首页 > 最新文献

Nucleic Acids Research最新文献

英文 中文
Correction to 'Recruitment of homodimeric proneural factors by conserved CAT-CAT E-boxes drives major epigenetic reconfiguration in cortical neurogenesis'.
IF 16.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-08 DOI: 10.1093/nar/gkaf129
{"title":"Correction to 'Recruitment of homodimeric proneural factors by conserved CAT-CAT E-boxes drives major epigenetic reconfiguration in cortical neurogenesis'.","authors":"","doi":"10.1093/nar/gkaf129","DOIUrl":"https://doi.org/10.1093/nar/gkaf129","url":null,"abstract":"","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"53 4","pages":""},"PeriodicalIF":16.6,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143441137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A systematic survey of TF function in E. coli suggests RNAP stabilization is a prevalent strategy for both repressors and activators.
IF 16.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-08 DOI: 10.1093/nar/gkaf058
Sunil Guharajan, Vinuselvi Parisutham, Robert C Brewster

Transcription factors (TFs) are often classified as activators or repressors, yet these context-dependent labels are inadequate to predict quantitative profiles that emerge across different promoters. A mechanistic understanding of how different regulatory sequences shape TF function is challenging due to the lack of systematic genetic control in endogenous genes. To address this, we use a library of Escherichia coli strains with precise control of TF copy number, measuring the quantitative regulatory input-output function of 90 TFs on synthetic promoters that isolate the contributions of TF binding sequence, location, and basal promoter strength to gene expression. We interpret the measured regulation of these TFs using a thermodynamic model of gene expression and uncover stabilization of RNA polymerase as a pervasive regulatory mechanism, common to both activating and repressing TFs. This property suggests ways to tune the dynamic range of gene expression through the interplay of stabilizing TF function and RNA polymerase basal occupancy, a phenomenon we confirm by measuring fold change for stabilizing TFs across synthetic promoter sequences spanning over 100-fold basal expression. Our work deconstructs TF function at a mechanistic level, providing foundational principles on how gene expression is realized across different promoter contexts, with implications for decoding the relationship between sequence and gene expression.

{"title":"A systematic survey of TF function in E. coli suggests RNAP stabilization is a prevalent strategy for both repressors and activators.","authors":"Sunil Guharajan, Vinuselvi Parisutham, Robert C Brewster","doi":"10.1093/nar/gkaf058","DOIUrl":"10.1093/nar/gkaf058","url":null,"abstract":"<p><p>Transcription factors (TFs) are often classified as activators or repressors, yet these context-dependent labels are inadequate to predict quantitative profiles that emerge across different promoters. A mechanistic understanding of how different regulatory sequences shape TF function is challenging due to the lack of systematic genetic control in endogenous genes. To address this, we use a library of Escherichia coli strains with precise control of TF copy number, measuring the quantitative regulatory input-output function of 90 TFs on synthetic promoters that isolate the contributions of TF binding sequence, location, and basal promoter strength to gene expression. We interpret the measured regulation of these TFs using a thermodynamic model of gene expression and uncover stabilization of RNA polymerase as a pervasive regulatory mechanism, common to both activating and repressing TFs. This property suggests ways to tune the dynamic range of gene expression through the interplay of stabilizing TF function and RNA polymerase basal occupancy, a phenomenon we confirm by measuring fold change for stabilizing TFs across synthetic promoter sequences spanning over 100-fold basal expression. Our work deconstructs TF function at a mechanistic level, providing foundational principles on how gene expression is realized across different promoter contexts, with implications for decoding the relationship between sequence and gene expression.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"53 4","pages":""},"PeriodicalIF":16.6,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806353/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143374495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Allovalent scavenging of activation domains in the transcription factor ANAC013 gears transcriptional regulation.
IF 16.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-08 DOI: 10.1093/nar/gkaf065
Elise Delaforge, Amanda D Due, Frederik Friis Theisen, Nicolas Morffy, Charlotte O'Shea, Martin Blackledge, Lucia C Strader, Karen Skriver, Birthe B Kragelund

Transcriptional regulation involves interactions between transcription factors, coregulators, and DNA. Intrinsic disorder is a major player in this regulation, but mechanisms driven by disorder remain elusive. Here, we address molecular communication within the stress-regulating Arabidopsis thaliana transcription factor ANAC013. Through high-throughput screening of ANAC013 for transcriptional activation activity, we identify three activation domains within its C-terminal intrinsically disordered region. Two of these overlap with acidic islands and form dynamic interactions with the DNA-binding domain and are released, not only upon binding of target promoter DNA, but also by nonspecific DNA. We show that independently of DNA binding, the RST (RCD--SRO--TAF4) domain of the negative regulator RCD1 (Radical-induced Cell Death1) scavenges the two acidic activation domains positioned vis-à-vis through allovalent binding, leading to dynamic occupation at enhanced affinity. We propose an allovalency model for transcriptional regulation, where sequentially close activation domains in both DNA-bound and DNA-free states allow for efficient regulation. The model is likely relevant for many transcription factor systems, explaining the functional advantage of carrying sequentially close activation domains.

{"title":"Allovalent scavenging of activation domains in the transcription factor ANAC013 gears transcriptional regulation.","authors":"Elise Delaforge, Amanda D Due, Frederik Friis Theisen, Nicolas Morffy, Charlotte O'Shea, Martin Blackledge, Lucia C Strader, Karen Skriver, Birthe B Kragelund","doi":"10.1093/nar/gkaf065","DOIUrl":"10.1093/nar/gkaf065","url":null,"abstract":"<p><p>Transcriptional regulation involves interactions between transcription factors, coregulators, and DNA. Intrinsic disorder is a major player in this regulation, but mechanisms driven by disorder remain elusive. Here, we address molecular communication within the stress-regulating Arabidopsis thaliana transcription factor ANAC013. Through high-throughput screening of ANAC013 for transcriptional activation activity, we identify three activation domains within its C-terminal intrinsically disordered region. Two of these overlap with acidic islands and form dynamic interactions with the DNA-binding domain and are released, not only upon binding of target promoter DNA, but also by nonspecific DNA. We show that independently of DNA binding, the RST (RCD--SRO--TAF4) domain of the negative regulator RCD1 (Radical-induced Cell Death1) scavenges the two acidic activation domains positioned vis-à-vis through allovalent binding, leading to dynamic occupation at enhanced affinity. We propose an allovalency model for transcriptional regulation, where sequentially close activation domains in both DNA-bound and DNA-free states allow for efficient regulation. The model is likely relevant for many transcription factor systems, explaining the functional advantage of carrying sequentially close activation domains.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"53 4","pages":""},"PeriodicalIF":16.6,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811731/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143399058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
R2DT: a comprehensive platform for visualizing RNA secondary structure.
IF 16.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-08 DOI: 10.1093/nar/gkaf032
Holly McCann, Caeden D Meade, Loren Dean Williams, Anton S Petrov, Philip Z Johnson, Anne E Simon, David Hoksza, Eric P Nawrocki, Patricia P Chan, Todd M Lowe, Carlos Eduardo Ribas, Blake A Sweeney, Fábio Madeira, Stephen Anyango, Sri Devan Appasamy, Mandar Deshpande, Mihaly Varadi, Sameer Velankar, Craig L Zirbel, Aleksei Naiden, Fabrice Jossinet, Anton I Petrov

RNA secondary (2D) structure visualization is an essential tool for understanding RNA function. R2DT is a software package designed to visualize RNA 2D structures in consistent, recognizable, and reproducible layouts. The latest release, R2DT 2.0, introduces multiple significant features, including the ability to display position-specific information, such as single nucleotide polymorphisms or SHAPE reactivities. It also offers a new template-free mode allowing visualization of RNAs without pre-existing templates, alongside a constrained folding mode and support for animated visualizations. Users can interactively modify R2DT diagrams, either manually or using natural language prompts, to generate new templates or create publication-quality images. Additionally, R2DT features faster performance, an expanded template library, and a growing collection of compatible tools and utilities. Already integrated into multiple biological databases, R2DT has evolved into a comprehensive platform for RNA 2D visualization, accessible at https://r2dt.bio.

{"title":"R2DT: a comprehensive platform for visualizing RNA secondary structure.","authors":"Holly McCann, Caeden D Meade, Loren Dean Williams, Anton S Petrov, Philip Z Johnson, Anne E Simon, David Hoksza, Eric P Nawrocki, Patricia P Chan, Todd M Lowe, Carlos Eduardo Ribas, Blake A Sweeney, Fábio Madeira, Stephen Anyango, Sri Devan Appasamy, Mandar Deshpande, Mihaly Varadi, Sameer Velankar, Craig L Zirbel, Aleksei Naiden, Fabrice Jossinet, Anton I Petrov","doi":"10.1093/nar/gkaf032","DOIUrl":"10.1093/nar/gkaf032","url":null,"abstract":"<p><p>RNA secondary (2D) structure visualization is an essential tool for understanding RNA function. R2DT is a software package designed to visualize RNA 2D structures in consistent, recognizable, and reproducible layouts. The latest release, R2DT 2.0, introduces multiple significant features, including the ability to display position-specific information, such as single nucleotide polymorphisms or SHAPE reactivities. It also offers a new template-free mode allowing visualization of RNAs without pre-existing templates, alongside a constrained folding mode and support for animated visualizations. Users can interactively modify R2DT diagrams, either manually or using natural language prompts, to generate new templates or create publication-quality images. Additionally, R2DT features faster performance, an expanded template library, and a growing collection of compatible tools and utilities. Already integrated into multiple biological databases, R2DT has evolved into a comprehensive platform for RNA 2D visualization, accessible at https://r2dt.bio.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"53 4","pages":""},"PeriodicalIF":16.6,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806352/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143374469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A phosphorylation signal activates genome-wide transcriptional control by BfmR, the global regulator of Acinetobacter resistance and virulence.
IF 16.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-08 DOI: 10.1093/nar/gkaf063
Nicole Raustad, Yunfei Dai, Akira Iinishi, Arpita Mohapatra, Mark W Soo, Everett Hay, Gabrielle M Hernandez, Edward Geisinger

The nosocomial pathogen Acinetobacter baumannii is a major threat to human health. The sensor kinase-response regulator system, BfmS-BfmR, is essential to multidrug resistance and virulence in the bacterium and represents a potential antimicrobial target. Important questions remain about how the system controls resistance and pathogenesis. Although BfmR knockout alters expression of >1000 genes, its direct regulon is undefined. Moreover, how phosphorylation controls the regulator is unclear. Here, we address these problems by combining mutagenesis, ChIP-seq, and in vitro phosphorylation to study the functions of phospho-BfmR. We show that phosphorylation is required for BfmR-mediated gene regulation, antibiotic resistance, and sepsis development in vivo. Consistent with activating the protein, phosphorylation induces dimerization and target DNA affinity. Integrated analysis of genome-wide binding and transcriptional profiles of BfmR led to additional key findings: (1) Phosphorylation dramatically expands the number of genomic sites BfmR binds; (2) DNA recognition involves a direct repeat motif widespread across promoters; (3) BfmR directly regulates 303 genes as activator (e.g., capsule, peptidoglycan, and outer membrane biogenesis) or repressor (pilus biogenesis); (4) BfmR controls several non-coding sRNAs. These studies reveal the centrality of a phosphorylation signal in driving A. baumannii disease and disentangle the extensive pathogenic gene-regulatory network under its control.

{"title":"A phosphorylation signal activates genome-wide transcriptional control by BfmR, the global regulator of Acinetobacter resistance and virulence.","authors":"Nicole Raustad, Yunfei Dai, Akira Iinishi, Arpita Mohapatra, Mark W Soo, Everett Hay, Gabrielle M Hernandez, Edward Geisinger","doi":"10.1093/nar/gkaf063","DOIUrl":"10.1093/nar/gkaf063","url":null,"abstract":"<p><p>The nosocomial pathogen Acinetobacter baumannii is a major threat to human health. The sensor kinase-response regulator system, BfmS-BfmR, is essential to multidrug resistance and virulence in the bacterium and represents a potential antimicrobial target. Important questions remain about how the system controls resistance and pathogenesis. Although BfmR knockout alters expression of >1000 genes, its direct regulon is undefined. Moreover, how phosphorylation controls the regulator is unclear. Here, we address these problems by combining mutagenesis, ChIP-seq, and in vitro phosphorylation to study the functions of phospho-BfmR. We show that phosphorylation is required for BfmR-mediated gene regulation, antibiotic resistance, and sepsis development in vivo. Consistent with activating the protein, phosphorylation induces dimerization and target DNA affinity. Integrated analysis of genome-wide binding and transcriptional profiles of BfmR led to additional key findings: (1) Phosphorylation dramatically expands the number of genomic sites BfmR binds; (2) DNA recognition involves a direct repeat motif widespread across promoters; (3) BfmR directly regulates 303 genes as activator (e.g., capsule, peptidoglycan, and outer membrane biogenesis) or repressor (pilus biogenesis); (4) BfmR controls several non-coding sRNAs. These studies reveal the centrality of a phosphorylation signal in driving A. baumannii disease and disentangle the extensive pathogenic gene-regulatory network under its control.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"53 4","pages":""},"PeriodicalIF":16.6,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806355/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143374494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The G-quadruplex experimental drug QN-302 impairs liposarcoma cell growth by inhibiting MDM2 expression and restoring p53 levels.
IF 16.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-08 DOI: 10.1093/nar/gkaf085
Beatrice Tosoni, Eisa Naghshineh, Irene Zanin, Irene Gallina, Lorenzo Di Pietro, Loredana Cleris, Matteo Nadai, Mara Lecchi, Paolo Verderio, Pietro Pratesi, Sandro Pasquali, Nadia Zaffaroni, Stephen Neidle, Marco Folini, Sara N Richter

Well-differentiated/dedifferentiated liposarcomas (WD/DDLPSs) account for ∼60% of all liposarcomas. They have a poor prognosis due to limited therapeutic options. WD/DDLPSs are characterized by aberrant expression of mouse double minute 2 (MDM2), which forms G-quadruplexes (G4s) in its promoter. Here, we investigated the possibility of targeting WD/DDLPSs with small molecules against the MDM2 G4s. Among the molecules tested, the naphthalene diimide derivative QN-302 significantly impaired WD/DDLPS cell growth and its activity strikingly paralleled cell-specific G4 abundance as measured by CUT&Tag and RNA sequencing analysis. QN-302 stabilized MDM2 G4s at the P2 inducible promoter and prevented polymerase progression from the constitutive P1 promoter, thereby inhibiting the formation of full-length MDM2 transcripts. This resulted in the accumulation of p53 through the p53-MDM2 autoregulatory feedback loop, ultimately leading to apoptotic cell death. In patient-derived xenograft mouse models, QN-302 treatment reduced tumour volume distribution and was well tolerated. We have identified a novel and effective therapeutic strategy to reduce MDM2 expression and promote p53 reactivation in tumours harbouring wild-type TP53, such as WD/DDLPSs.

{"title":"The G-quadruplex experimental drug QN-302 impairs liposarcoma cell growth by inhibiting MDM2 expression and restoring p53 levels.","authors":"Beatrice Tosoni, Eisa Naghshineh, Irene Zanin, Irene Gallina, Lorenzo Di Pietro, Loredana Cleris, Matteo Nadai, Mara Lecchi, Paolo Verderio, Pietro Pratesi, Sandro Pasquali, Nadia Zaffaroni, Stephen Neidle, Marco Folini, Sara N Richter","doi":"10.1093/nar/gkaf085","DOIUrl":"10.1093/nar/gkaf085","url":null,"abstract":"<p><p>Well-differentiated/dedifferentiated liposarcomas (WD/DDLPSs) account for ∼60% of all liposarcomas. They have a poor prognosis due to limited therapeutic options. WD/DDLPSs are characterized by aberrant expression of mouse double minute 2 (MDM2), which forms G-quadruplexes (G4s) in its promoter. Here, we investigated the possibility of targeting WD/DDLPSs with small molecules against the MDM2 G4s. Among the molecules tested, the naphthalene diimide derivative QN-302 significantly impaired WD/DDLPS cell growth and its activity strikingly paralleled cell-specific G4 abundance as measured by CUT&Tag and RNA sequencing analysis. QN-302 stabilized MDM2 G4s at the P2 inducible promoter and prevented polymerase progression from the constitutive P1 promoter, thereby inhibiting the formation of full-length MDM2 transcripts. This resulted in the accumulation of p53 through the p53-MDM2 autoregulatory feedback loop, ultimately leading to apoptotic cell death. In patient-derived xenograft mouse models, QN-302 treatment reduced tumour volume distribution and was well tolerated. We have identified a novel and effective therapeutic strategy to reduce MDM2 expression and promote p53 reactivation in tumours harbouring wild-type TP53, such as WD/DDLPSs.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"53 4","pages":""},"PeriodicalIF":16.6,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11822379/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143409502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The human genome encodes a multitude of novel miRNAs.
IF 16.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-08 DOI: 10.1093/nar/gkaf070
Fan Gao, Fang Wang, Yue Chen, Bolin Deng, Fujian Yang, Huifen Cao, Junjie Chen, Huiling Chen, Fei Qi, Philipp Kapranov

Human cells generate a vast complexity of noncoding RNAs, the "RNA dark matter," which includes a vast small RNA (sRNA) transcriptome. The biogenesis, biological relevance, and mechanisms of action of most of these transcripts remain unknown, and they are widely assumed to represent degradation products. Here, we aimed to functionally characterize human sRNA transcriptome by attempting to answer the following question-can a significant number of novel sRNAs correspond to novel members of known classes, specifically, microRNAs (miRNAs)? By developing and validating a miRNA discovery pipeline, we show that at least 2726 novel canonical miRNAs, majority of which represent novel miRNA families, exist in just one human cell line compared to just 1914 known miRNA loci. Moreover, potentially tens of thousands of miRNAs remain to be discovered. Strikingly, many novel miRNAs map to exons of protein-coding genes emphasizing a complex and interleaved architecture of the genome. The existence of so many novel members of a functional class of sRNAs suggest that the human sRNA transcriptome harbors a multitude of novel regulatory molecules. Overall, these results suggest that we are at the very beginning of understanding the true functional complexity of the sRNA component of the "RNA dark matter."

{"title":"The human genome encodes a multitude of novel miRNAs.","authors":"Fan Gao, Fang Wang, Yue Chen, Bolin Deng, Fujian Yang, Huifen Cao, Junjie Chen, Huiling Chen, Fei Qi, Philipp Kapranov","doi":"10.1093/nar/gkaf070","DOIUrl":"https://doi.org/10.1093/nar/gkaf070","url":null,"abstract":"<p><p>Human cells generate a vast complexity of noncoding RNAs, the \"RNA dark matter,\" which includes a vast small RNA (sRNA) transcriptome. The biogenesis, biological relevance, and mechanisms of action of most of these transcripts remain unknown, and they are widely assumed to represent degradation products. Here, we aimed to functionally characterize human sRNA transcriptome by attempting to answer the following question-can a significant number of novel sRNAs correspond to novel members of known classes, specifically, microRNAs (miRNAs)? By developing and validating a miRNA discovery pipeline, we show that at least 2726 novel canonical miRNAs, majority of which represent novel miRNA families, exist in just one human cell line compared to just 1914 known miRNA loci. Moreover, potentially tens of thousands of miRNAs remain to be discovered. Strikingly, many novel miRNAs map to exons of protein-coding genes emphasizing a complex and interleaved architecture of the genome. The existence of so many novel members of a functional class of sRNAs suggest that the human sRNA transcriptome harbors a multitude of novel regulatory molecules. Overall, these results suggest that we are at the very beginning of understanding the true functional complexity of the sRNA component of the \"RNA dark matter.\"</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"53 4","pages":""},"PeriodicalIF":16.6,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143441156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
zol and fai: large-scale targeted detection and evolutionary investigation of gene clusters
IF 14.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-05 DOI: 10.1093/nar/gkaf045
Rauf Salamzade, Patricia Q Tran, Cody Martin, Abigail L Manson, Michael S Gilmore, Ashlee M Earl, Karthik Anantharaman, Lindsay R Kalan
Many universally and conditionally important genes are genomically aggregated within clusters. Here, we introduce fai and zol, which together enable large-scale comparative analysis of different types of gene clusters and mobile-genetic elements, such as biosynthetic gene clusters (BGCs) or viruses. Fundamentally, they overcome a current bottleneck to reliably perform comprehensive orthology inference at large scale across broad taxonomic contexts and thousands of genomes. First, fai allows the identification of orthologous instances of a query gene cluster of interest amongst a database of target genomes. Subsequently, zol enables reliable, context-specific inference of ortholog groups for individual protein-encoding genes across gene cluster instances. In addition, zol performs functional annotation and computes a variety of evolutionary statistics for each inferred ortholog group. Importantly, in comparison to tools for visual exploration of homologous relationships between gene clusters, zol can scale to handle thousands of gene cluster instances and produce detailed reports that are easy to digest. To showcase fai and zol, we apply them for: (i) longitudinal tracking of a virus in metagenomes, (ii) performing population genetic investigations of BGCs for a fungal species, and (iii) uncovering evolutionary trends for a virulence-associated gene cluster across thousands of genomes from a diverse bacterial genus.
{"title":"zol and fai: large-scale targeted detection and evolutionary investigation of gene clusters","authors":"Rauf Salamzade, Patricia Q Tran, Cody Martin, Abigail L Manson, Michael S Gilmore, Ashlee M Earl, Karthik Anantharaman, Lindsay R Kalan","doi":"10.1093/nar/gkaf045","DOIUrl":"https://doi.org/10.1093/nar/gkaf045","url":null,"abstract":"Many universally and conditionally important genes are genomically aggregated within clusters. Here, we introduce fai and zol, which together enable large-scale comparative analysis of different types of gene clusters and mobile-genetic elements, such as biosynthetic gene clusters (BGCs) or viruses. Fundamentally, they overcome a current bottleneck to reliably perform comprehensive orthology inference at large scale across broad taxonomic contexts and thousands of genomes. First, fai allows the identification of orthologous instances of a query gene cluster of interest amongst a database of target genomes. Subsequently, zol enables reliable, context-specific inference of ortholog groups for individual protein-encoding genes across gene cluster instances. In addition, zol performs functional annotation and computes a variety of evolutionary statistics for each inferred ortholog group. Importantly, in comparison to tools for visual exploration of homologous relationships between gene clusters, zol can scale to handle thousands of gene cluster instances and produce detailed reports that are easy to digest. To showcase fai and zol, we apply them for: (i) longitudinal tracking of a virus in metagenomes, (ii) performing population genetic investigations of BGCs for a fungal species, and (iii) uncovering evolutionary trends for a virulence-associated gene cluster across thousands of genomes from a diverse bacterial genus.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"27 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143125164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural and mechanistic insights into the activation of a short prokaryotic argonaute system from archaeon Sulfolobus islandicus
IF 14.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-03 DOI: 10.1093/nar/gkaf059
Zhikang Dai, Yu Chen, Zeyuan Guan, Xueting Chen, Keyi Tan, Kaiyue Yang, Xuhui Yan, Yidong Liu, Zhou Gong, Wenyuan Han, Tingting Zou
Prokaryotic Argonaute proteins (pAgos) defend the host against invading nucleic acids, including plasmids and viruses. Short pAgo systems confer immunity by inducing cell death upon detecting invading nucleic acids. However, the activation mechanism of the SiAgo system, comprising a short pAgo from the archaeon Sulfolobus islandicus and its associated proteins SiAga1 and SiAga2, remains largely unknown. Here, we determined the cryo-electron microscopy structures of the SiAgo–Aga1 apo complex and the RNA–DNA-bound SiAgo–Aga1 complex at resolutions of 2.7 and 3.0 Å, respectively. Our results revealed that a positively charged pocket is generated from the interaction between SiAgo and SiAga1, exhibiting an architecture similar to APAZ-pAgo of short pAgo systems and accommodating the nucleic acids. Further investigation elucidated the conserved mechanism of nucleic acid recognition by SiAgo–Aga1. Both the SiAgo–Aga1 interaction and nucleic acid recognition by the complex are essential for antiviral defense. Biochemical and structural analyses demonstrated that SiAgo–Aga1 undergoes extensive conformational changes upon binding to the RNA–DNA duplex, thereby licensing its interaction with the effector SiAga2 to trigger the immune response. Overall, our findings highlight the evolutionary conservation of Agos across phylogenetic clades and provide structural insights into the activation mechanism of the SiAgo system.
{"title":"Structural and mechanistic insights into the activation of a short prokaryotic argonaute system from archaeon Sulfolobus islandicus","authors":"Zhikang Dai, Yu Chen, Zeyuan Guan, Xueting Chen, Keyi Tan, Kaiyue Yang, Xuhui Yan, Yidong Liu, Zhou Gong, Wenyuan Han, Tingting Zou","doi":"10.1093/nar/gkaf059","DOIUrl":"https://doi.org/10.1093/nar/gkaf059","url":null,"abstract":"Prokaryotic Argonaute proteins (pAgos) defend the host against invading nucleic acids, including plasmids and viruses. Short pAgo systems confer immunity by inducing cell death upon detecting invading nucleic acids. However, the activation mechanism of the SiAgo system, comprising a short pAgo from the archaeon Sulfolobus islandicus and its associated proteins SiAga1 and SiAga2, remains largely unknown. Here, we determined the cryo-electron microscopy structures of the SiAgo–Aga1 apo complex and the RNA–DNA-bound SiAgo–Aga1 complex at resolutions of 2.7 and 3.0 Å, respectively. Our results revealed that a positively charged pocket is generated from the interaction between SiAgo and SiAga1, exhibiting an architecture similar to APAZ-pAgo of short pAgo systems and accommodating the nucleic acids. Further investigation elucidated the conserved mechanism of nucleic acid recognition by SiAgo–Aga1. Both the SiAgo–Aga1 interaction and nucleic acid recognition by the complex are essential for antiviral defense. Biochemical and structural analyses demonstrated that SiAgo–Aga1 undergoes extensive conformational changes upon binding to the RNA–DNA duplex, thereby licensing its interaction with the effector SiAga2 to trigger the immune response. Overall, our findings highlight the evolutionary conservation of Agos across phylogenetic clades and provide structural insights into the activation mechanism of the SiAgo system.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"39 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143077633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The short conserved region-2 of LARP4 interacts with ribosome-associated RACK1 and promotes translation
IF 14.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-03 DOI: 10.1093/nar/gkaf053
Amitabh Ranjan, Sandy Mattijssen, Nithin Charlly, Isabel Cruz Gallardo, Leah F Pitman, Jennifer C Coleman, Maria R Conte, Richard J Maraia
LARP4 interacts with poly(A)-binding protein (PABP) to protect messenger RNAs (mRNAs) from deadenylation and decay, and recent data indicate it can direct the translation of functionally related mRNA subsets. LARP4 was known to bind RACK1, a ribosome-associated protein, although the specific regions involved and relevance had been undetermined. Here, through a combination of in-cell and in vitro methodologies, we identified positions 615–625 in conserved region-2 (CR2) of LARP4 (and 646–656 in LARP4B) as directly binding RACK1. Consistent with these results, AlphaFold2-Multimer predicted high-confidence interaction of CR2 with RACK1 propellers 5 and 6. CR2 mutations strongly decreased LARP4 association with cellular RACK1 and ribosomes by multiple assays, whereas PABP association was less affected, consistent with independent interactions. The CR2 mutations decreased LARP4’s ability to stabilize a β-globin mRNA reporter containing an AU-rich element (ARE) to higher degree than β-globin and GFP (green fluorescent protein) mRNAs lacking the ARE. We show LARP4 robustly increases translation of β-glo-ARE mRNA, whereas the LARP4 CR2 mutant is impaired. Analysis of nanoLuc-ARE mRNA for production of luciferase activity confirmed LARP4 promotes translation efficiency, while CR2 mutations are disabling. Thus, LARP4 CR2-mediated interaction with RACK1 can promote translational efficiency of some mRNAs.
{"title":"The short conserved region-2 of LARP4 interacts with ribosome-associated RACK1 and promotes translation","authors":"Amitabh Ranjan, Sandy Mattijssen, Nithin Charlly, Isabel Cruz Gallardo, Leah F Pitman, Jennifer C Coleman, Maria R Conte, Richard J Maraia","doi":"10.1093/nar/gkaf053","DOIUrl":"https://doi.org/10.1093/nar/gkaf053","url":null,"abstract":"LARP4 interacts with poly(A)-binding protein (PABP) to protect messenger RNAs (mRNAs) from deadenylation and decay, and recent data indicate it can direct the translation of functionally related mRNA subsets. LARP4 was known to bind RACK1, a ribosome-associated protein, although the specific regions involved and relevance had been undetermined. Here, through a combination of in-cell and in vitro methodologies, we identified positions 615–625 in conserved region-2 (CR2) of LARP4 (and 646–656 in LARP4B) as directly binding RACK1. Consistent with these results, AlphaFold2-Multimer predicted high-confidence interaction of CR2 with RACK1 propellers 5 and 6. CR2 mutations strongly decreased LARP4 association with cellular RACK1 and ribosomes by multiple assays, whereas PABP association was less affected, consistent with independent interactions. The CR2 mutations decreased LARP4’s ability to stabilize a β-globin mRNA reporter containing an AU-rich element (ARE) to higher degree than β-globin and GFP (green fluorescent protein) mRNAs lacking the ARE. We show LARP4 robustly increases translation of β-glo-ARE mRNA, whereas the LARP4 CR2 mutant is impaired. Analysis of nanoLuc-ARE mRNA for production of luciferase activity confirmed LARP4 promotes translation efficiency, while CR2 mutations are disabling. Thus, LARP4 CR2-mediated interaction with RACK1 can promote translational efficiency of some mRNAs.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"38 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143077630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nucleic Acids Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1