Therapeutic modalities to programmably increase protein production are in critical need to address diseases caused by deficient gene expression via haploinsufficiency. Restoring physiological protein levels by increasing translation of their cognate messenger RNA (mRNA) would be an advantageous approach to correct gene expression but has not been evaluated in an in vivo disease model. Here, we investigated whether a translational activator could improve phenotype in a Dravet syndrome mouse model, a severe developmental and epileptic encephalopathy caused by SCN1a haploinsufficiency, by increasing translation of the SCN1a mRNA. We identify and engineer human proteins capable of increasing mRNA translation using the CRISPR-Cas-inspired RNA-targeting system (CIRTS) platform to enable programmable, guide RNA-directed translational activation with entirely engineered human proteins. We identify a compact (601 amino acid) CIRTS translational activator (CIRTS-4GT3) that can drive targeted, sustained translation increases up to 100% from three endogenous transcripts relevant to epilepsy and neurodevelopmental disorders. AAV-delivery of CIRTS-4GT3 targeting SCN1a mRNA to a Dravet syndrome mouse model led to increased SCN1a translation and improved survivability and seizure threshold-key phenotypic indicators of Dravet syndrome. This work validates a strategy to address SCN1a haploinsufficiency and emphasizes the preclinical potential of targeted translational activation to address neurological haploinsufficiency.
扫码关注我们
求助内容:
应助结果提醒方式:
