Aims: To develop a simple and robust generic tool to measure the impacts of livestock diseases on New Zealand dairy, beef and sheep farms using enterprise gross margin models.
Methods: The most recent (2018-2020) livestock production benchmarking data was extracted from industry-led economic surveys. Gross margin models were built for each enterprise type, accounting for 11 dairy farm types and 16 farm types for beef and sheep. Disease parameters, including changes in mortality, reproduction performance, milk yield, price of animals and culling rate, as well as additional expenses for veterinary intervention, were applied to the infected compartment of the herd/flock using the assumed annual within-herd disease incidence. Farm-level disease impacts were estimated as the difference in annual profit between the baseline and infected farm. The baseline gross margin models were validated against the industry data. The disease impact models were validated using a recently published study on bovine viral diarrhoea (BVD). The impact assessment tool, LIME-NZ, was developed using the statistical software R and implemented in the web-based R package Shiny. The input parameters can be varied interactively to obtain a range of disease impacts for uncertain disease parameters.
Results: The baseline gross margin models demonstrated reasonable accuracy with a mean percentage error of <14% when compared with the industry reports. The estimated annual impacts of BVD were comparable to those reported in the BVD study, NZ$38.5-140.4 thousand and $0.9-32.6 thousand per farm per year for dairy and beef enterprises, respectively.
Conclusions: LIME-NZ can be used to rapidly obtain the likely economic impacts of diseases that are endemic, recently introduced or at increased risk of introduction in the New Zealand context. This will aid communication and decision-making among government agencies and the livestock industry, including veterinarians and livestock producers, about the management of diseases, until refined information becomes available to improve decision-making.
Case history and clinical findings: An approximately 10-year-old, castrated male domestic short-haired cat developed swelling and ulceration of the second digit of the right front paw. Radiographs revealed a spherical soft tissue swelling with irregular distal margins that contained multiple lacy mineral opacities. The digit was amputated and submitted for histology. No recurrence has been observed 7 months after amputation.
Pathological and molecular findings: Histology revealed a moderately well-circumscribed proliferation of well-differentiated squamous cells arranged in trabeculae and nests. Numerous thin spicules of osseous metaplasia were visible throughout the neoplasm. Around 70% of the neoplastic cells contained papillomavirus-induced cell changes including large amphophilic cytoplasmic bodies and cells with shrunken nuclei surrounded by a clear halo. Intense p16CDKN2A protein immunostaining was visible within the neoplastic cells, suggesting papillomavirus-induced changes in cell regulation. A DNA sequence from a putative novel Taupapillomavirus type was amplified from the neoplasm.
Diagnosis: Osteoinductive squamous cell carcinoma associated with a putative novel papillomavirus type.
Clinical relevance: The findings in this case increase the number of papillomavirus types known to infect cats, and the squamous cell carcinoma had histological features that have not been previously reported. The neoplasm was not as invasive as is typical for a squamous cell carcinoma and excision appeared curative. This is the first report of an osteoinductive squamous cell carcinoma of the skin of cats and the neoplasm had a unique radiographic appearance.
Case history: Two clusters of mortality among endangered tūturuatu/tchūriwat'/shore plover (Thinornis novaeseelandiae) have occurred at captive breeding facilities around New Zealand in recent years. In the first, four chicks died at Pūkaha National Wildlife Centre (Mount Bruce, NZ) in February 2016, and in the second five adult birds at the Cape Sanctuary (Cape Kidnappers, NZ) died in 2022.
Clinical findings: In 2016, four chicks were noted to become weak, have increased vocalisations and closed eyes prior to death. The remaining chicks were treated for 5 days with amoxycillin/clavulanate orally twice daily. Water containers and brooders were cleaned and disinfected with chlorhexidine. No further mortality was seen.In the 2022 cluster, three adult breeding birds died acutely and five others showed inappetence, weight loss and diarrhoea approximately 10 days after heavy rains flooded the local river. The five birds were treated with amoxycillin/clavulanate orally twice daily and oral fluids for 5 days. Two birds died and three survived. No breeding occurred in the aviaries in the following season.
Pathological findings: In 2016, the chicks showed pulmonary changes ranging from congestion and oedema to heterophilic inflammation consistent with septicaemia.In 2022, the adult birds showed proliferation of bacteria in the distal small intestine associated with mucosal ulceration and heterophilic infiltration. Acid-fast staining of the caecal contents in one bird showed organisms consistent with Cryptosporidium spp.
Laboratory findings: Aerobic bacterial cultures of the lung and liver of two affected chicks carried out in 2016 showed heavy growth of Plesiomonas shigelloides. The same organism was cultured from water trays and holding tanks containing water boatmen (Sigara arguta) on which the chicks were fed.In 2022, cultures from the livers of three dead birds each showed a mixed bacterial growth with differing dominant organisms (Aeromonas sobria, Hafnia alvei, Citrobacter freundii and an Enterococcus sp.). PCR and sequencing confirmed Cryptosporidium parvum in the caecum of one bird. Fresh faeces from 24 breeding birds from the captive breeding facilities were negative by PCR for Cryptosporidium spp.The captive breeding facilities obtain water for the aviaries and aquatic invertebrates to feed to the chicks from local freshwater sources. Water quality testing at the Cape Sanctuary revealed concentrations of faecal indicator bacteria in excess of safe drinking water guidelines, with peaks following heavy rainfall.
Clinical relevance: Fluctuations in water quality associated with mammalian faecal bacteria can adversely affect bird health and impact on captive rearing of endangered wildlife.
Aims: To use a farm-based survey to identify characteristics of the New Zealand dairy system associated with the risk of spontaneous humeral fracture in dairy heifers.
Methods: A questionnaire was designed and made available in print and online to collect information from dairy farmers and/or veterinarians, across New Zealand, about the management and nutrition of cows from birth to first lactation. Data were collected from July 2019 to March 2020 from farms that either had recorded (case farms) or not recorded (control farms) cases of humeral fractures in dairy heifers.
Results: A total of 68 completed questionnaires were returned, with 35 responses from case farms and 33 responses from control farms. Twenty-six responses (38%) were from the South Island (13 case farms and 13 control farms) and 38 responses (56%) were from the North Island (20 case farms and 18 control farms). For four questionnaires (6%) farm location was not given. Adjusting for the effect of age when calves accessed pasture, case farms had increased odds of having Holstein-Friesian Jersey crossbreed cows as the predominant breed (OR = 9.7; 95% CI = 3.1-36.0; p < 0.001). Adjusting for the effect of breed, allowing calves access to pasture a week later decreased the odds of being a case farm (OR = 0.68; 95% CI = 0.47-0.90; p = 0.006).
Conclusions: Cows being Holstein-Friesian Jersey crossbreed was identified as a possible risk factor associated with spontaneous humeral fracture in dairy heifers in New Zealand. Given the small sample size, the likely multifactorial aetiology for humeral fractures, and the non-randomised survey, this risk factor, and the possible association between age at turn out and herd production with humeral fractures, all require further investigation.
Aim: To determine which genotypes of bovine viral diarrhoea virus (BVDV) circulate among cattle in New Zealand.
Methods: Samples comprised BVDV-1-positive sera sourced from submissions to veterinary diagnostic laboratories in 2019 (n = 25), 2020 (n = 59) and 2022 (n = 74) from both beef and dairy herds, as well as archival BVDV-1 isolates (n = 5). Fragments of the 5' untranslated region (5' UTR) and glycoprotein E2 coding sequence of the BVDV genome were amplified and sequenced. The sequences were aligned to each other and to international BVDV-1 sequences to determine their similarities and phylogenetic relationships. The 5' UTR sequences were also used to create genetic haplotype networks to determine if they were correlated with selected traits (location, type of farm, and year of collection).
Results: The 5' UTR sequences from New Zealand BVDV were closely related to each other, with pairwise identities between 89% and 100%. All clustered together and were designated as BVDV-1a (n = 144) or BVDV-1c (n = 5). There was no evidence of a correlation between the 5' UTR sequence and the geographical origin within the country, year of collection or the type of farm. Partial E2 sequences from New Zealand BVDV (n = 76) showed 74-100% identity to each other and clustered in two main groups. The subtype assignment based on the E2 sequence was the same as based on the 5' UTR analysis. This is the first comprehensive analysis of genomic variability of contemporary New Zealand BVDV based on the analysis of the non-coding (5' UTR) and coding (E2) sequences.
Conclusions and clinical relevance: Knowledge of the diversity of the viruses circulating in the country is a prerequisite for the development of effective control strategies, including a selection of suitable vaccines. The data presented suggest that New Zealand BVDV are relatively homogeneous, which should facilitate eradication efforts including selection or development of the most suitable vaccines.
Aims: To assess whether tibial tuberosity avulsion injury and subsequent surgical repair in skeletally immature dogs are associated with changes in tibial plateau angle (TPA) at skeletal maturity.
Methods: Skeletally mature (> 18 months of age) dogs that had previously undergone unilateral surgery when 4-8 months of age to repair tibial tuberosity avulsion were enrolled. Bilateral, mediolateral stifle radiographs were taken. TPA was measured digitally from the radiographs independently by two readers and compared between sides within dogs. As the number of dogs that would be enrolled for the main part of the study was unknown, to understand how the variation between left and right stifles within dogs would affect the power of the main study, 29 client-owned, skeletally mature dogs without stifle pathology were recruited prior to the main study for bilateral, mediolateral projection stifle radiographs. Variation in the differences in TPA between left and right stifles was used to estimate the likely power of the major part of the study for different numbers of enrolled dogs.
Results: From 29 dogs enrolled in the power assessment, the SD of the differences between left and right stifles was 2.1°. With 10 dogs (20 stifles) enrolled within the main part of the study, and if the SD of the differences between operated and non-operated stifles within a dog was the same as the SD of the differences between non-operated stifles within a dog (2.1°), the study would have power ≥ 0.8 if the mean difference in TPA between operated and non-operated stifles was ≥ 2.1°.Ten dogs were enrolled in phase II of the study. In 8/10 of these dogs, the TPA in the operated stifle was less than in the non-operated stifle. The mean TPA on the operated stifle was 6.4° less than on the non-operated stifle (95% CI = 2.4-10.3° less; p = 0.002). For surgery between 4 and 8 months of age, TPA at maturity increased by 2.7° (95% CI = 1.1-4.3°; p = 0.001) for each additional month of age at surgery.
Conclusions and clinical relevance: Based on this study, surgical repair of tibial tuberosity avulsion in skeletally immature dogs is associated with a smaller TPA at skeletal maturity. However, causality cannot be established from this cross-sectional study, and this association may be because stifles with a smaller TPA are predisposed to tibial tuberosity avulsion.