The effects of gelatin type (porcine skin gelatin, PSG; bovine skin gelatin, BSG; fish gelatin, FG; or cold-water fish skin gelatin, CFG) and concentration on the preparation and properties of fish oil powders were investigated in this work. The oil powders were prepared using the combination method of gelatin-sodium hexametaphosphate complex coacervation with starch sodium octenyl succinate (SSOS)-aided freeze-drying. Compared with the other gelatins, CFG—with an unobvious isoelectric point, a lower molecular weight, more hydrogen bonds, and longer gel formation time—could not form complex coacervates, which are necessary to prepare oil powders. For oil powders obtained from the other gelatins, gelatin type and concentration did not have obvious effects on microscale morphologies; they did, however, have significant effects on physicochemical properties. The highest peroxide values of the oil powders were mainly dependent on the gelatins, expressed in the following manner: PSG (153 ± 5 – 168 ± 3 meq/Kg oil) < BSG (176 ± 5 – 188 ± 1 meq/Kg oil) < FG (196 ± 11 – 201 ± 22 meq/Kg oil). Acidic and neutral pH could not dissolve the complex coacervates. However, the oil powders could be quickly dissolved to form emulsion droplets in the gastric phase, and that SSOS increased coacervate stability and promoted oil digestion during the in vitro gastrointestinal process. In sum, this study contributes fundamental information to understanding the development of fish oil solid encapsulation preparations.
{"title":"Effects of gelatin type and concentration on the preparation and properties of freeze-dried fish oil powders","authors":"Mengyang Yang, Jiawei Peng, Cuiping Shi, Ye Zi, Yulu Zheng, Xichang Wang, Jian Zhong","doi":"10.1038/s41538-024-00251-4","DOIUrl":"10.1038/s41538-024-00251-4","url":null,"abstract":"The effects of gelatin type (porcine skin gelatin, PSG; bovine skin gelatin, BSG; fish gelatin, FG; or cold-water fish skin gelatin, CFG) and concentration on the preparation and properties of fish oil powders were investigated in this work. The oil powders were prepared using the combination method of gelatin-sodium hexametaphosphate complex coacervation with starch sodium octenyl succinate (SSOS)-aided freeze-drying. Compared with the other gelatins, CFG—with an unobvious isoelectric point, a lower molecular weight, more hydrogen bonds, and longer gel formation time—could not form complex coacervates, which are necessary to prepare oil powders. For oil powders obtained from the other gelatins, gelatin type and concentration did not have obvious effects on microscale morphologies; they did, however, have significant effects on physicochemical properties. The highest peroxide values of the oil powders were mainly dependent on the gelatins, expressed in the following manner: PSG (153 ± 5 – 168 ± 3 meq/Kg oil) < BSG (176 ± 5 – 188 ± 1 meq/Kg oil) < FG (196 ± 11 – 201 ± 22 meq/Kg oil). Acidic and neutral pH could not dissolve the complex coacervates. However, the oil powders could be quickly dissolved to form emulsion droplets in the gastric phase, and that SSOS increased coacervate stability and promoted oil digestion during the in vitro gastrointestinal process. In sum, this study contributes fundamental information to understanding the development of fish oil solid encapsulation preparations.","PeriodicalId":19367,"journal":{"name":"NPJ Science of Food","volume":" ","pages":"1-11"},"PeriodicalIF":6.4,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41538-024-00251-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139662392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-30DOI: 10.1038/s41538-024-00247-0
Ville M. Koistinen, Sumanto Haldar, Marjo Tuomainen, Marko Lehtonen, Anton Klåvus, John Draper, Amanda Lloyd, Manfred Beckmann, Wendy Bal, Alastair B. Ross, Kirsten Brandt, Lee Fawcett, Chris Seal, Kati Hanhineva
Epidemiological studies have shown associations between whole-grain intake and lowered disease risk. A sufficient level of whole-grain intake to reach the health benefits has not been established, and there is limited knowledge about the impact of whole-grain intake on metabolite levels. In this clinical intervention study, we aimed to identify plasma and urine metabolites associated with two different intake levels of whole-grain wheat and rye and to correlate them with clinical plasma biomarkers. Healthy volunteers (N = 68) were divided into two groups receiving either whole-grain wheat or whole-grain rye in two four-week interventions with 48 and 96 g/d of whole grains consumed. The metabolomics of the plasma samples was performed with UPLC–QTOF-MS. Plasma alkylresorcinols were quantified with GC-MS and plasma and urinary mammalian lignans with HPLC-ECD. The high-dose intervention impacted the metabolite profile, including microbial metabolites, more in the rye-enriched diet compared with wheat. Among the increased metabolites were alkylresorcinol glucuronides, sinapyl alcohol, and pipecolic acid betaine, while the decreased metabolites included acylcarnitines and ether lipids. Plasma alkylresorcinols, urinary enterolactone, and total mammalian lignans reflected the study diets in a dose-dependent manner. Several key metabolites linked with whole-grain consumption and gut microbial metabolism increased in a linear manner between the two interventions. The results reveal that an increase in whole-grain intake, particularly rye, is strongly reflected in the metabolite profile, is correlated with clinical variables, and suggests that a diet rich in whole grains promotes the growth and/or metabolism of microbes producing potentially beneficial microbial metabolites.
{"title":"Metabolic changes in response to varying whole-grain wheat and rye intake","authors":"Ville M. Koistinen, Sumanto Haldar, Marjo Tuomainen, Marko Lehtonen, Anton Klåvus, John Draper, Amanda Lloyd, Manfred Beckmann, Wendy Bal, Alastair B. Ross, Kirsten Brandt, Lee Fawcett, Chris Seal, Kati Hanhineva","doi":"10.1038/s41538-024-00247-0","DOIUrl":"10.1038/s41538-024-00247-0","url":null,"abstract":"Epidemiological studies have shown associations between whole-grain intake and lowered disease risk. A sufficient level of whole-grain intake to reach the health benefits has not been established, and there is limited knowledge about the impact of whole-grain intake on metabolite levels. In this clinical intervention study, we aimed to identify plasma and urine metabolites associated with two different intake levels of whole-grain wheat and rye and to correlate them with clinical plasma biomarkers. Healthy volunteers (N = 68) were divided into two groups receiving either whole-grain wheat or whole-grain rye in two four-week interventions with 48 and 96 g/d of whole grains consumed. The metabolomics of the plasma samples was performed with UPLC–QTOF-MS. Plasma alkylresorcinols were quantified with GC-MS and plasma and urinary mammalian lignans with HPLC-ECD. The high-dose intervention impacted the metabolite profile, including microbial metabolites, more in the rye-enriched diet compared with wheat. Among the increased metabolites were alkylresorcinol glucuronides, sinapyl alcohol, and pipecolic acid betaine, while the decreased metabolites included acylcarnitines and ether lipids. Plasma alkylresorcinols, urinary enterolactone, and total mammalian lignans reflected the study diets in a dose-dependent manner. Several key metabolites linked with whole-grain consumption and gut microbial metabolism increased in a linear manner between the two interventions. The results reveal that an increase in whole-grain intake, particularly rye, is strongly reflected in the metabolite profile, is correlated with clinical variables, and suggests that a diet rich in whole grains promotes the growth and/or metabolism of microbes producing potentially beneficial microbial metabolites.","PeriodicalId":19367,"journal":{"name":"NPJ Science of Food","volume":" ","pages":"1-14"},"PeriodicalIF":6.4,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41538-024-00247-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139642677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-20DOI: 10.1038/s41538-023-00241-y
A. Traynor, D. Thorburn Burns, D. Wu, N. Karoonuthaisiri, A. Petchkongkaew, C. T. Elliott
Food consumption play a crucial role in human life, yet conventional food production and consumption patterns can be detrimental to the environment. Thus, research and development has been directed towards alternative proteins, with edible insects being promising sources. Edible insects have been recognised for their sustainable benefits providing protein, with less emission of greenhouse gas, land and water usage compared to sources, such as beef, chicken, and dairy products. Among the over 2000 known edible insect species, only four, namely yellow mealworm (Tenebrio molitor), migratory locust/grasshopper (Locusta migratoria), grain mould beetle, also known as lesser mealworm which is a larval form of Alphitobius diaperinus (from the family of Tenebrionidae of darkling beetles) and house cricket (Acheta domesticus), are currently authorised in specific products through specific producers in the EU. The expansion of such foods into Western diets face challenges such as consumer barriers, gaps in microbiological and chemical safety hazard data during production and processing, and the potential for fraudulent supply chain activity. The main aim of this study was to map the supply chain, through interviews with personnel along the supply chain, coupled with searches for relevant publications and governmental documents. Thus, the main potential points of food safety and fraud along the edible insect supply chain were identified. Feed substrate was identified as the main area of concern regarding microbiological and chemical food safety and novel processing techniques were forecast to be of most concern for future fraudulent activity. Despite the on-going authorisation of insect species in many countries there are substantial food safety and authenticity information gaps in this industry that need to be addressed before edible insects can be viewed as a safe and sustainable protein sources by Western consumers.
{"title":"An analysis of emerging food safety and fraud risks of novel insect proteins within complex supply chains","authors":"A. Traynor, D. Thorburn Burns, D. Wu, N. Karoonuthaisiri, A. Petchkongkaew, C. T. Elliott","doi":"10.1038/s41538-023-00241-y","DOIUrl":"10.1038/s41538-023-00241-y","url":null,"abstract":"Food consumption play a crucial role in human life, yet conventional food production and consumption patterns can be detrimental to the environment. Thus, research and development has been directed towards alternative proteins, with edible insects being promising sources. Edible insects have been recognised for their sustainable benefits providing protein, with less emission of greenhouse gas, land and water usage compared to sources, such as beef, chicken, and dairy products. Among the over 2000 known edible insect species, only four, namely yellow mealworm (Tenebrio molitor), migratory locust/grasshopper (Locusta migratoria), grain mould beetle, also known as lesser mealworm which is a larval form of Alphitobius diaperinus (from the family of Tenebrionidae of darkling beetles) and house cricket (Acheta domesticus), are currently authorised in specific products through specific producers in the EU. The expansion of such foods into Western diets face challenges such as consumer barriers, gaps in microbiological and chemical safety hazard data during production and processing, and the potential for fraudulent supply chain activity. The main aim of this study was to map the supply chain, through interviews with personnel along the supply chain, coupled with searches for relevant publications and governmental documents. Thus, the main potential points of food safety and fraud along the edible insect supply chain were identified. Feed substrate was identified as the main area of concern regarding microbiological and chemical food safety and novel processing techniques were forecast to be of most concern for future fraudulent activity. Despite the on-going authorisation of insect species in many countries there are substantial food safety and authenticity information gaps in this industry that need to be addressed before edible insects can be viewed as a safe and sustainable protein sources by Western consumers.","PeriodicalId":19367,"journal":{"name":"NPJ Science of Food","volume":" ","pages":"1-12"},"PeriodicalIF":6.4,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41538-023-00241-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139504649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-13DOI: 10.1038/s41538-023-00243-w
I. S. Saguy, C. L. M. Silva, E. Cohen
Progress in science, technology, innovation, and digital capabilities call for reassessing food science, technology, and engineering (FST&E) education and research programs. This survey targeted global professionals and students across food disciplines and nutrition. Its main objectives included assessing the status of FST&E higher education, identifying challenges and opportunities, and furnishing recommendations. Seven topics affecting the future of the FST&E curricula were evaluated by the panel as ‘High’ to ‘Very high’, namely: ‘Critical thinking’, followed by ‘Problem-solving projects’, ‘Teamwork/collaboration’, ‘Innovation/Open innovation’ and ‘Multidisciplinary’. The importance of academic partnership/collaboration with the Food Industry and Nutrition Sciences was demonstrated. Significant positive roles of the food industry in collaboration and partnerships were found. Other essential food industry attributes were related to internships, education, strategy, and vision. Collaboration between FST&E and nutrition sciences indicated the high standing of this direction. The need to integrate or converge nutrition sciences and FST&E is emphasized, especially with the growing consumer awareness of health and wellness. The study provides insights into new education and learning opportunities and new topics for future curricula.
{"title":"Emerging challenges and opportunities in innovating food science technology and engineering education","authors":"I. S. Saguy, C. L. M. Silva, E. Cohen","doi":"10.1038/s41538-023-00243-w","DOIUrl":"10.1038/s41538-023-00243-w","url":null,"abstract":"Progress in science, technology, innovation, and digital capabilities call for reassessing food science, technology, and engineering (FST&E) education and research programs. This survey targeted global professionals and students across food disciplines and nutrition. Its main objectives included assessing the status of FST&E higher education, identifying challenges and opportunities, and furnishing recommendations. Seven topics affecting the future of the FST&E curricula were evaluated by the panel as ‘High’ to ‘Very high’, namely: ‘Critical thinking’, followed by ‘Problem-solving projects’, ‘Teamwork/collaboration’, ‘Innovation/Open innovation’ and ‘Multidisciplinary’. The importance of academic partnership/collaboration with the Food Industry and Nutrition Sciences was demonstrated. Significant positive roles of the food industry in collaboration and partnerships were found. Other essential food industry attributes were related to internships, education, strategy, and vision. Collaboration between FST&E and nutrition sciences indicated the high standing of this direction. The need to integrate or converge nutrition sciences and FST&E is emphasized, especially with the growing consumer awareness of health and wellness. The study provides insights into new education and learning opportunities and new topics for future curricula.","PeriodicalId":19367,"journal":{"name":"NPJ Science of Food","volume":" ","pages":"1-8"},"PeriodicalIF":6.4,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41538-023-00243-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139432800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-13DOI: 10.1038/s41538-023-00242-x
Fernanda Cristina Pimenta, Talita Cristiane Krice Moraes, Gustavo Cesar Dacanal, Alessandra Lopes de Oliveira, Rodrigo Rodrigues Petrus
Sugarcane juice is a nutritious and energetic drink. For its processing, the use of supercritical carbon dioxide (SC-CO2) technology as an intervention potentially capable of rendering a high quality product can be considered. This study evaluated the combined effect of SC-CO2 and mild temperatures, primarily aiming for the reduction of endogenous microorganisms and enzymes in sugarcane juice (pH~5.5). Pressures (P) ranging from 74 to 351 bar, temperatures (T) between 33 and 67 °C, and holding times (t) between 20 and 70 min were tested in a central composite rotational design. Seventeen trials were performed, comprising three replicates at the central points. Counts of aerobic mesophiles, molds and yeasts, lactic acid bacteria and coliforms at 45 °C, determination of polyphenol oxidase (PPO) and peroxidase (POD) activities, and measurement of color parameters in freshly extracted and processed juice’s samples were carried out. The pH of fresh and processed juice varied between 4.6 and 6.0, and between 4.6 and 6.3, respectively. The number of decimal reductions achieved in mesophiles, molds and yeasts, lactic acid bacteria and coliforms varied between 0.1 and 3.9, 2.1 and 4.1, 0.0 and 2.1, and 0.3 to 2.5, respectively. The percentages of PPO reduction ranged from 3.51% to 64.18%. Regarding the POD, reductions between 0.27% and 41.42% were obtained. Color variations between fresh and processed samples varied between 2.0 and 12.3. As for mesophiles, molds and yeasts reduction, and soluble solids variation, none of the variables or their interactions were significant. In terms of polyphenol oxidase (PPO) reduction, only t was significant; however, T, t, and the interaction between them significantly affected the peroxidase (POD) reduction. In regards to pH variation, P, and the interaction between T and t were significant. P, T, t, and the interaction between T and t played a significant effect on color. The combination of mild temperatures and SC-CO2 can be potentially used for cane juice preservation.
{"title":"The potential use of supercritical carbon dioxide in sugarcane juice processing","authors":"Fernanda Cristina Pimenta, Talita Cristiane Krice Moraes, Gustavo Cesar Dacanal, Alessandra Lopes de Oliveira, Rodrigo Rodrigues Petrus","doi":"10.1038/s41538-023-00242-x","DOIUrl":"10.1038/s41538-023-00242-x","url":null,"abstract":"Sugarcane juice is a nutritious and energetic drink. For its processing, the use of supercritical carbon dioxide (SC-CO2) technology as an intervention potentially capable of rendering a high quality product can be considered. This study evaluated the combined effect of SC-CO2 and mild temperatures, primarily aiming for the reduction of endogenous microorganisms and enzymes in sugarcane juice (pH~5.5). Pressures (P) ranging from 74 to 351 bar, temperatures (T) between 33 and 67 °C, and holding times (t) between 20 and 70 min were tested in a central composite rotational design. Seventeen trials were performed, comprising three replicates at the central points. Counts of aerobic mesophiles, molds and yeasts, lactic acid bacteria and coliforms at 45 °C, determination of polyphenol oxidase (PPO) and peroxidase (POD) activities, and measurement of color parameters in freshly extracted and processed juice’s samples were carried out. The pH of fresh and processed juice varied between 4.6 and 6.0, and between 4.6 and 6.3, respectively. The number of decimal reductions achieved in mesophiles, molds and yeasts, lactic acid bacteria and coliforms varied between 0.1 and 3.9, 2.1 and 4.1, 0.0 and 2.1, and 0.3 to 2.5, respectively. The percentages of PPO reduction ranged from 3.51% to 64.18%. Regarding the POD, reductions between 0.27% and 41.42% were obtained. Color variations between fresh and processed samples varied between 2.0 and 12.3. As for mesophiles, molds and yeasts reduction, and soluble solids variation, none of the variables or their interactions were significant. In terms of polyphenol oxidase (PPO) reduction, only t was significant; however, T, t, and the interaction between them significantly affected the peroxidase (POD) reduction. In regards to pH variation, P, and the interaction between T and t were significant. P, T, t, and the interaction between T and t played a significant effect on color. The combination of mild temperatures and SC-CO2 can be potentially used for cane juice preservation.","PeriodicalId":19367,"journal":{"name":"NPJ Science of Food","volume":" ","pages":"1-10"},"PeriodicalIF":6.4,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41538-023-00242-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139435314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-10DOI: 10.1038/s41538-023-00246-7
Alberto Valdés, José David Sánchez-Martínez, Rocío Gallego, Elena Ibáñez, Miguel Herrero, Alejandro Cifuentes
In this study, an exhaustive chemical characterization of a Dunaliella salina (DS) microalga extract obtained using supercritical fluids has been performed, and its neuroprotective capacity has been evaluated in vivo using an Alzheimer’s disease (AD) transgenic model of Caenorhabditis elegans (strain CL4176). More than 350 compounds were annotated in the studied DS extract, with triacylglycerols, free fatty acids (FAs), carotenoids, apocarotenoids and glycerol being the most abundant. DS extract significantly protects C. elegans in a dose-dependent manner against Aβ-peptide paralysis toxicity, after 32 h, 53% of treated worms at 50 µg/mL were not paralyzed. This concentration was selected to further evaluate the transcriptomics and metabolomics changes after 26 h by using advanced analytical methodologies. The RNA-Seq data showed an alteration of 150 genes, mainly related to the stress and detoxification responses, and the retinol and lipid metabolism. The comprehensive metabolomics and lipidomics analyses allowed the identification of 793 intracellular metabolites, of which 69 were significantly altered compared to non-treated control animals. Among them, different unsaturated FAs, lysophosphatidylethanolamines, nucleosides, dipeptides and modified amino acids that have been previously reported as beneficial during AD progression, were assigned. These compounds could explain the neuroprotective capacity observed, thus, providing with new evidences of the protection mechanisms of this promising extract.
{"title":"In vivo neuroprotective capacity of a Dunaliella salina extract - comprehensive transcriptomics and metabolomics study","authors":"Alberto Valdés, José David Sánchez-Martínez, Rocío Gallego, Elena Ibáñez, Miguel Herrero, Alejandro Cifuentes","doi":"10.1038/s41538-023-00246-7","DOIUrl":"10.1038/s41538-023-00246-7","url":null,"abstract":"In this study, an exhaustive chemical characterization of a Dunaliella salina (DS) microalga extract obtained using supercritical fluids has been performed, and its neuroprotective capacity has been evaluated in vivo using an Alzheimer’s disease (AD) transgenic model of Caenorhabditis elegans (strain CL4176). More than 350 compounds were annotated in the studied DS extract, with triacylglycerols, free fatty acids (FAs), carotenoids, apocarotenoids and glycerol being the most abundant. DS extract significantly protects C. elegans in a dose-dependent manner against Aβ-peptide paralysis toxicity, after 32 h, 53% of treated worms at 50 µg/mL were not paralyzed. This concentration was selected to further evaluate the transcriptomics and metabolomics changes after 26 h by using advanced analytical methodologies. The RNA-Seq data showed an alteration of 150 genes, mainly related to the stress and detoxification responses, and the retinol and lipid metabolism. The comprehensive metabolomics and lipidomics analyses allowed the identification of 793 intracellular metabolites, of which 69 were significantly altered compared to non-treated control animals. Among them, different unsaturated FAs, lysophosphatidylethanolamines, nucleosides, dipeptides and modified amino acids that have been previously reported as beneficial during AD progression, were assigned. These compounds could explain the neuroprotective capacity observed, thus, providing with new evidences of the protection mechanisms of this promising extract.","PeriodicalId":19367,"journal":{"name":"NPJ Science of Food","volume":" ","pages":"1-15"},"PeriodicalIF":6.4,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41538-023-00246-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139406999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-08DOI: 10.1038/s41538-023-00244-9
Matthew M. Cleere, Michaela Novodvorska, Elena Geib, Jack Whittaker, Heather Dalton, Nadhira Salih, Sarah Hewitt, Matthew Kokolski, Matthias Brock, Paul S. Dyer
Penicillium roqueforti is used worldwide in the production of blue-veined cheese. The blue-green colour derives from pigmented spores formed by fungal growth. Using a combination of bioinformatics, targeted gene deletions, and heterologous gene expression we discovered that pigment formation was due to a DHN-melanin biosynthesis pathway. Systematic deletion of pathway genes altered the arising spore colour, yielding white to yellow-green to red-pink-brown phenotypes, demonstrating the potential to generate new coloured strains. There was no consistent impact on mycophenolic acid production as a result of pathway interruption although levels of roquefortine C were altered in some deletants. Importantly, levels of methyl-ketones associated with blue-cheese flavour were not impacted. UV-induced colour mutants, allowed in food production, were then generated. A range of colours were obtained and certain phenotypes were successfully mapped to pathway gene mutations. Selected colour mutants were subsequently used in cheese production and generated expected new colourations with no elevated mycotoxins, offering the exciting prospect of use in future cheese manufacture.
全世界都在使用青霉生产蓝纹奶酪。蓝绿色源自真菌生长过程中形成的色素孢子。利用生物信息学、定向基因缺失和异源基因表达相结合的方法,我们发现色素的形成是由于 DHN-黑色素生物合成途径。系统性地删除该途径的基因会改变孢子的颜色,产生从白色到黄绿色再到红粉棕色的表型,这证明了产生新的彩色菌株的潜力。虽然在一些基因缺失的菌株中,洛可可碱 C 的含量发生了变化,但途径中断并没有对霉酚酸的产生产生一致的影响。重要的是,与蓝色奶酪风味相关的甲基酮含量没有受到影响。紫外线诱导的颜色突变体可用于食品生产。获得了一系列颜色,并成功地将某些表型映射到通路基因突变上。随后,选定的颜色突变体被用于奶酪生产,并产生了预期的新颜色,没有出现霉菌毒素升高的情况,为未来奶酪生产提供了令人兴奋的应用前景。
{"title":"New colours for old in the blue-cheese fungus Penicillium roqueforti","authors":"Matthew M. Cleere, Michaela Novodvorska, Elena Geib, Jack Whittaker, Heather Dalton, Nadhira Salih, Sarah Hewitt, Matthew Kokolski, Matthias Brock, Paul S. Dyer","doi":"10.1038/s41538-023-00244-9","DOIUrl":"10.1038/s41538-023-00244-9","url":null,"abstract":"Penicillium roqueforti is used worldwide in the production of blue-veined cheese. The blue-green colour derives from pigmented spores formed by fungal growth. Using a combination of bioinformatics, targeted gene deletions, and heterologous gene expression we discovered that pigment formation was due to a DHN-melanin biosynthesis pathway. Systematic deletion of pathway genes altered the arising spore colour, yielding white to yellow-green to red-pink-brown phenotypes, demonstrating the potential to generate new coloured strains. There was no consistent impact on mycophenolic acid production as a result of pathway interruption although levels of roquefortine C were altered in some deletants. Importantly, levels of methyl-ketones associated with blue-cheese flavour were not impacted. UV-induced colour mutants, allowed in food production, were then generated. A range of colours were obtained and certain phenotypes were successfully mapped to pathway gene mutations. Selected colour mutants were subsequently used in cheese production and generated expected new colourations with no elevated mycotoxins, offering the exciting prospect of use in future cheese manufacture.","PeriodicalId":19367,"journal":{"name":"NPJ Science of Food","volume":" ","pages":"1-11"},"PeriodicalIF":6.4,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41538-023-00244-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139379333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-05DOI: 10.1038/s41538-023-00236-9
Shuangfeng Cai, Ningning Xie, Ling Zheng, Quan Li, Siyu Zhang, Qinghua Huang, Wei Luo, Mei Wu, Yidan Wang, Yilun Du, Shao-ping Deng, Lei Cai
Sweet taste receptors found in oral and extra oral tissues play important roles in the regulation of many physiological functions. Studies have shown that urine volume increases during the lifetime exposure to artificial sweeteners. However, the detailed molecular mechanism and the general effects of different artificial sweeteners exposure on urine volume remain unclear. In this study, we investigated the relationship between urinary excretion and the sweet taste receptor expression in mice after three artificial sweeteners exposure in a higher or lower concentration via animal behavioral studies, western blotting, and real-time quantitative PCR experiment in rodent model. Our results showed that high dose of acesulfame potassium and saccharin can significantly enhance the urine output and there was a positive correlation between K+ and urination volume. The acesulfame potassium administration assay of T1R3 knockout mice showed that artificial sweeteners may affect the urine output directly through the sweet taste signaling pathway. The expression of T1R3 encoding gene can be up-regulated specifically in bladder but not in kidney or other organs we tested. Through our study, the sweet taste receptors, distributing in many tissues as bladder, were indicated to function in the enhanced urine output. Different effects of long-term exposure to the three artificial sweeteners were shown and acesulfame potassium increased urine output even at a very low concentration.
{"title":"Sweet taste receptors play roles in artificial sweetener-induced enhanced urine output in mice","authors":"Shuangfeng Cai, Ningning Xie, Ling Zheng, Quan Li, Siyu Zhang, Qinghua Huang, Wei Luo, Mei Wu, Yidan Wang, Yilun Du, Shao-ping Deng, Lei Cai","doi":"10.1038/s41538-023-00236-9","DOIUrl":"10.1038/s41538-023-00236-9","url":null,"abstract":"Sweet taste receptors found in oral and extra oral tissues play important roles in the regulation of many physiological functions. Studies have shown that urine volume increases during the lifetime exposure to artificial sweeteners. However, the detailed molecular mechanism and the general effects of different artificial sweeteners exposure on urine volume remain unclear. In this study, we investigated the relationship between urinary excretion and the sweet taste receptor expression in mice after three artificial sweeteners exposure in a higher or lower concentration via animal behavioral studies, western blotting, and real-time quantitative PCR experiment in rodent model. Our results showed that high dose of acesulfame potassium and saccharin can significantly enhance the urine output and there was a positive correlation between K+ and urination volume. The acesulfame potassium administration assay of T1R3 knockout mice showed that artificial sweeteners may affect the urine output directly through the sweet taste signaling pathway. The expression of T1R3 encoding gene can be up-regulated specifically in bladder but not in kidney or other organs we tested. Through our study, the sweet taste receptors, distributing in many tissues as bladder, were indicated to function in the enhanced urine output. Different effects of long-term exposure to the three artificial sweeteners were shown and acesulfame potassium increased urine output even at a very low concentration.","PeriodicalId":19367,"journal":{"name":"NPJ Science of Food","volume":" ","pages":"1-7"},"PeriodicalIF":6.4,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41538-023-00236-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139106449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bacteriophages infect and replicate inside a bacterial host as well as serve as natural bio-control agents. Phages were once viewed as nuisances that caused fermentation failures with cheese-making and other industrial processes, which lead to economic losses, but phages are now increasingly being observed as being promising antimicrobials that can fight against spoilage and pathogenic bacteria. Pathogen-free meals that fulfil industry requirements without synthetic additives are always in demand in the food sector. This study introduces the readers to the history, sources, and biology of bacteriophages, which include their host ranges, absorption mechanisms, lytic profiles, lysogenic profiles, and the influence of external factors on the growth of phages. Phages and their derivatives have emerged as antimicrobial agents, biodetectors, and biofilm controllers, which have been comprehensively discussed in addition to their potential applications in the food and gastrointestinal tract, and they are a feasible and safe option for preventing, treating, and/or eradicating contaminants in various foods and food processing environments. Furthermore, phages and phage-derived lytic proteins can be considered potential antimicrobials in the traditional farm-to-fork context, which include phage-based mixtures and commercially available phage products. This paper concludes with some potential safety concerns that need to be addressed to enable bacteriophage use efficiently.
{"title":"Positive and negative aspects of bacteriophages and their immense role in the food chain","authors":"Soniya Ashok Ranveer, Vaishali Dasriya, Md Faruque Ahmad, Harmeet Singh Dhillon, Mrinal Samtiya, Eman Shama, Taruna Anand, Tejpal Dhewa, Vishu Chaudhary, Priya Chaudhary, Pradip Behare, Chand Ram, Dharun Vijay Puniya, Gulab D. Khedkar, António Raposo, Heesup Han, Anil Kumar Puniya","doi":"10.1038/s41538-023-00245-8","DOIUrl":"10.1038/s41538-023-00245-8","url":null,"abstract":"Bacteriophages infect and replicate inside a bacterial host as well as serve as natural bio-control agents. Phages were once viewed as nuisances that caused fermentation failures with cheese-making and other industrial processes, which lead to economic losses, but phages are now increasingly being observed as being promising antimicrobials that can fight against spoilage and pathogenic bacteria. Pathogen-free meals that fulfil industry requirements without synthetic additives are always in demand in the food sector. This study introduces the readers to the history, sources, and biology of bacteriophages, which include their host ranges, absorption mechanisms, lytic profiles, lysogenic profiles, and the influence of external factors on the growth of phages. Phages and their derivatives have emerged as antimicrobial agents, biodetectors, and biofilm controllers, which have been comprehensively discussed in addition to their potential applications in the food and gastrointestinal tract, and they are a feasible and safe option for preventing, treating, and/or eradicating contaminants in various foods and food processing environments. Furthermore, phages and phage-derived lytic proteins can be considered potential antimicrobials in the traditional farm-to-fork context, which include phage-based mixtures and commercially available phage products. This paper concludes with some potential safety concerns that need to be addressed to enable bacteriophage use efficiently.","PeriodicalId":19367,"journal":{"name":"NPJ Science of Food","volume":" ","pages":"1-13"},"PeriodicalIF":6.4,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41538-023-00245-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139087820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-09DOI: 10.1038/s41538-023-00240-z
D. A. Steindler
There is new attention to food safety resulting from the second White House Conference on Hunger, Nutrition, and Health, as well as new advisories from the World Health Organization calling for more research on sugar substitutes because of possible cancer risks. Together they point to a need for rethinking how we study sugar substitutes and taste enhancers as potentially contributing to adverse health changes. In addition to the need for more research on sweeteners and taste enhancers, including the use of sensitive bioassays, and epidemiological and human clinical trial studies, there should be a call for better truth in labeling, especially including single names for such dietary elements that would afford easier recognition and potential avoidance by those with sensitivities and allergies.
{"title":"Sugar substitutes and taste enhancers need more science, sensitivity- and allergy-guided labeling","authors":"D. A. Steindler","doi":"10.1038/s41538-023-00240-z","DOIUrl":"10.1038/s41538-023-00240-z","url":null,"abstract":"There is new attention to food safety resulting from the second White House Conference on Hunger, Nutrition, and Health, as well as new advisories from the World Health Organization calling for more research on sugar substitutes because of possible cancer risks. Together they point to a need for rethinking how we study sugar substitutes and taste enhancers as potentially contributing to adverse health changes. In addition to the need for more research on sweeteners and taste enhancers, including the use of sensitive bioassays, and epidemiological and human clinical trial studies, there should be a call for better truth in labeling, especially including single names for such dietary elements that would afford easier recognition and potential avoidance by those with sensitivities and allergies.","PeriodicalId":19367,"journal":{"name":"NPJ Science of Food","volume":" ","pages":"1-5"},"PeriodicalIF":6.4,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41538-023-00240-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138585287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}