with a strong genetic component in which rare variants contribute significantly to risk. We performed whole genome and/or exome sequencing (WGS and WES) and SNP-array analysis to identify both rare sequence and copy number variants (SNVs and CNVs) in 435 individuals from 116 ASD families. We identified 37 rare potentially damaging de novo SNVs (pdSNVs) in the cases (n = 144). Interestingly, two of them (one stop-gain and one missense variant) occurred in the same gene, BRSK2. Moreover, the identification of 8 severe de novo pdSNVs in genes not previously implicated in ASD (AGPAT3, IRX5, MGAT5B, RAB8B, RAP1A, RASAL2, SLC9A1, YME1L1) highlighted promising candidates. Potentially damaging CNVs (pdCNVs) provided support to the involvement of inherited variants in PHF3, NEGR1, TIAM1 and HOMER1 in neurodevelopmental disorders (NDD), although mostly acting as susceptibility factors with incomplete penetrance. Interpretation of identified pdSNVs/pdCNVs according to the ACMG guidelines led to a molecular diagnosis in 19/144 cases, although this figure represents a lower limit and is expected to increase thanks to further clarification of the role of likely pathogenic variants in ASD/NDD candidate genes not yet established. In conclusion, our study highlights promising ASD candidate genes and contributes to characterize the allelic diversity, mode of inheritance and phenotypic impact of de novo and inherited risk variants in ASD/NDD genes.
{"title":"Genomic analysis of 116 autism families strengthens known risk genes and highlights promising candidates.","authors":"Marta Viggiano, Fabiola Ceroni, Paola Visconti, Annio Posar, Maria Cristina Scaduto, Laura Sandoni, Irene Baravelli, Cinzia Cameli, Magali J Rochat, Alessandra Maresca, Alessandro Vaisfeld, Davide Gentilini, Luciano Calzari, Valerio Carelli, Michael C Zody, Elena Maestrini, Elena Bacchelli","doi":"10.1038/s41525-024-00411-1","DOIUrl":"10.1038/s41525-024-00411-1","url":null,"abstract":"<p><p>Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with a strong genetic component in which rare variants contribute significantly to risk. We performed whole genome and/or exome sequencing (WGS and WES) and SNP-array analysis to identify both rare sequence and copy number variants (SNVs and CNVs) in 435 individuals from 116 ASD families. We identified 37 rare potentially damaging de novo SNVs (pdSNVs) in the cases (n = 144). Interestingly, two of them (one stop-gain and one missense variant) occurred in the same gene, BRSK2. Moreover, the identification of 8 severe de novo pdSNVs in genes not previously implicated in ASD (AGPAT3, IRX5, MGAT5B, RAB8B, RAP1A, RASAL2, SLC9A1, YME1L1) highlighted promising candidates. Potentially damaging CNVs (pdCNVs) provided support to the involvement of inherited variants in PHF3, NEGR1, TIAM1 and HOMER1 in neurodevelopmental disorders (NDD), although mostly acting as susceptibility factors with incomplete penetrance. Interpretation of identified pdSNVs/pdCNVs according to the ACMG guidelines led to a molecular diagnosis in 19/144 cases, although this figure represents a lower limit and is expected to increase thanks to further clarification of the role of likely pathogenic variants in ASD/NDD candidate genes not yet established. In conclusion, our study highlights promising ASD candidate genes and contributes to characterize the allelic diversity, mode of inheritance and phenotypic impact of de novo and inherited risk variants in ASD/NDD genes.</p>","PeriodicalId":19273,"journal":{"name":"NPJ Genomic Medicine","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10959942/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140194250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-14DOI: 10.1038/s41525-024-00402-2
Olaf Riess, Marc Sturm, Benita Menden, Alexandra Liebmann, German Demidov, Dennis Witt, Nicolas Casadei, Jakob Admard, Leon Schütz, Stephan Ossowski, Stacie Taylor, Sven Schaffer, Christopher Schroeder, Andreas Dufke, Tobias Haack
In the era of precision medicine, genome sequencing (GS) has become more affordable and the importance of genomics and multi-omics in clinical care is increasingly being recognized. However, how to scale and effectively implement GS on an institutional level remains a challenge for many. Here, we present Genome First and Ge-Med, two clinical implementation studies focused on identifying the key pillars and processes that are required to make routine GS and predictive genomics a reality in the clinical setting. We describe our experience and lessons learned for a variety of topics including test logistics, patient care processes, data reporting, and infrastructure. Our model of providing clinical care and comprehensive genomic analysis from a single source may be used by other centers with a similar structure to facilitate the implementation of omics-based personalized health concepts in medicine.
在精准医疗时代,基因组测序(GS)变得更加经济实惠,基因组学和多组学在临床医疗中的重要性也日益得到认可。然而,如何在机构层面扩大并有效实施基因组测序仍然是许多人面临的挑战。在此,我们介绍 Genome First 和 Ge-Med,这两项临床实施研究的重点是确定在临床环境中实现常规 GS 和预测基因组学所需的关键支柱和流程。我们介绍了在测试物流、患者护理流程、数据报告和基础设施等方面的经验和教训。我们从单一来源提供临床护理和全面基因组分析的模式可供其他具有类似结构的中心使用,以促进在医学中实施基于 omics 的个性化健康理念。
{"title":"Genomes in clinical care","authors":"Olaf Riess, Marc Sturm, Benita Menden, Alexandra Liebmann, German Demidov, Dennis Witt, Nicolas Casadei, Jakob Admard, Leon Schütz, Stephan Ossowski, Stacie Taylor, Sven Schaffer, Christopher Schroeder, Andreas Dufke, Tobias Haack","doi":"10.1038/s41525-024-00402-2","DOIUrl":"https://doi.org/10.1038/s41525-024-00402-2","url":null,"abstract":"<p>In the era of precision medicine, genome sequencing (GS) has become more affordable and the importance of genomics and multi-omics in clinical care is increasingly being recognized. However, how to scale and effectively implement GS on an institutional level remains a challenge for many. Here, we present Genome First and Ge-Med, two clinical implementation studies focused on identifying the key pillars and processes that are required to make routine GS and predictive genomics a reality in the clinical setting. We describe our experience and lessons learned for a variety of topics including test logistics, patient care processes, data reporting, and infrastructure. Our model of providing clinical care and comprehensive genomic analysis from a single source may be used by other centers with a similar structure to facilitate the implementation of omics-based personalized health concepts in medicine.</p>","PeriodicalId":19273,"journal":{"name":"NPJ Genomic Medicine","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140129322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-05DOI: 10.1038/s41525-024-00395-y
Dhanya Ramachandran, Jonathan P Tyrer, Stefan Kommoss, Anna DeFazio, Marjorie J Riggan, Penelope M Webb, Peter A Fasching, Diether Lambrechts, María J García, Cristina Rodríguez-Antona, Marc T Goodman, Francesmary Modugno, Kirsten B Moysich, Beth Y Karlan, Jenny Lester, Susanne K Kjaer, Allan Jensen, Estrid Høgdall, Ellen L Goode, William A Cliby, Amanika Kumar, Chen Wang, Julie M Cunningham, Stacey J Winham, Alvaro N Monteiro, Joellen M Schildkraut, Daniel W Cramer, Kathryn L Terry, Linda Titus, Line Bjorge, Liv Cecilie Vestrheim Thomsen, Tanja Pejovic, Claus K Høgdall, Iain A McNeish, Taymaa May, David G Huntsman, Jacobus Pfisterer, Ulrich Canzler, Tjoung-Won Park-Simon, Willibald Schröder, Antje Belau, Lars Hanker, Philipp Harter, Jalid Sehouli, Rainer Kimmig, Nikolaus de Gregorio, Barbara Schmalfeldt, Klaus Baumann, Felix Hilpert, Alexander Burges, Boris Winterhoff, Peter Schürmann, Lisa-Marie Speith, Peter Hillemanns, Andrew Berchuck, Sharon E Johnatty, Susan J Ramus, Georgia Chenevix-Trench, Paul D P Pharoah, Thilo Dörk, Florian Heitz
Survival from ovarian cancer depends on the resection status after primary surgery. We performed genome-wide association analyses for resection status of 7705 ovarian cancer patients, including 4954 with high-grade serous carcinoma (HGSOC), to identify variants associated with residual disease. The most significant association with resection status was observed for rs72845444, upstream of MGMT, in HGSOC (p = 3.9 × 10-8). In gene-based analyses, PPP2R5C was the most strongly associated gene in HGSOC after stage adjustment. In an independent set of 378 ovarian tumours from the AGO-OVAR 11 study, variants near MGMT and PPP2R5C correlated with methylation and transcript levels, and PPP2R5C mRNA levels predicted progression-free survival in patients with residual disease. MGMT encodes a DNA repair enzyme, and PPP2R5C encodes the B56γ subunit of the PP2A tumour suppressor. Our results link heritable variation at these two loci with resection status in HGSOC.
{"title":"Genome-wide association analyses of ovarian cancer patients undergoing primary debulking surgery identify candidate genes for residual disease.","authors":"Dhanya Ramachandran, Jonathan P Tyrer, Stefan Kommoss, Anna DeFazio, Marjorie J Riggan, Penelope M Webb, Peter A Fasching, Diether Lambrechts, María J García, Cristina Rodríguez-Antona, Marc T Goodman, Francesmary Modugno, Kirsten B Moysich, Beth Y Karlan, Jenny Lester, Susanne K Kjaer, Allan Jensen, Estrid Høgdall, Ellen L Goode, William A Cliby, Amanika Kumar, Chen Wang, Julie M Cunningham, Stacey J Winham, Alvaro N Monteiro, Joellen M Schildkraut, Daniel W Cramer, Kathryn L Terry, Linda Titus, Line Bjorge, Liv Cecilie Vestrheim Thomsen, Tanja Pejovic, Claus K Høgdall, Iain A McNeish, Taymaa May, David G Huntsman, Jacobus Pfisterer, Ulrich Canzler, Tjoung-Won Park-Simon, Willibald Schröder, Antje Belau, Lars Hanker, Philipp Harter, Jalid Sehouli, Rainer Kimmig, Nikolaus de Gregorio, Barbara Schmalfeldt, Klaus Baumann, Felix Hilpert, Alexander Burges, Boris Winterhoff, Peter Schürmann, Lisa-Marie Speith, Peter Hillemanns, Andrew Berchuck, Sharon E Johnatty, Susan J Ramus, Georgia Chenevix-Trench, Paul D P Pharoah, Thilo Dörk, Florian Heitz","doi":"10.1038/s41525-024-00395-y","DOIUrl":"10.1038/s41525-024-00395-y","url":null,"abstract":"<p><p>Survival from ovarian cancer depends on the resection status after primary surgery. We performed genome-wide association analyses for resection status of 7705 ovarian cancer patients, including 4954 with high-grade serous carcinoma (HGSOC), to identify variants associated with residual disease. The most significant association with resection status was observed for rs72845444, upstream of MGMT, in HGSOC (p = 3.9 × 10<sup>-8</sup>). In gene-based analyses, PPP2R5C was the most strongly associated gene in HGSOC after stage adjustment. In an independent set of 378 ovarian tumours from the AGO-OVAR 11 study, variants near MGMT and PPP2R5C correlated with methylation and transcript levels, and PPP2R5C mRNA levels predicted progression-free survival in patients with residual disease. MGMT encodes a DNA repair enzyme, and PPP2R5C encodes the B56γ subunit of the PP2A tumour suppressor. Our results link heritable variation at these two loci with resection status in HGSOC.</p>","PeriodicalId":19273,"journal":{"name":"NPJ Genomic Medicine","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10915171/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140039900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01DOI: 10.1038/s41525-024-00398-9
Jil D Stegmann, Jeshurun C Kalanithy, Gabriel C Dworschak, Nina Ishorst, Enrico Mingardo, Filipa M Lopes, Yee Mang Ho, Phillip Grote, Tobias T Lindenberg, Öznur Yilmaz, Khadija Channab, Steve Seltzsam, Shirlee Shril, Friedhelm Hildebrandt, Felix Boschann, André Heinen, Angad Jolly, Katherine Myers, Kim McBride, Mir Reza Bekheirnia, Nasim Bekheirnia, Marcello Scala, Manuela Morleo, Vincenzo Nigro, Annalaura Torella, Michele Pinelli, Valeria Capra, Andrea Accogli, Silvia Maitz, Alice Spano, Rory J Olson, Eric W Klee, Brendan C Lanpher, Se Song Jang, Jong-Hee Chae, Philipp Steinbauer, Dietmar Rieder, Andreas R Janecke, Julia Vodopiutz, Ida Vogel, Jenny Blechingberg, Jennifer L Cohen, Kacie Riley, Victoria Klee, Laurence E Walsh, Matthias Begemann, Miriam Elbracht, Thomas Eggermann, Arzu Stoppe, Kyra Stuurman, Marjon van Slegtenhorst, Tahsin Stefan Barakat, Maureen S Mulhern, Tristan T Sands, Cheryl Cytrynbaum, Rosanna Weksberg, Federica Isidori, Tommaso Pippucci, Giulia Severi, Francesca Montanari, Michael C Kruer, Somayeh Bakhtiari, Hossein Darvish, Heiko Reutter, Gregor Hagelueken, Matthias Geyer, Adrian S Woolf, Jennifer E Posey, James R Lupski, Benjamin Odermatt, Alina C Hilger
CELSR3 codes for a planar cell polarity protein. We describe twelve affected individuals from eleven independent families with bi-allelic variants in CELSR3. Affected individuals presented with an overlapping phenotypic spectrum comprising central nervous system (CNS) anomalies (7/12), combined CNS anomalies and congenital anomalies of the kidneys and urinary tract (CAKUT) (3/12) and CAKUT only (2/12). Computational simulation of the 3D protein structure suggests the position of the identified variants to be implicated in penetrance and phenotype expression. CELSR3 immunolocalization in human embryonic urinary tract and transient suppression and rescue experiments of Celsr3 in fluorescent zebrafish reporter lines further support an embryonic role of CELSR3 in CNS and urinary tract formation.
{"title":"Bi-allelic variants in CELSR3 are implicated in central nervous system and urinary tract anomalies.","authors":"Jil D Stegmann, Jeshurun C Kalanithy, Gabriel C Dworschak, Nina Ishorst, Enrico Mingardo, Filipa M Lopes, Yee Mang Ho, Phillip Grote, Tobias T Lindenberg, Öznur Yilmaz, Khadija Channab, Steve Seltzsam, Shirlee Shril, Friedhelm Hildebrandt, Felix Boschann, André Heinen, Angad Jolly, Katherine Myers, Kim McBride, Mir Reza Bekheirnia, Nasim Bekheirnia, Marcello Scala, Manuela Morleo, Vincenzo Nigro, Annalaura Torella, Michele Pinelli, Valeria Capra, Andrea Accogli, Silvia Maitz, Alice Spano, Rory J Olson, Eric W Klee, Brendan C Lanpher, Se Song Jang, Jong-Hee Chae, Philipp Steinbauer, Dietmar Rieder, Andreas R Janecke, Julia Vodopiutz, Ida Vogel, Jenny Blechingberg, Jennifer L Cohen, Kacie Riley, Victoria Klee, Laurence E Walsh, Matthias Begemann, Miriam Elbracht, Thomas Eggermann, Arzu Stoppe, Kyra Stuurman, Marjon van Slegtenhorst, Tahsin Stefan Barakat, Maureen S Mulhern, Tristan T Sands, Cheryl Cytrynbaum, Rosanna Weksberg, Federica Isidori, Tommaso Pippucci, Giulia Severi, Francesca Montanari, Michael C Kruer, Somayeh Bakhtiari, Hossein Darvish, Heiko Reutter, Gregor Hagelueken, Matthias Geyer, Adrian S Woolf, Jennifer E Posey, James R Lupski, Benjamin Odermatt, Alina C Hilger","doi":"10.1038/s41525-024-00398-9","DOIUrl":"10.1038/s41525-024-00398-9","url":null,"abstract":"<p><p>CELSR3 codes for a planar cell polarity protein. We describe twelve affected individuals from eleven independent families with bi-allelic variants in CELSR3. Affected individuals presented with an overlapping phenotypic spectrum comprising central nervous system (CNS) anomalies (7/12), combined CNS anomalies and congenital anomalies of the kidneys and urinary tract (CAKUT) (3/12) and CAKUT only (2/12). Computational simulation of the 3D protein structure suggests the position of the identified variants to be implicated in penetrance and phenotype expression. CELSR3 immunolocalization in human embryonic urinary tract and transient suppression and rescue experiments of Celsr3 in fluorescent zebrafish reporter lines further support an embryonic role of CELSR3 in CNS and urinary tract formation.</p>","PeriodicalId":19273,"journal":{"name":"NPJ Genomic Medicine","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10907620/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140013046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}