In work features of a hydrological regime of catchments of the river of the Pripyat in climate change are considered. Researches of meteorological characteristics of the given territory show the tendency to growth, both temperatures of air, and precipitation, evaporation from a surface of water and ground also show the tendency to increase. That is not unequivocally reflected in change of a course of hydrological characteristics waters objects of territory. On a part of pools of the rivers the mid-annual runoff of water in the rivers in time tends to growth, and Change of levels of subsoil waters decreases for parts - on a turn - here, as a rule, tends a course in time opposite to a mid-annual runoff of water in the rivers. Change of the maximal temperature of water in the rivers in time repeats the tendency of a course of a runoff of water in them, i.e. at increase in a runoff of water in the rivers - the maximal temperature increases, and at reduction - decreases. The increase in temperature of a superficial component of a runoff of the rivers occurs because of the general increase in temperature of air in considered territory. Silt charge waters in all territory decreases, despite of increase in quantity of atmospheric precipitation and increases or reduction of a runoff of water in the rivers. The relationship between the water runoff layer and precipitation and soil moisture has a certain time delay. The average annual water temperature over time shows a tendency to increase at almost all stations, while the change in the maximum water temperature in rivers over time has a multidirectional tendency and to a greater extent depends on the change in water depth in the river, a decrease in high water maximums and frequent thaws, etc. The studies carried out show that the preservation of moisture in thick layers of soil (0 cm-100 cm) contributes to an increase in water flow in rivers and in the modern conditions of Polesie of Ukraine this will solve a number of problems with the provision of high-quality water resources for various industries and the population.
{"title":"Spatio-temporal Changes in the Regime of Rivers in the Pripyat River Catchment and Climate Change","authors":"Budnik Svetlana Vasilivna","doi":"10.30564/jasr.v5i2.4396","DOIUrl":"https://doi.org/10.30564/jasr.v5i2.4396","url":null,"abstract":"In work features of a hydrological regime of catchments of the river of the Pripyat in climate change are considered. Researches of meteorological characteristics of the given territory show the tendency to growth, both temperatures of air, and precipitation, evaporation from a surface of water and ground also show the tendency to increase. That is not unequivocally reflected in change of a course of hydrological characteristics waters objects of territory. On a part of pools of the rivers the mid-annual runoff of water in the rivers in time tends to growth, and Change of levels of subsoil waters decreases for parts - on a turn - here, as a rule, tends a course in time opposite to a mid-annual runoff of water in the rivers. Change of the maximal temperature of water in the rivers in time repeats the tendency of a course of a runoff of water in them, i.e. at increase in a runoff of water in the rivers - the maximal temperature increases, and at reduction - decreases. The increase in temperature of a superficial component of a runoff of the rivers occurs because of the general increase in temperature of air in considered territory. Silt charge waters in all territory decreases, despite of increase in quantity of atmospheric precipitation and increases or reduction of a runoff of water in the rivers. The relationship between the water runoff layer and precipitation and soil moisture has a certain time delay. The average annual water temperature over time shows a tendency to increase at almost all stations, while the change in the maximum water temperature in rivers over time has a multidirectional tendency and to a greater extent depends on the change in water depth in the river, a decrease in high water maximums and frequent thaws, etc. The studies carried out show that the preservation of moisture in thick layers of soil (0 cm-100 cm) contributes to an increase in water flow in rivers and in the modern conditions of Polesie of Ukraine this will solve a number of problems with the provision of high-quality water resources for various industries and the population.","PeriodicalId":193824,"journal":{"name":"Journal of Atmospheric Science Research","volume":"284 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122965375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hurricane Ida ferociously affected many south-eastern and eastern parts of the United States, making it one of the strongest hurricanes in recent years. Advanced forecast and warning tool has been used to track the path of the ex-Hurricane, Ida, as it left New Orleans on its way towards the northeast, accurately predicting significant supercell development above New York City on September 01, 2021. This advanced method accurately detected the area with the highest possible level of convective instability with 24-h lead time and even Level 5, devised in the categorical outlooks legend of the system. Therefore, an extreme level implied a very high probability of the local-scale hazard occurring above the NYC. Cloud model output fields (updrafts and downdrafts, wind shear, near-surface convergence, the vertical component of relative vorticity) show the rapid development of a strong supercell storm with rotating updrafts and a mesocyclone. The characteristic hook-shaped echo signature visible in the reflectivity patterns indicates a signal for a highly precipitable (HP) supercell with the possibility of tornado initiation. Open boundary conditions represent a good basis for simulating a tornado that evolved from a supercell storm, initialized with initial data obtained from a real-time simulation in the period when the bow echo and tornado-like signature occurred. Тhe modeled results agree well with the observations.
{"title":"Advanced Method for Forecasting and Warning of Severe Convective Weather and Local-scale Hazards","authors":"V. Spiridonov, N. Sladić, B. Jakimovski, M. Čurić","doi":"10.30564/jasr.v5i1.4375","DOIUrl":"https://doi.org/10.30564/jasr.v5i1.4375","url":null,"abstract":"Hurricane Ida ferociously affected many south-eastern and eastern parts of the United States, making it one of the strongest hurricanes in recent years. Advanced forecast and warning tool has been used to track the path of the ex-Hurricane, Ida, as it left New Orleans on its way towards the northeast, accurately predicting significant supercell development above New York City on September 01, 2021. This advanced method accurately detected the area with the highest possible level of convective instability with 24-h lead time and even Level 5, devised in the categorical outlooks legend of the system. Therefore, an extreme level implied a very high probability of the local-scale hazard occurring above the NYC. Cloud model output fields (updrafts and downdrafts, wind shear, near-surface convergence, the vertical component of relative vorticity) show the rapid development of a strong supercell storm with rotating updrafts and a mesocyclone. The characteristic hook-shaped echo signature visible in the reflectivity patterns indicates a signal for a highly precipitable (HP) supercell with the possibility of tornado initiation. Open boundary conditions represent a good basis for simulating a tornado that evolved from a supercell storm, initialized with initial data obtained from a real-time simulation in the period when the bow echo and tornado-like signature occurred. Тhe modeled results agree well with the observations.","PeriodicalId":193824,"journal":{"name":"Journal of Atmospheric Science Research","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116951493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The adverse impacts of climate variability and change are felt mostly by smallholder farmers and smallholder farming systems where rainfed agriculture is predominant. Continuous dependence on rain-fed agriculture has led to declining crop productivity and crop failure in most cases as weather patterns shift which is very problematic for crop growth. Agroforestry which is one of the climate-smart, environmentally benign and agroecological practices has been found to mitigate climate change adversities while fostering adaptation, enhancing resilience and attenuating vulnerability especially in smallholder farming systems. However, in Cameroon, limited empirical research has been done to ascertain the role played by agroforestry in climate change adaptation, resilience enhancement and vulnerability attenuation. This paper which is based on an in-depth review of literature was undertaken to uncover what has been done so far in terms of empirical studies tackling the role played by agroforestry in climate change adaptation, resilience and vulnerability attenuation in Cameroon. It was found that most of the empirical studies have been carried out in one agroecological zone – the western highlands of Cameroon, showing that smallholder farmers adopt different agroforestry practices in the face of climate change with the most common being home gardens with livestock, home gardens without livestock, scattered trees on croplands, improved fallows, live fences/hedges and windbreaks, coffeebased agroforestry, cocoa-based agroforestry, apiculture-based agroforestry, fodder banks, and plantation crop-based agroforestry practices. These agroforestry practices provide a plethora of ecosystem services categorized into provisioning, supporting, regulating and cultural which play an important role towards fostering climate change adaptation, enhancing resilience and attenuating vulnerability in smallholder farming systems. From the findings uncovered by this study, it is imperative for more empirical studies to be carried out in the other four agroecological zones of Cameroon where there is a paucity of information regarding the role played by agroforestry towards fostering climate change adaptation, enhancing resilience and attenuating vulnerability in smallholder farming systems.
{"title":"Agroforestry for Climate Change Adaptation, Resilience Enhancement and Vulnerability Attenuation in Smallholder Farming Systems in Cameroon","authors":"N. P. Awazi","doi":"10.30564/jasr.v5i1.4303","DOIUrl":"https://doi.org/10.30564/jasr.v5i1.4303","url":null,"abstract":"The adverse impacts of climate variability and change are felt mostly by smallholder farmers and smallholder farming systems where rainfed agriculture is predominant. Continuous dependence on rain-fed agriculture has led to declining crop productivity and crop failure in most cases as weather patterns shift which is very problematic for crop growth. Agroforestry which is one of the climate-smart, environmentally benign and agroecological practices has been found to mitigate climate change adversities while fostering adaptation, enhancing resilience and attenuating vulnerability especially in smallholder farming systems. However, in Cameroon, limited empirical research has been done to ascertain the role played by agroforestry in climate change adaptation, resilience enhancement and vulnerability attenuation. This paper which is based on an in-depth review of literature was undertaken to uncover what has been done so far in terms of empirical studies tackling the role played by agroforestry in climate change adaptation, resilience and vulnerability attenuation in Cameroon. It was found that most of the empirical studies have been carried out in one agroecological zone – the western highlands of Cameroon, showing that smallholder farmers adopt different agroforestry practices in the face of climate change with the most common being home gardens with livestock, home gardens without livestock, scattered trees on croplands, improved fallows, live fences/hedges and windbreaks, coffeebased agroforestry, cocoa-based agroforestry, apiculture-based agroforestry, fodder banks, and plantation crop-based agroforestry practices. These agroforestry practices provide a plethora of ecosystem services categorized into provisioning, supporting, regulating and cultural which play an important role towards fostering climate change adaptation, enhancing resilience and attenuating vulnerability in smallholder farming systems. From the findings uncovered by this study, it is imperative for more empirical studies to be carried out in the other four agroecological zones of Cameroon where there is a paucity of information regarding the role played by agroforestry towards fostering climate change adaptation, enhancing resilience and attenuating vulnerability in smallholder farming systems.","PeriodicalId":193824,"journal":{"name":"Journal of Atmospheric Science Research","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133266637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Using the principles and methods of eco-economics as the research object, Aral City comprehensively expounds the ecological service functions such as ecosystem regulation of climate, carbon sequestration, soil conservation, water conservation and purification environment, and evaluates its economic value.The total value of the estimated 2021 is 1303.65 million yuan. At the same time, the importance of ecological service functions of urban ecosystems, from large to small, is to sequester carbon and release oxygen, purify the environment, maintain soil, conserd water sources, regulate the climate. The ecosystem service function which needs to be paid attention to in the concept of ecological construction and restoration of the next stage of ecological construction in Aral City.
{"title":"A Preliminary Exploration of the Functional Value Assessment of Ecosystem Services in Aral City","authors":"G. Luo, Xiancan Li, Shu Liu, Muhang Li, S. Zhang","doi":"10.30564/jasr.v5i1.4086","DOIUrl":"https://doi.org/10.30564/jasr.v5i1.4086","url":null,"abstract":"Using the principles and methods of eco-economics as the research object, Aral City comprehensively expounds the ecological service functions such as ecosystem regulation of climate, carbon sequestration, soil conservation, water conservation and purification environment, and evaluates its economic value.The total value of the estimated 2021 is 1303.65 million yuan. At the same time, the importance of ecological service functions of urban ecosystems, from large to small, is to sequester carbon and release oxygen, purify the environment, maintain soil, conserd water sources, regulate the climate. The ecosystem service function which needs to be paid attention to in the concept of ecological construction and restoration of the next stage of ecological construction in Aral City.","PeriodicalId":193824,"journal":{"name":"Journal of Atmospheric Science Research","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117168841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In watershed hydrology, the morphometric features of a river basin are vital to examine the lower Orashi River basin morphological and hydrological aspects, as well as its flood potential, based on their morphometric characteristics using remotely sensed SRTM data that was analyzed with ArcGIS software. The areal, linear, and relief aspects of the Orashi River basin were examined as morphometric parameters. The lower Orashi river basin, according to the findings, has a total size of 625.61 km2 and a perimeter of 307.98 km, with a 5th order river network based on Strahler categorization and a dendritic drainage pattern. Because of low drainage density, the drainage texture is very fine, the relief is low, and the slope is very low. Bifurcation ratio, circularity ratio, drainage density aspect ratio, form factor, and stream frequency values indicate that the basin is less elongated and would produce surface runoff for a longer period, while topographic changes show that the river is decreasing with depth in the land area at about the same elevation as a result of sand deposited due to lack of maintenance by dredging, which implies that the basin is morphometrically elevated and sensitive to erosion and flooding. To understand geohydrological features and to plan and manage watersheds, morphometric analysis based on geographic information systems and remote sensing techniques is beneficial.
{"title":"GIS & Remote Sensing Based Morphometric Parameters and Topographic Changes of the Lower Orashi River in Niger Delta","authors":"D. Eteh, E. Akpofure, S. Otobo","doi":"10.30564/jasr.v5i1.3873","DOIUrl":"https://doi.org/10.30564/jasr.v5i1.3873","url":null,"abstract":"In watershed hydrology, the morphometric features of a river basin are vital to examine the lower Orashi River basin morphological and hydrological aspects, as well as its flood potential, based on their morphometric characteristics using remotely sensed SRTM data that was analyzed with ArcGIS software. The areal, linear, and relief aspects of the Orashi River basin were examined as morphometric parameters. The lower Orashi river basin, according to the findings, has a total size of 625.61 km2 and a perimeter of 307.98 km, with a 5th order river network based on Strahler categorization and a dendritic drainage pattern. Because of low drainage density, the drainage texture is very fine, the relief is low, and the slope is very low. Bifurcation ratio, circularity ratio, drainage density aspect ratio, form factor, and stream frequency values indicate that the basin is less elongated and would produce surface runoff for a longer period, while topographic changes show that the river is decreasing with depth in the land area at about the same elevation as a result of sand deposited due to lack of maintenance by dredging, which implies that the basin is morphometrically elevated and sensitive to erosion and flooding. To understand geohydrological features and to plan and manage watersheds, morphometric analysis based on geographic information systems and remote sensing techniques is beneficial.","PeriodicalId":193824,"journal":{"name":"Journal of Atmospheric Science Research","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133752404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study analyzed rainfall variability in Southeast region of Nigeria using graphical models, as well as using statistical approach to investigate any significant relationship between the global North Atlantic Oscillation (NAO) Index and the regional rainfall variability in region. The study was conducted in three States of Southeastern Nigeria namely, Abia, Ebonyi and Imo States that lie between Latitudes 40 40’ and 80 50’N and Longitudes 60 20’ and 80 50’E. Data for the study included 30 years (1988 - 2017) archival time-series monthly rainfall values for the three study States, acquired from Nigerian Meteorological Agency (NIMET), offices in the states, and Standardized values of NAOI (North Atlantic Oscillation Index) for the same period, which were collected from a website, on the NOAA Data Center, USA. In the data analyses, the first method was adopted by using graphs to illustrate mean annual rainfall values for thirty years. Coefficient of variability was employed in evaluating the degree of variability of values from the mean rate. The second analysis was accomplished using correlation models to ascertain any relationship between NAOI and rainfall in Southeast Nigeria. The results showed a significant variability of rainfall in the region from January to December (mean monthly) within the study period. A negative correlation value of 0.7525 was obtained from the correlation analysis, showing that the global NAO index and rainfall variability deviate in the opposite direction. Coefficient of multiple determinations (CMD) subsequently showed value of 0.031%, being the variation in rainfall as influenced by the global teleconnectivity, and this means that the NAO index has zero or no influence on rainfall variability in Southeast region of Nigeria.
{"title":"North Atlantic Oscillation and Rainfall Variability in Southeastern Nigeria: A Statistical Analysis of 30 Year Period","authors":"Okorie Fidelis Chinazor","doi":"10.30564/jasr.v4i4.3843","DOIUrl":"https://doi.org/10.30564/jasr.v4i4.3843","url":null,"abstract":"This study analyzed rainfall variability in Southeast region of Nigeria using graphical models, as well as using statistical approach to investigate any significant relationship between the global North Atlantic Oscillation (NAO) Index and the regional rainfall variability in region. The study was conducted in three States of Southeastern Nigeria namely, Abia, Ebonyi and Imo States that lie between Latitudes 40 40’ and 80 50’N and Longitudes 60 20’ and 80 50’E. Data for the study included 30 years (1988 - 2017) archival time-series monthly rainfall values for the three study States, acquired from Nigerian Meteorological Agency (NIMET), offices in the states, and Standardized values of NAOI (North Atlantic Oscillation Index) for the same period, which were collected from a website, on the NOAA Data Center, USA. In the data analyses, the first method was adopted by using graphs to illustrate mean annual rainfall values for thirty years. Coefficient of variability was employed in evaluating the degree of variability of values from the mean rate. The second analysis was accomplished using correlation models to ascertain any relationship between NAOI and rainfall in Southeast Nigeria. The results showed a significant variability of rainfall in the region from January to December (mean monthly) within the study period. A negative correlation value of 0.7525 was obtained from the correlation analysis, showing that the global NAO index and rainfall variability deviate in the opposite direction. Coefficient of multiple determinations (CMD) subsequently showed value of 0.031%, being the variation in rainfall as influenced by the global teleconnectivity, and this means that the NAO index has zero or no influence on rainfall variability in Southeast region of Nigeria.","PeriodicalId":193824,"journal":{"name":"Journal of Atmospheric Science Research","volume":" 11","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132040265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper contributes to explain the global warming instead of "giving up" and thinking about passively adapting to climate change or global warming. It makes more sense to tackle what creates the greenhouse effect and contributes to global warming. The greenhouse effect is not only due to GHGs emissions, but also to the excess IR radiation emitted during the day, by artificial surfaces, following the absorption of solar radiation. The phenomenon should be compared to that of radiative forcing well known by climatologists and which makes the link between atmospheric pollution and the density of heat fluxes stopped by the atmosphere inducing global warming. It becomes clear that type an equation here. The surplus CO2 and IR radiation emissions influence global warming, not to mention the direct part of the heat released by the combustion of fossil fuels and even renewable (wood fires, biogas, friction of wind turbine propellers with the air).
{"title":"Dual Anthropogenic Origin of Global Warming through GHGs and IR Radiation Emissions from Artificialized Soils","authors":"R. Slama","doi":"10.30564/jasr.v4i4.3502","DOIUrl":"https://doi.org/10.30564/jasr.v4i4.3502","url":null,"abstract":"This paper contributes to explain the global warming instead of \"giving up\" and thinking about passively adapting to climate change or global warming. It makes more sense to tackle what creates the greenhouse effect and contributes to global warming. The greenhouse effect is not only due to GHGs emissions, but also to the excess IR radiation emitted during the day, by artificial surfaces, following the absorption of solar radiation. The phenomenon should be compared to that of radiative forcing well known by climatologists and which makes the link between atmospheric pollution and the density of heat fluxes stopped by the atmosphere inducing global warming. It becomes clear that type an equation here. The surplus CO2 and IR radiation emissions influence global warming, not to mention the direct part of the heat released by the combustion of fossil fuels and even renewable (wood fires, biogas, friction of wind turbine propellers with the air).","PeriodicalId":193824,"journal":{"name":"Journal of Atmospheric Science Research","volume":"50 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117099550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The changing climate is unequivocal, and it is generally recognised as a threat to the terrestrial environment due to its cross-sectoral and irreversible impacts. Since the inception of industrial revolution (1750), the concentration of greenhouse gases (carbon dioxide, methane and nitrous oxide) in the atmosphere has been compromised. Until the past two centuries, the quantity of carbon dioxide and methane in the atmosphere had never surpassed about 280 part per million (ppm) and 790 part per billion (ppb), respectively. Rise in greenhouse gases (GHGs) has impacted almost every biotic component on the surface of the earth, and regions which have low adaptive capacity and greatly depend on agriculture and biodiversity for livelihood are hard hit. This phenomenon has resulted in global warming, extinction of some fora and fauna species, precipitation variability, extreme weather conditions, migration of biotic creatures from one geographical area to another, melting of icecap, sea level rise, coral breach and so on during the last century. The contribution of emission of greenhouse gases of Africa is insignificant, however, the repercussion of the changing climate is crucial in the region due to the presence of other stressors such as poverty, corruption, diseases, geographical position of the continent, low adaptive capacity, rain-fed agriculture etc., and this has led to conflict over resources usage, food insecurity, forced migration, ill-health and many more.
{"title":"Low Adaptive Capacity in Africa and Climate Change Crises","authors":"Victor Adjei, Elijah Foh Amaning","doi":"10.30564/jasr.v4i4.3723","DOIUrl":"https://doi.org/10.30564/jasr.v4i4.3723","url":null,"abstract":"The changing climate is unequivocal, and it is generally recognised as a threat to the terrestrial environment due to its cross-sectoral and irreversible impacts. Since the inception of industrial revolution (1750), the concentration of greenhouse gases (carbon dioxide, methane and nitrous oxide) in the atmosphere has been compromised. Until the past two centuries, the quantity of carbon dioxide and methane in the atmosphere had never surpassed about 280 part per million (ppm) and 790 part per billion (ppb), respectively. Rise in greenhouse gases (GHGs) has impacted almost every biotic component on the surface of the earth, and regions which have low adaptive capacity and greatly depend on agriculture and biodiversity for livelihood are hard hit. This phenomenon has resulted in global warming, extinction of some fora and fauna species, precipitation variability, extreme weather conditions, migration of biotic creatures from one geographical area to another, melting of icecap, sea level rise, coral breach and so on during the last century. The contribution of emission of greenhouse gases of Africa is insignificant, however, the repercussion of the changing climate is crucial in the region due to the presence of other stressors such as poverty, corruption, diseases, geographical position of the continent, low adaptive capacity, rain-fed agriculture etc., and this has led to conflict over resources usage, food insecurity, forced migration, ill-health and many more.","PeriodicalId":193824,"journal":{"name":"Journal of Atmospheric Science Research","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126474439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Givanildo de Gois, José Francisco de Oliveira-Júnior
The goal was to perform the filling, consistency and processing of the rainfall time series data from 1943 to 2013 in five regions of the state. Data were obtained from several sources (ANA, CPRM, INMET, SERLA and LIGHT), totaling 23 stations. The time series (raw data) showed failures that were filled with data from TRMM satellite via 3B43 product, and with the climatological normal from INMET. The 3B43 product was used from 1998 to 2013 and the climatological normal over the 1947- 1997 period. Data were submitted to descriptive and exploratory analysis, parametric tests (Shapiro-Wilks and Bartlett), cluster analysis (CA), and data processing (Box Cox) in the 23 stations. Descriptive analysis of the raw data consistency showed a probability of occurrence above 75% (high time variability). Through the CA, two homogeneous rainfall groups (G1 and G2) were defined. The group G1 and G2 represent 77.01% and 22.99% of the rainfall occurring in SRJ, respectively. Box Cox Processing was effective in stabilizing the normality of the residuals and homogeneity of variance of the monthly rainfall time series of the five regions of the state. Data from 3B43 product and the climatological normal can be used as an alternative source of quality data for gap filling.
{"title":"Processing of Rainfall Time Series Data in the State of Rio de Janeiro","authors":"Givanildo de Gois, José Francisco de Oliveira-Júnior","doi":"10.30564/jasr.v4i4.3603","DOIUrl":"https://doi.org/10.30564/jasr.v4i4.3603","url":null,"abstract":"The goal was to perform the filling, consistency and processing of the rainfall time series data from 1943 to 2013 in five regions of the state. Data were obtained from several sources (ANA, CPRM, INMET, SERLA and LIGHT), totaling 23 stations. The time series (raw data) showed failures that were filled with data from TRMM satellite via 3B43 product, and with the climatological normal from INMET. The 3B43 product was used from 1998 to 2013 and the climatological normal over the 1947- 1997 period. Data were submitted to descriptive and exploratory analysis, parametric tests (Shapiro-Wilks and Bartlett), cluster analysis (CA), and data processing (Box Cox) in the 23 stations. Descriptive analysis of the raw data consistency showed a probability of occurrence above 75% (high time variability). Through the CA, two homogeneous rainfall groups (G1 and G2) were defined. The group G1 and G2 represent 77.01% and 22.99% of the rainfall occurring in SRJ, respectively. Box Cox Processing was effective in stabilizing the normality of the residuals and homogeneity of variance of the monthly rainfall time series of the five regions of the state. Data from 3B43 product and the climatological normal can be used as an alternative source of quality data for gap filling.","PeriodicalId":193824,"journal":{"name":"Journal of Atmospheric Science Research","volume":"04 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123855905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}