Pub Date : 2024-12-12DOI: 10.1007/s12264-024-01322-y
Xuejie Huan, Jiangang Li, Zhaobin Chu, Hongliang Zhang, Lei Cheng, Peng Lun, Xixun Du, Xi Chen, Qian Jiao, Hong Jiang
Iron metabolism is a critical factor in tumorigenesis and development. Although TP53 mutations are prevalent in glioblastoma (GBM), the mechanisms by which TP53 regulates iron metabolism remain elusive. We reveal an imbalance iron homeostasis in GBM via TCGA database analysis. TP53 mutations disrupted iron homeostasis in GBM, characterized by elevated total iron levels and reduced ferritin (FTH). The gain-of-function effect triggered by TP53 mutations upregulates itchy E3 ubiquitin-protein ligase (ITCH) protein expression in astrocytes, leading to FTH degradation and an increase in free iron levels. TP53-mut astrocytes were more tolerant to the high iron environment induced by exogenous ferric ammonium citrate (FAC), but the increase in intracellular free iron made them more sensitive to Erastin-induced ferroptosis. Interestingly, we found that Erastin combined with FAC treatment significantly increased ferroptosis. These findings provide new insights for drug development and therapeutic modalities for GBM patients with TP53 mutations from iron metabolism perspectives.
{"title":"Dysregulation of Iron Homeostasis Mediated by FTH Increases Ferroptosis Sensitivity in TP53-Mutant Glioblastoma.","authors":"Xuejie Huan, Jiangang Li, Zhaobin Chu, Hongliang Zhang, Lei Cheng, Peng Lun, Xixun Du, Xi Chen, Qian Jiao, Hong Jiang","doi":"10.1007/s12264-024-01322-y","DOIUrl":"https://doi.org/10.1007/s12264-024-01322-y","url":null,"abstract":"<p><p>Iron metabolism is a critical factor in tumorigenesis and development. Although TP53 mutations are prevalent in glioblastoma (GBM), the mechanisms by which TP53 regulates iron metabolism remain elusive. We reveal an imbalance iron homeostasis in GBM via TCGA database analysis. TP53 mutations disrupted iron homeostasis in GBM, characterized by elevated total iron levels and reduced ferritin (FTH). The gain-of-function effect triggered by TP53 mutations upregulates itchy E3 ubiquitin-protein ligase (ITCH) protein expression in astrocytes, leading to FTH degradation and an increase in free iron levels. TP53-mut astrocytes were more tolerant to the high iron environment induced by exogenous ferric ammonium citrate (FAC), but the increase in intracellular free iron made them more sensitive to Erastin-induced ferroptosis. Interestingly, we found that Erastin combined with FAC treatment significantly increased ferroptosis. These findings provide new insights for drug development and therapeutic modalities for GBM patients with TP53 mutations from iron metabolism perspectives.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142813749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-11DOI: 10.1007/s12264-024-01332-w
Ling Li, Shenglin Wen, Ji Dai
{"title":"The Current State and Future Outlook of PET Tracers for AMPA Receptors.","authors":"Ling Li, Shenglin Wen, Ji Dai","doi":"10.1007/s12264-024-01332-w","DOIUrl":"https://doi.org/10.1007/s12264-024-01332-w","url":null,"abstract":"","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142807524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-08DOI: 10.1007/s12264-024-01329-5
Xin-Liang Wang, Zong-Yi Wang, Xing-Han Chen, Yuan Cai, Bing Hu
Acute mitochondrial damage and the energy crisis following axonal injury highlight mitochondrial transport as an important target for axonal regeneration. Syntaphilin (Snph), known for its potent mitochondrial anchoring action, has emerged as a significant inhibitor of both mitochondrial transport and axonal regeneration. Therefore, investigating the molecular mechanisms that influence the expression levels of the snph gene can provide a viable strategy to regulate mitochondrial trafficking and enhance axonal regeneration. Here, we reveal the inhibitory effect of microRNA-146b (miR-146b) on the expression of the homologous zebrafish gene syntaphilin b (snphb). Through CRISPR/Cas9 and single-cell electroporation, we elucidated the positive regulatory effect of the miR-146b-snphb axis on Mauthner cell (M-cell) axon regeneration at the global and single-cell levels. Through escape response tests, we show that miR-146b-snphb signaling positively regulates functional recovery after M-cell axon injury. In addition, continuous dynamic imaging in vivo showed that reprogramming miR-146b significantly promotes axonal mitochondrial trafficking in the pre-injury and early stages of regeneration. Our study reveals an intrinsic axonal regeneration regulatory axis that promotes axonal regeneration by reprogramming mitochondrial transport and anchoring. This regulation involves noncoding RNA, and mitochondria-associated genes may provide a potential opportunity for the repair of central nervous system injury.
急性线粒体损伤和轴突损伤后的能量危机使得线粒体转运成为轴突再生的重要靶点。Syntaphilin (Snph)以其强大的线粒体锚定作用而闻名,已成为线粒体运输和轴突再生的重要抑制剂。因此,研究影响snph基因表达水平的分子机制可以为调节线粒体运输和促进轴突再生提供可行的策略。在这里,我们揭示了microRNA-146b (miR-146b)对斑马鱼同源基因syntaphilin b (snphb)表达的抑制作用。通过CRISPR/Cas9和单细胞电穿孔,我们阐明了miR-146b-snphb轴在全局和单细胞水平上对毛特纳细胞(m细胞)轴突再生的正调控作用。通过逃逸反应测试,我们发现miR-146b-snphb信号正调控m细胞轴突损伤后的功能恢复。此外,体内连续动态成像显示,重编程miR-146b可显著促进损伤前和再生早期的轴突线粒体运输。我们的研究揭示了一个内在的轴突再生调节轴,它通过重编程线粒体运输和锚定来促进轴突再生。这种调节涉及非编码RNA和线粒体相关基因,可能为中枢神经系统损伤的修复提供了潜在的机会。
{"title":"Reprogramming miR-146b-snphb Signaling Activates Axonal Mitochondrial Transport in the Zebrafish M-cell and Facilitates Axon Regeneration After Injury.","authors":"Xin-Liang Wang, Zong-Yi Wang, Xing-Han Chen, Yuan Cai, Bing Hu","doi":"10.1007/s12264-024-01329-5","DOIUrl":"https://doi.org/10.1007/s12264-024-01329-5","url":null,"abstract":"<p><p>Acute mitochondrial damage and the energy crisis following axonal injury highlight mitochondrial transport as an important target for axonal regeneration. Syntaphilin (Snph), known for its potent mitochondrial anchoring action, has emerged as a significant inhibitor of both mitochondrial transport and axonal regeneration. Therefore, investigating the molecular mechanisms that influence the expression levels of the snph gene can provide a viable strategy to regulate mitochondrial trafficking and enhance axonal regeneration. Here, we reveal the inhibitory effect of microRNA-146b (miR-146b) on the expression of the homologous zebrafish gene syntaphilin b (snphb). Through CRISPR/Cas9 and single-cell electroporation, we elucidated the positive regulatory effect of the miR-146b-snphb axis on Mauthner cell (M-cell) axon regeneration at the global and single-cell levels. Through escape response tests, we show that miR-146b-snphb signaling positively regulates functional recovery after M-cell axon injury. In addition, continuous dynamic imaging in vivo showed that reprogramming miR-146b significantly promotes axonal mitochondrial trafficking in the pre-injury and early stages of regeneration. Our study reveals an intrinsic axonal regeneration regulatory axis that promotes axonal regeneration by reprogramming mitochondrial transport and anchoring. This regulation involves noncoding RNA, and mitochondria-associated genes may provide a potential opportunity for the repair of central nervous system injury.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142791755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-06DOI: 10.1007/s12264-024-01315-x
Hong Chen, Gang Yang, De-En Xu, Yu-Tong Du, Chao Zhu, Hua Hu, Li Luo, Lei Feng, Wenhui Huang, Yan-Yun Sun, Quan-Hong Ma
{"title":"Correction to: Autophagy in Oligodendrocyte Lineage Cells Controls Oligodendrocyte Numbers and Myelin Integrity in an Age-dependent Manner.","authors":"Hong Chen, Gang Yang, De-En Xu, Yu-Tong Du, Chao Zhu, Hua Hu, Li Luo, Lei Feng, Wenhui Huang, Yan-Yun Sun, Quan-Hong Ma","doi":"10.1007/s12264-024-01315-x","DOIUrl":"https://doi.org/10.1007/s12264-024-01315-x","url":null,"abstract":"","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142791705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The ventral anterior (VA) nucleus of the thalamus is a major target of the basal ganglia and is closely associated with the pathogenesis of Parkinson's disease (PD). Notably, the VA receives direct innervation from the hypothalamic histaminergic system. However, its role in PD remains unknown. Here, we assessed the contribution of histamine to VA neuronal activity and PD motor deficits. Functional magnetic resonance imaging showed reduced VA activity in PD patients. Optogenetic activation of VA neurons or histaminergic afferents significantly alleviated motor deficits in 6-OHDA-induced PD rats. Furthermore, histamine excited VA neurons via H1 and H2 receptors and their coupled hyperpolarization-activated cyclic nucleotide-gated channels, inward-rectifier K+ channels, or Ca2+-activated K+ channels. These results demonstrate that histaminergic afferents actively compensate for Parkinsonian motor deficits by biasing VA activity. These findings suggest that targeting VA histamine receptors and downstream ion channels may be a potential therapeutic strategy for PD motor dysfunction.
{"title":"Histaminergic Innervation of the Ventral Anterior Thalamic Nucleus Alleviates Motor Deficits in a 6-OHDA-Induced Rat Model of Parkinson's Disease.","authors":"Han-Ting Xu, Xiao-Ya Xi, Shuang Zhou, Yun-Yong Xie, Zhi-San Cui, Bei-Bei Zhang, Shu-Tao Xie, Hong-Zhao Li, Qi-Peng Zhang, Yang Pan, Xiao-Yang Zhang, Jing-Ning Zhu","doi":"10.1007/s12264-024-01320-0","DOIUrl":"https://doi.org/10.1007/s12264-024-01320-0","url":null,"abstract":"<p><p>The ventral anterior (VA) nucleus of the thalamus is a major target of the basal ganglia and is closely associated with the pathogenesis of Parkinson's disease (PD). Notably, the VA receives direct innervation from the hypothalamic histaminergic system. However, its role in PD remains unknown. Here, we assessed the contribution of histamine to VA neuronal activity and PD motor deficits. Functional magnetic resonance imaging showed reduced VA activity in PD patients. Optogenetic activation of VA neurons or histaminergic afferents significantly alleviated motor deficits in 6-OHDA-induced PD rats. Furthermore, histamine excited VA neurons via H1 and H2 receptors and their coupled hyperpolarization-activated cyclic nucleotide-gated channels, inward-rectifier K<sup>+</sup> channels, or Ca<sup>2+</sup>-activated K<sup>+</sup> channels. These results demonstrate that histaminergic afferents actively compensate for Parkinsonian motor deficits by biasing VA activity. These findings suggest that targeting VA histamine receptors and downstream ion channels may be a potential therapeutic strategy for PD motor dysfunction.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142770549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-07-02DOI: 10.1007/s12264-024-01247-6
Qi Huang, Jing Ding, Xin Wang
Unlocking task-related EEG spectra is crucial for neuroscience. Traditional convolutional neural networks (CNNs) effectively extract these features but face limitations like overfitting due to small datasets. To address this issue, we propose a lightweight CNN and assess its interpretability through the fully connected layer (FCL). Initially tested with two tasks (Task 1: open vs closed eyes, Task 2: interictal vs ictal stage), the CNN demonstrated enhanced spectral features in the alpha band for Task 1 and the theta band for Task 2, aligning with established neurophysiological characteristics. Subsequent experiments on two brain-computer interface tasks revealed a correlation between delta activity (around 1.55 Hz) and hand movement, with consistent results across pericentral electroencephalogram (EEG) channels. Compared to recent research, our method stands out by delivering task-related spectral features through FCL, resulting in significantly fewer trainable parameters while maintaining comparable interpretability. This indicates its potential suitability for a wider array of EEG decoding scenarios.
{"title":"A Method to Extract Task-Related EEG Feature Based on Lightweight Convolutional Neural Network.","authors":"Qi Huang, Jing Ding, Xin Wang","doi":"10.1007/s12264-024-01247-6","DOIUrl":"10.1007/s12264-024-01247-6","url":null,"abstract":"<p><p>Unlocking task-related EEG spectra is crucial for neuroscience. Traditional convolutional neural networks (CNNs) effectively extract these features but face limitations like overfitting due to small datasets. To address this issue, we propose a lightweight CNN and assess its interpretability through the fully connected layer (FCL). Initially tested with two tasks (Task 1: open vs closed eyes, Task 2: interictal vs ictal stage), the CNN demonstrated enhanced spectral features in the alpha band for Task 1 and the theta band for Task 2, aligning with established neurophysiological characteristics. Subsequent experiments on two brain-computer interface tasks revealed a correlation between delta activity (around 1.55 Hz) and hand movement, with consistent results across pericentral electroencephalogram (EEG) channels. Compared to recent research, our method stands out by delivering task-related spectral features through FCL, resulting in significantly fewer trainable parameters while maintaining comparable interpretability. This indicates its potential suitability for a wider array of EEG decoding scenarios.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":"1915-1930"},"PeriodicalIF":5.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11625036/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-07-29DOI: 10.1007/s12264-024-01264-5
Jiayuan Zheng, Zhanzhuang Tian
{"title":"Neurotransmitter Switching: A Novel Mechanism for Fear Generalization.","authors":"Jiayuan Zheng, Zhanzhuang Tian","doi":"10.1007/s12264-024-01264-5","DOIUrl":"10.1007/s12264-024-01264-5","url":null,"abstract":"","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":"2015-2018"},"PeriodicalIF":5.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11625032/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}