Lingjie Liu, Yixin Zhao, Rebecca Hassett, Shushan Toneyan, Peter K Koo, Adam Siepel
Rates of transcription elongation vary within and across eukaryotic gene bodies. Here, we introduce new methods for predicting elongation rates from nascent RNA sequencing data. First, we devise a probabilistic model that predicts nucleotide-specific elongation rates as a generalized linear function of nearby genomic and epigenomic features. We validate this model with simulations and apply it to public PRO-seq (Precision Run-On Sequencing) and epigenomic data for four cell types, finding that reductions in local elongation rate are associated with cytosine nucleotides, DNA methylation, splice sites, RNA stem-loops, CTCF (CCCTC-binding factor) binding sites, and several histone marks, including H3K36me3 and H4K20me1. By contrast, increases in local elongation rate are associated with thymines, A+T-rich and low-complexity sequences, and H3K79me2 marks. We then introduce a convolutional neural network that improves our local rate predictions. Our analysis is the first to permit genome-wide predictions of relative nucleotide-specific elongation rates.
{"title":"Probabilistic and machine-learning methods for predicting local rates of transcription elongation from nascent RNA sequencing data.","authors":"Lingjie Liu, Yixin Zhao, Rebecca Hassett, Shushan Toneyan, Peter K Koo, Adam Siepel","doi":"10.1093/nar/gkaf092","DOIUrl":"10.1093/nar/gkaf092","url":null,"abstract":"<p><p>Rates of transcription elongation vary within and across eukaryotic gene bodies. Here, we introduce new methods for predicting elongation rates from nascent RNA sequencing data. First, we devise a probabilistic model that predicts nucleotide-specific elongation rates as a generalized linear function of nearby genomic and epigenomic features. We validate this model with simulations and apply it to public PRO-seq (Precision Run-On Sequencing) and epigenomic data for four cell types, finding that reductions in local elongation rate are associated with cytosine nucleotides, DNA methylation, splice sites, RNA stem-loops, CTCF (CCCTC-binding factor) binding sites, and several histone marks, including H3K36me3 and H4K20me1. By contrast, increases in local elongation rate are associated with thymines, A+T-rich and low-complexity sequences, and H3K79me2 marks. We then introduce a convolutional neural network that improves our local rate predictions. Our analysis is the first to permit genome-wide predictions of relative nucleotide-specific elongation rates.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"53 4","pages":""},"PeriodicalIF":16.6,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11833694/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143441151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ewing sarcomas (ESs) are biologically aggressive tumours of bone and soft tissues caused by chromosomal translocations yielding in-frame fusion proteins driving the neoplastic transformation. The DNA/RNA helicase DHX9 is an important regulator of cellular processes often deregulated in cancer. Using transcriptome profiling, our study reveals cancer-relevant genes whose splicing is modulated by DHX9. Immunodepletion experiments demonstrate that DHX9 impacts on the recruitment of U2 small nuclear RNP (snRNP) onto the pre-mRNA. Analysis of structure and sequence features of DHX9 target exons reveal that DHX9-sensitive exons display shorter flanking introns and contain HNRNPC and TIA1 consensus motifs. A prominent target of DHX9 is exon 11 in the Cortactin (CTTN) gene, which is alternatively spliced to generate isoforms with different activities in cell migration and tumour invasion. Alternative inclusion of the exon 11 in CTTN gene is one of the most recurrent isoform switches in multiple cancer types, thus highlighting the pivotal role of DHX9 in defining the tumour phenotype. Biochemical analyses reveal that DHX9 binding promotes the recruitment of U2snRNP, SF3B1, and SF3A2 to the splice sites flanking exon 11. These findings uncover a new role of DHX9 in the control of co-transcriptional splicing in ES, which may represent a new druggable target to counteract ES malignancy.
{"title":"DHX9 helicase impacts on splicing decisions by modulating U2 snRNP recruitment in Ewing sarcoma cells.","authors":"Valentina Frezza, Lidia Chellini, Veronica Riccioni, Davide Bonvissuto, Ramona Palombo, Maria Paola Paronetto","doi":"10.1093/nar/gkaf068","DOIUrl":"https://doi.org/10.1093/nar/gkaf068","url":null,"abstract":"<p><p>Ewing sarcomas (ESs) are biologically aggressive tumours of bone and soft tissues caused by chromosomal translocations yielding in-frame fusion proteins driving the neoplastic transformation. The DNA/RNA helicase DHX9 is an important regulator of cellular processes often deregulated in cancer. Using transcriptome profiling, our study reveals cancer-relevant genes whose splicing is modulated by DHX9. Immunodepletion experiments demonstrate that DHX9 impacts on the recruitment of U2 small nuclear RNP (snRNP) onto the pre-mRNA. Analysis of structure and sequence features of DHX9 target exons reveal that DHX9-sensitive exons display shorter flanking introns and contain HNRNPC and TIA1 consensus motifs. A prominent target of DHX9 is exon 11 in the Cortactin (CTTN) gene, which is alternatively spliced to generate isoforms with different activities in cell migration and tumour invasion. Alternative inclusion of the exon 11 in CTTN gene is one of the most recurrent isoform switches in multiple cancer types, thus highlighting the pivotal role of DHX9 in defining the tumour phenotype. Biochemical analyses reveal that DHX9 binding promotes the recruitment of U2snRNP, SF3B1, and SF3A2 to the splice sites flanking exon 11. These findings uncover a new role of DHX9 in the control of co-transcriptional splicing in ES, which may represent a new druggable target to counteract ES malignancy.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"53 4","pages":""},"PeriodicalIF":16.6,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143458953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Lu, Marion Schuller, Nathan P Bullen, Petra Mikolcevic, Iva Zonjic, Roberto Raggiaschi, Andreja Mikoc, John C Whitney, Ivan Ahel
Nucleic acid ADP-ribosylation and its associated enzymes involved in catalysis and hydrolysis are widespread among all kingdoms of life. Yet, its roles in mammalian and bacterial physiology including inter-/intraspecies conflicts are currently underexplored. Recently, several examples of enzymatic systems for RNA ADP-ribosylation have been identified, showing that all major types of RNA species, including messenger RNA, ribosomal RNA, and transfer RNA, can be targeted by ADP-ribosyltransferases (ARTs) which attach ADP-ribose modifications either to nucleobases, the backbone ribose, or phosphate ends. Yet little is known about the reversibility of RNA ADP-ribosylation by ADP-ribosylhydrolases belonging to the macrodomain, ARH, or NADAR superfamilies. Here, we characterize the hydrolytic activity of ADP-ribosylhydrolases on RNA species ADP-ribosylated by mammalian and bacterial ARTs. We demonstrate that NADAR ADP-ribosylhydrolases are the only hydrolase family able to reverse guanosine RNA base ADP-ribosylation while they are inactive on phosphate-end RNA ADP-ribosylation. Furthermore, we reveal that macrodomain-containing PARG enzymes are the only hydrolase type with the ability for specific and efficient reversal of 2'-hydroxyl group RNA ADP-ribosylation catalysed by Pseudomonas aeruginosa effector toxin RhsP2. Moreover, using the RhsP2/bacterial PARG system as an example, we demonstrate that PARG enzymes can act as protective immunity enzymes against antibacterial RNA-targeting ART toxins.
{"title":"Discovery of reversing enzymes for RNA ADP-ribosylation reveals a possible defence module against toxic attack.","authors":"Yang Lu, Marion Schuller, Nathan P Bullen, Petra Mikolcevic, Iva Zonjic, Roberto Raggiaschi, Andreja Mikoc, John C Whitney, Ivan Ahel","doi":"10.1093/nar/gkaf069","DOIUrl":"https://doi.org/10.1093/nar/gkaf069","url":null,"abstract":"<p><p>Nucleic acid ADP-ribosylation and its associated enzymes involved in catalysis and hydrolysis are widespread among all kingdoms of life. Yet, its roles in mammalian and bacterial physiology including inter-/intraspecies conflicts are currently underexplored. Recently, several examples of enzymatic systems for RNA ADP-ribosylation have been identified, showing that all major types of RNA species, including messenger RNA, ribosomal RNA, and transfer RNA, can be targeted by ADP-ribosyltransferases (ARTs) which attach ADP-ribose modifications either to nucleobases, the backbone ribose, or phosphate ends. Yet little is known about the reversibility of RNA ADP-ribosylation by ADP-ribosylhydrolases belonging to the macrodomain, ARH, or NADAR superfamilies. Here, we characterize the hydrolytic activity of ADP-ribosylhydrolases on RNA species ADP-ribosylated by mammalian and bacterial ARTs. We demonstrate that NADAR ADP-ribosylhydrolases are the only hydrolase family able to reverse guanosine RNA base ADP-ribosylation while they are inactive on phosphate-end RNA ADP-ribosylation. Furthermore, we reveal that macrodomain-containing PARG enzymes are the only hydrolase type with the ability for specific and efficient reversal of 2'-hydroxyl group RNA ADP-ribosylation catalysed by Pseudomonas aeruginosa effector toxin RhsP2. Moreover, using the RhsP2/bacterial PARG system as an example, we demonstrate that PARG enzymes can act as protective immunity enzymes against antibacterial RNA-targeting ART toxins.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"53 4","pages":""},"PeriodicalIF":16.6,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143458958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pranjali Bhandare, Ashwin Narain, Julia Hofstetter, Teresa Rummel, Julia Wenzel, Christina Schülein-Völk, Stephanie Lamer, Ursula Eilers, Andreas Schlosser, Martin Eilers, Florian Erhard, Elmar Wolf
Transcripts produced by RNA polymerase II (RNAPII) are fundamental for cellular responses to environmental changes. It is therefore no surprise that there exist multiple avenues for the regulation of this process. To explore the regulation mediated by RNAPII-interacting proteins, we used a small interfering RNA (siRNA)-based screen to systematically evaluate their influence on RNA synthesis. We identified several proteins that strongly affected RNAPII activity. We evaluated one of the top hits, SCAF1 (SR-related C-terminal domain-associated factor 1), using an auxin-inducible degradation system and sequencing approaches. In agreement with our screen results, acute depletion of SCAF1 decreased RNA synthesis, and showed an increase of Serine-2 phosphorylated-RNAPII (pS2-RNAPII). We found that the accumulation of pS2-RNAPII within the gene body occurred at GC-rich regions and was indicative of stalled RNAPII complexes. The accumulation of stalled RNAPII complexes was accompanied by reduced recruitment of initiating RNAPII, explaining the observed global decrease in transcriptional output. Furthermore, upon SCAF1 depletion, RNAPII complexes showed increased association with components of the proteasomal-degradation machinery. We concluded that in cells lacking SCAF1, RNAPII undergoes a rather interrupted passage, resulting in intervention by the proteasomal-degradation machinery to clear stalled RNAPII. While cells survive the compromised transcription caused by absence of SCAF1, further inhibition of proteasomal-degradation machinery is synthetically lethal.
{"title":"Phenotypic screens identify SCAF1 as critical activator of RNAPII elongation and global transcription.","authors":"Pranjali Bhandare, Ashwin Narain, Julia Hofstetter, Teresa Rummel, Julia Wenzel, Christina Schülein-Völk, Stephanie Lamer, Ursula Eilers, Andreas Schlosser, Martin Eilers, Florian Erhard, Elmar Wolf","doi":"10.1093/nar/gkae1219","DOIUrl":"10.1093/nar/gkae1219","url":null,"abstract":"<p><p>Transcripts produced by RNA polymerase II (RNAPII) are fundamental for cellular responses to environmental changes. It is therefore no surprise that there exist multiple avenues for the regulation of this process. To explore the regulation mediated by RNAPII-interacting proteins, we used a small interfering RNA (siRNA)-based screen to systematically evaluate their influence on RNA synthesis. We identified several proteins that strongly affected RNAPII activity. We evaluated one of the top hits, SCAF1 (SR-related C-terminal domain-associated factor 1), using an auxin-inducible degradation system and sequencing approaches. In agreement with our screen results, acute depletion of SCAF1 decreased RNA synthesis, and showed an increase of Serine-2 phosphorylated-RNAPII (pS2-RNAPII). We found that the accumulation of pS2-RNAPII within the gene body occurred at GC-rich regions and was indicative of stalled RNAPII complexes. The accumulation of stalled RNAPII complexes was accompanied by reduced recruitment of initiating RNAPII, explaining the observed global decrease in transcriptional output. Furthermore, upon SCAF1 depletion, RNAPII complexes showed increased association with components of the proteasomal-degradation machinery. We concluded that in cells lacking SCAF1, RNAPII undergoes a rather interrupted passage, resulting in intervention by the proteasomal-degradation machinery to clear stalled RNAPII. While cells survive the compromised transcription caused by absence of SCAF1, further inhibition of proteasomal-degradation machinery is synthetically lethal.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":" ","pages":""},"PeriodicalIF":16.6,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142854820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Edilene Siqueira, Cecilia D Velasco, Ariadna Tarrasón, Marta Soler, Tara Srinivas, Fernando Setién, Cristina Oliveira-Mateos, Marta Casado-Pelaez, Laura Martinez-Verbo, Judith Armstrong, Manel Esteller, Letícia F Alves, Artur Llobet, Sonia Guil
Rett syndrome (RTT) is a severe neurodevelopmental disorder primarily caused by loss-of-function mutations in the MECP2 gene, resulting in diverse cellular dysfunctions. Here, we investigated the role of the long noncoding RNA (lncRNA) NEAT1 in the context of MeCP2 deficiency using human neural cells and RTT patient samples. Through single-cell RNA sequencing and molecular analyses, we found that NEAT1 is markedly downregulated in MECP2 knockout (KO) cells at various stages of neural differentiation. NEAT1 downregulation correlated with aberrant activation of the mTOR pathway, abnormal protein metabolism, and dysregulated autophagy, contributing to the accumulation of protein aggregates and impaired mitochondrial function. Reactivation of NEAT1 in MECP2-KO cells rescued these phenotypes, indicating its critical role downstream of MECP2. Furthermore, direct RNA-RNA interaction was revealed as the key process for NEAT1 influence on autophagy genes, leading to altered subcellular localization of specific autophagy-related messenger RNAs and impaired biogenesis of autophagic complexes. Importantly, NEAT1 restoration rescued the morphological defects observed in MECP2-KO neurons, highlighting its crucial role in neuronal maturation. Overall, our findings elucidate lncRNA NEAT1 as a key mediator of MeCP2 function, regulating essential pathways involved in protein metabolism, autophagy, and neuronal morphology.
{"title":"NEAT1-mediated regulation of proteostasis and mRNA localization impacts autophagy dysregulation in Rett syndrome.","authors":"Edilene Siqueira, Cecilia D Velasco, Ariadna Tarrasón, Marta Soler, Tara Srinivas, Fernando Setién, Cristina Oliveira-Mateos, Marta Casado-Pelaez, Laura Martinez-Verbo, Judith Armstrong, Manel Esteller, Letícia F Alves, Artur Llobet, Sonia Guil","doi":"10.1093/nar/gkaf074","DOIUrl":"https://doi.org/10.1093/nar/gkaf074","url":null,"abstract":"<p><p>Rett syndrome (RTT) is a severe neurodevelopmental disorder primarily caused by loss-of-function mutations in the MECP2 gene, resulting in diverse cellular dysfunctions. Here, we investigated the role of the long noncoding RNA (lncRNA) NEAT1 in the context of MeCP2 deficiency using human neural cells and RTT patient samples. Through single-cell RNA sequencing and molecular analyses, we found that NEAT1 is markedly downregulated in MECP2 knockout (KO) cells at various stages of neural differentiation. NEAT1 downregulation correlated with aberrant activation of the mTOR pathway, abnormal protein metabolism, and dysregulated autophagy, contributing to the accumulation of protein aggregates and impaired mitochondrial function. Reactivation of NEAT1 in MECP2-KO cells rescued these phenotypes, indicating its critical role downstream of MECP2. Furthermore, direct RNA-RNA interaction was revealed as the key process for NEAT1 influence on autophagy genes, leading to altered subcellular localization of specific autophagy-related messenger RNAs and impaired biogenesis of autophagic complexes. Importantly, NEAT1 restoration rescued the morphological defects observed in MECP2-KO neurons, highlighting its crucial role in neuronal maturation. Overall, our findings elucidate lncRNA NEAT1 as a key mediator of MeCP2 function, regulating essential pathways involved in protein metabolism, autophagy, and neuronal morphology.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"53 4","pages":""},"PeriodicalIF":16.6,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143458988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maha Zewail-Foote, Imee M A Del Mundo, Alex W Klattenhoff, Karen M Vasquez
Genetic instability is a hallmark of cancer, and mutation hotspots in human cancer genomes co-localize with alternative DNA structure-forming sequences (e.g. H-DNA), implicating them in cancer etiology. H-DNA has been shown to stimulate genetic instability in mammals. Here, we demonstrate a new paradigm of genetic instability, where a cancer-associated H-DNA-forming sequence accumulates more oxidative lesions than B-DNA under conditions of oxidative stress (OS), often found in tumor microenvironments. We show that OS results in destabilization of the H-DNA structure and attenuates the fold increase in H-DNA-induced mutations over control B-DNA in mammalian cells. Furthermore, the mutation spectra revealed that the damaged H-DNA-containing region was processed differently compared to H-DNA in the absence of oxidative damage in mammalian cells. The oxidatively modified H-DNA elicits differential recruitment of DNA repair proteins from both the base excision repair and nucleotide excision repair mechanisms. Altogether, these results suggest a new model of genetic instability whereby H-DNA-forming regions are hotspots for DNA damage in oxidative microenvironments, resulting in its altered mutagenic processing. Our findings provide valuable insights into the role of OS in DNA structure-induced genetic instability and may establish H-DNA-forming sequences as promising genomic biomarkers and potential therapeutic targets for genetic diseases.
{"title":"Oxidative damage within alternative DNA structures results in aberrant mutagenic processing.","authors":"Maha Zewail-Foote, Imee M A Del Mundo, Alex W Klattenhoff, Karen M Vasquez","doi":"10.1093/nar/gkaf066","DOIUrl":"https://doi.org/10.1093/nar/gkaf066","url":null,"abstract":"<p><p>Genetic instability is a hallmark of cancer, and mutation hotspots in human cancer genomes co-localize with alternative DNA structure-forming sequences (e.g. H-DNA), implicating them in cancer etiology. H-DNA has been shown to stimulate genetic instability in mammals. Here, we demonstrate a new paradigm of genetic instability, where a cancer-associated H-DNA-forming sequence accumulates more oxidative lesions than B-DNA under conditions of oxidative stress (OS), often found in tumor microenvironments. We show that OS results in destabilization of the H-DNA structure and attenuates the fold increase in H-DNA-induced mutations over control B-DNA in mammalian cells. Furthermore, the mutation spectra revealed that the damaged H-DNA-containing region was processed differently compared to H-DNA in the absence of oxidative damage in mammalian cells. The oxidatively modified H-DNA elicits differential recruitment of DNA repair proteins from both the base excision repair and nucleotide excision repair mechanisms. Altogether, these results suggest a new model of genetic instability whereby H-DNA-forming regions are hotspots for DNA damage in oxidative microenvironments, resulting in its altered mutagenic processing. Our findings provide valuable insights into the role of OS in DNA structure-induced genetic instability and may establish H-DNA-forming sequences as promising genomic biomarkers and potential therapeutic targets for genetic diseases.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"53 4","pages":""},"PeriodicalIF":16.6,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143459009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fan Gao, Fang Wang, Yue Chen, Bolin Deng, Fujian Yang, Huifen Cao, Junjie Chen, Huiling Chen, Fei Qi, Philipp Kapranov
Human cells generate a vast complexity of noncoding RNAs, the "RNA dark matter," which includes a vast small RNA (sRNA) transcriptome. The biogenesis, biological relevance, and mechanisms of action of most of these transcripts remain unknown, and they are widely assumed to represent degradation products. Here, we aimed to functionally characterize human sRNA transcriptome by attempting to answer the following question-can a significant number of novel sRNAs correspond to novel members of known classes, specifically, microRNAs (miRNAs)? By developing and validating a miRNA discovery pipeline, we show that at least 2726 novel canonical miRNAs, majority of which represent novel miRNA families, exist in just one human cell line compared to just 1914 known miRNA loci. Moreover, potentially tens of thousands of miRNAs remain to be discovered. Strikingly, many novel miRNAs map to exons of protein-coding genes emphasizing a complex and interleaved architecture of the genome. The existence of so many novel members of a functional class of sRNAs suggest that the human sRNA transcriptome harbors a multitude of novel regulatory molecules. Overall, these results suggest that we are at the very beginning of understanding the true functional complexity of the sRNA component of the "RNA dark matter."
{"title":"The human genome encodes a multitude of novel miRNAs.","authors":"Fan Gao, Fang Wang, Yue Chen, Bolin Deng, Fujian Yang, Huifen Cao, Junjie Chen, Huiling Chen, Fei Qi, Philipp Kapranov","doi":"10.1093/nar/gkaf070","DOIUrl":"https://doi.org/10.1093/nar/gkaf070","url":null,"abstract":"<p><p>Human cells generate a vast complexity of noncoding RNAs, the \"RNA dark matter,\" which includes a vast small RNA (sRNA) transcriptome. The biogenesis, biological relevance, and mechanisms of action of most of these transcripts remain unknown, and they are widely assumed to represent degradation products. Here, we aimed to functionally characterize human sRNA transcriptome by attempting to answer the following question-can a significant number of novel sRNAs correspond to novel members of known classes, specifically, microRNAs (miRNAs)? By developing and validating a miRNA discovery pipeline, we show that at least 2726 novel canonical miRNAs, majority of which represent novel miRNA families, exist in just one human cell line compared to just 1914 known miRNA loci. Moreover, potentially tens of thousands of miRNAs remain to be discovered. Strikingly, many novel miRNAs map to exons of protein-coding genes emphasizing a complex and interleaved architecture of the genome. The existence of so many novel members of a functional class of sRNAs suggest that the human sRNA transcriptome harbors a multitude of novel regulatory molecules. Overall, these results suggest that we are at the very beginning of understanding the true functional complexity of the sRNA component of the \"RNA dark matter.\"</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"53 4","pages":""},"PeriodicalIF":16.6,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143459113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ana Rita Rodrigues Neves, Ivana Čavka, Tobias Rausch, Simone Köhler
During meiosis, the number and distribution of crossovers (COs) must be precisely regulated through CO assurance and interference to prevent chromosome missegregation and genomic instability in the progeny. Here we show that this regulation of COs depends on a disordered and conserved domain within the synaptonemal complex (SC). This domain is located at the C-terminus of the central element protein SYP-4 in Caenorhabditis elegans. While not necessary for synapsis, the C-terminus of SYP-4 is crucial for both CO assurance and interference. Although the SYP-4 C-terminus contains many potential phosphorylation sites, we found that phosphorylation is not the primary regulator of CO events. Instead, we discovered that nine conserved phenylalanines are required to recruit a pro-CO factor predicted to be an E3 ligase and regulate the physical properties of the SC. We propose that this conserved and disordered domain plays a crucial role in maintaining the SC in a state that allows transmitting signals to regulate CO formation. While the underlying mechanisms remain to be fully understood, our findings align with existing models suggesting that the SC plays a critical role in determining the number and distribution of COs along chromosomes, thereby safeguarding the genome for future generations.
{"title":"Crossovers are regulated by a conserved and disordered synaptonemal complex domain.","authors":"Ana Rita Rodrigues Neves, Ivana Čavka, Tobias Rausch, Simone Köhler","doi":"10.1093/nar/gkaf095","DOIUrl":"10.1093/nar/gkaf095","url":null,"abstract":"<p><p>During meiosis, the number and distribution of crossovers (COs) must be precisely regulated through CO assurance and interference to prevent chromosome missegregation and genomic instability in the progeny. Here we show that this regulation of COs depends on a disordered and conserved domain within the synaptonemal complex (SC). This domain is located at the C-terminus of the central element protein SYP-4 in Caenorhabditis elegans. While not necessary for synapsis, the C-terminus of SYP-4 is crucial for both CO assurance and interference. Although the SYP-4 C-terminus contains many potential phosphorylation sites, we found that phosphorylation is not the primary regulator of CO events. Instead, we discovered that nine conserved phenylalanines are required to recruit a pro-CO factor predicted to be an E3 ligase and regulate the physical properties of the SC. We propose that this conserved and disordered domain plays a crucial role in maintaining the SC in a state that allows transmitting signals to regulate CO formation. While the underlying mechanisms remain to be fully understood, our findings align with existing models suggesting that the SC plays a critical role in determining the number and distribution of COs along chromosomes, thereby safeguarding the genome for future generations.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"53 4","pages":""},"PeriodicalIF":16.6,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11833701/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143441143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Edilene Siqueira, Cecilia D Velasco, Ariadna Tarrasón, Marta Soler, Tara Srinivas, Fernando Setién, Cristina Oliveira-Mateos, Marta Casado-Pelaez, Laura Martinez-Verbo, Judith Armstrong, Manel Esteller, Letícia F Alves, Artur Llobet, Sonia Guil
Rett syndrome (RTT) is a severe neurodevelopmental disorder primarily caused by loss-of-function mutations in the MECP2 gene, resulting in diverse cellular dysfunctions. Here, we investigated the role of the long noncoding RNA (lncRNA) NEAT1 in the context of MeCP2 deficiency using human neural cells and RTT patient samples. Through single-cell RNA sequencing and molecular analyses, we found that NEAT1 is markedly downregulated in MECP2 knockout (KO) cells at various stages of neural differentiation. NEAT1 downregulation correlated with aberrant activation of the mTOR pathway, abnormal protein metabolism, and dysregulated autophagy, contributing to the accumulation of protein aggregates and impaired mitochondrial function. Reactivation of NEAT1 in MECP2-KO cells rescued these phenotypes, indicating its critical role downstream of MECP2. Furthermore, direct RNA-RNA interaction was revealed as the key process for NEAT1 influence on autophagy genes, leading to altered subcellular localization of specific autophagy-related messenger RNAs and impaired biogenesis of autophagic complexes. Importantly, NEAT1 restoration rescued the morphological defects observed in MECP2-KO neurons, highlighting its crucial role in neuronal maturation. Overall, our findings elucidate lncRNA NEAT1 as a key mediator of MeCP2 function, regulating essential pathways involved in protein metabolism, autophagy, and neuronal morphology.
{"title":"NEAT1-mediated regulation of proteostasis and mRNA localization impacts autophagy dysregulation in Rett syndrome.","authors":"Edilene Siqueira, Cecilia D Velasco, Ariadna Tarrasón, Marta Soler, Tara Srinivas, Fernando Setién, Cristina Oliveira-Mateos, Marta Casado-Pelaez, Laura Martinez-Verbo, Judith Armstrong, Manel Esteller, Letícia F Alves, Artur Llobet, Sonia Guil","doi":"10.1093/nar/gkaf074","DOIUrl":"10.1093/nar/gkaf074","url":null,"abstract":"<p><p>Rett syndrome (RTT) is a severe neurodevelopmental disorder primarily caused by loss-of-function mutations in the MECP2 gene, resulting in diverse cellular dysfunctions. Here, we investigated the role of the long noncoding RNA (lncRNA) NEAT1 in the context of MeCP2 deficiency using human neural cells and RTT patient samples. Through single-cell RNA sequencing and molecular analyses, we found that NEAT1 is markedly downregulated in MECP2 knockout (KO) cells at various stages of neural differentiation. NEAT1 downregulation correlated with aberrant activation of the mTOR pathway, abnormal protein metabolism, and dysregulated autophagy, contributing to the accumulation of protein aggregates and impaired mitochondrial function. Reactivation of NEAT1 in MECP2-KO cells rescued these phenotypes, indicating its critical role downstream of MECP2. Furthermore, direct RNA-RNA interaction was revealed as the key process for NEAT1 influence on autophagy genes, leading to altered subcellular localization of specific autophagy-related messenger RNAs and impaired biogenesis of autophagic complexes. Importantly, NEAT1 restoration rescued the morphological defects observed in MECP2-KO neurons, highlighting its crucial role in neuronal maturation. Overall, our findings elucidate lncRNA NEAT1 as a key mediator of MeCP2 function, regulating essential pathways involved in protein metabolism, autophagy, and neuronal morphology.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"53 4","pages":""},"PeriodicalIF":16.6,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806351/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143374467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Upon exposure to ionizing irradiation, the MRE11-RAD50-NBS1 complex potentiates the recruitment of ATM (ataxia-telangiectasia mutated) kinase to the double-strand breaks. We show that the lack of BLM causes a decrease in the autophosphorylation of ATM in mice mammary glands, which have lost one or both copies of BLM. In isogenic human cells, the DNA damage response (DDR) pathway was dampened in the absence of BLM, which negatively affected the recruitment of DDR factors onto the chromatin, thereby indicating a direct role of BLM in augmenting DDR. Mechanistically, this was due to the BLM-dependent dissociation of inactive ATM dimers into active monomers. Fragmentation analysis of BLM followed by kinase assays revealed a 20-mer BLM peptide (91-110 aa), sufficient to enhance ATM-dependent p53 phosphorylation. ATM-mediated phosphorylation of BLM at Thr99 within BLM (91-110) peptide enhanced ATM kinase activity due to its interaction with NBS1 and causing ATM monomerization. Delivery of phosphomimetic T99E counterpart of BLM (91-110 aa) peptide led to ATM activation followed by restoration of the DDR even in the absence of ionizing irradiation (both in cells and in BLM knockout mice), indicating its role as a DDR agonist, which can be potentially used to prevent the initiation of neoplastic transformation.
{"title":"Phosphorylated BLM peptide acts as an agonist for DNA damage response.","authors":"Ritu Agrawal, Himanshi Agarwal, Chetana Mukherjee, Baishali Chakraborty, Vandana Sharma, Vivek Tripathi, Nitin Kumar, Swati Priya, Nidhi Gupta, Gagan Deep Jhingan, Avinash Bajaj, Sagar Sengupta","doi":"10.1093/nar/gkaf106","DOIUrl":"10.1093/nar/gkaf106","url":null,"abstract":"<p><p>Upon exposure to ionizing irradiation, the MRE11-RAD50-NBS1 complex potentiates the recruitment of ATM (ataxia-telangiectasia mutated) kinase to the double-strand breaks. We show that the lack of BLM causes a decrease in the autophosphorylation of ATM in mice mammary glands, which have lost one or both copies of BLM. In isogenic human cells, the DNA damage response (DDR) pathway was dampened in the absence of BLM, which negatively affected the recruitment of DDR factors onto the chromatin, thereby indicating a direct role of BLM in augmenting DDR. Mechanistically, this was due to the BLM-dependent dissociation of inactive ATM dimers into active monomers. Fragmentation analysis of BLM followed by kinase assays revealed a 20-mer BLM peptide (91-110 aa), sufficient to enhance ATM-dependent p53 phosphorylation. ATM-mediated phosphorylation of BLM at Thr99 within BLM (91-110) peptide enhanced ATM kinase activity due to its interaction with NBS1 and causing ATM monomerization. Delivery of phosphomimetic T99E counterpart of BLM (91-110 aa) peptide led to ATM activation followed by restoration of the DDR even in the absence of ionizing irradiation (both in cells and in BLM knockout mice), indicating its role as a DDR agonist, which can be potentially used to prevent the initiation of neoplastic transformation.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"53 4","pages":""},"PeriodicalIF":16.6,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851105/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143493052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}