首页 > 最新文献

Oncogenesis最新文献

英文 中文
Peptidylarginine deiminase 3 modulates response to neratinib in HER2 positive breast cancer. 肽基精氨酸脱氨酶3调节HER2阳性乳腺癌患者对奈瑞替尼的反应
IF 5.9 2区 医学 Q1 ONCOLOGY Pub Date : 2024-08-04 DOI: 10.1038/s41389-024-00531-4
Inés Romero-Pérez, Elena Díaz-Rodríguez, Laura Sánchez-Díaz, Juan Carlos Montero, Atanasio Pandiella

Neratinib is a tyrosine kinase inhibitor that is used for the therapy of patients with HER2+ breast tumors. However, despite its clinical benefit, resistance to the drug may arise. Here we have created cellular models of neratinib resistance to investigate the mechanisms underlying such resistance. Chronic neratinib exposure of BT474 human HER2+ breast cancer cells resulted in the selection of several clones resistant to the antiproliferative action of the drug. The clones were characterized biochemically and biologically using a variety of techniques. These clones retained HER2 levels similar to parental cells. Knockdown experiments showed that the neratinib-resistant clones retained oncogenic dependence on HER2. Moreover, the tyrosine phosphorylation status of BT474 and the resistant clones was equally sensitive to neratinib. Transcriptomic and Western analyses showed that peptidylarginine deiminase 3 was overexpressed in the three neratinib-resistant clones studied but was undetectable in BT474 cells. Experiments performed in the neratinib-resistant clones showed that reduction of PADI3 or inhibition of its function restored sensitivity to the antiproliferative action of neratinib. Moreover, overexpression of FLAG-tagged PADI3 in BT474 cells provoked resistance to the antiproliferative action of neratinib. Together, these results uncover a role of PADI3 in the regulation of sensitivity to neratinib in breast cancer cells overexpressing HER2 and open the possibility of using PADI3 inhibitors to fight resistance to neratinib.

奈拉替尼是一种酪氨酸激酶抑制剂,用于治疗HER2+乳腺肿瘤患者。然而,尽管奈拉替尼具有临床疗效,但也可能产生耐药性。在这里,我们创建了奈拉替尼耐药性细胞模型,以研究这种耐药性的机制。BT474人类HER2+乳腺癌细胞长期暴露于奈拉替尼后,筛选出了几个对药物抗增殖作用具有耐药性的克隆。利用多种技术对这些克隆进行了生物化学和生物学鉴定。这些克隆保留了与亲代细胞相似的 HER2 水平。基因敲除实验表明,奈拉替尼耐药克隆保留了对HER2的致癌依赖性。此外,BT474和耐药克隆的酪氨酸磷酸化状态对奈拉替尼同样敏感。转录组和Western分析表明,肽精氨酸脱氨酶3在研究的三个奈拉替尼耐药克隆中过表达,但在BT474细胞中检测不到。在奈拉替尼耐药克隆中进行的实验表明,减少 PADI3 或抑制其功能可恢复对奈拉替尼抗增殖作用的敏感性。此外,在BT474细胞中过表达FLAG标记的PADI3会引起对奈拉替尼抗增殖作用的耐药性。总之,这些结果揭示了PADI3在调控过表达HER2的乳腺癌细胞对奈拉替尼的敏感性中的作用,并为使用PADI3抑制剂对抗奈拉替尼耐药性提供了可能性。
{"title":"Peptidylarginine deiminase 3 modulates response to neratinib in HER2 positive breast cancer.","authors":"Inés Romero-Pérez, Elena Díaz-Rodríguez, Laura Sánchez-Díaz, Juan Carlos Montero, Atanasio Pandiella","doi":"10.1038/s41389-024-00531-4","DOIUrl":"10.1038/s41389-024-00531-4","url":null,"abstract":"<p><p>Neratinib is a tyrosine kinase inhibitor that is used for the therapy of patients with HER2+ breast tumors. However, despite its clinical benefit, resistance to the drug may arise. Here we have created cellular models of neratinib resistance to investigate the mechanisms underlying such resistance. Chronic neratinib exposure of BT474 human HER2+ breast cancer cells resulted in the selection of several clones resistant to the antiproliferative action of the drug. The clones were characterized biochemically and biologically using a variety of techniques. These clones retained HER2 levels similar to parental cells. Knockdown experiments showed that the neratinib-resistant clones retained oncogenic dependence on HER2. Moreover, the tyrosine phosphorylation status of BT474 and the resistant clones was equally sensitive to neratinib. Transcriptomic and Western analyses showed that peptidylarginine deiminase 3 was overexpressed in the three neratinib-resistant clones studied but was undetectable in BT474 cells. Experiments performed in the neratinib-resistant clones showed that reduction of PADI3 or inhibition of its function restored sensitivity to the antiproliferative action of neratinib. Moreover, overexpression of FLAG-tagged PADI3 in BT474 cells provoked resistance to the antiproliferative action of neratinib. Together, these results uncover a role of PADI3 in the regulation of sensitivity to neratinib in breast cancer cells overexpressing HER2 and open the possibility of using PADI3 inhibitors to fight resistance to neratinib.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"13 1","pages":"30"},"PeriodicalIF":5.9,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297914/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141889812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combined Inhibition of PI3K and STAT3 signaling effectively inhibits bladder cancer growth 联合抑制 PI3K 和 STAT3 信号传导可有效抑制膀胱癌生长
IF 6.2 2区 医学 Q1 ONCOLOGY Pub Date : 2024-07-27 DOI: 10.1038/s41389-024-00529-y
Weidong Peng, Haojie Zhang, Mingwei Yin, Dejie Kong, Liping Kang, Xinkun Teng, Jingjing Wang, Zhimin Chu, Yating Sun, Pengpeng Long, Chengying Cui, Bin Lyu, Jinzhi Zhang, Han Xiao, Mingqing Wu, Yongqiang Wang, Yang Li

Bladder cancer is characterized by aberrant activation of the phosphatidylinositol-3-OH kinase (PI3K) signaling, underscoring the significance of directing therapeutic efforts toward the PI3K pathway as a promising strategy. In this study, we discovered that PI3K serves as a potent therapeutic target for bladder cancer through a high-throughput screening of inhibitory molecules. The PI3K inhibitor demonstrated a robust anti-tumor efficacy, validated both in vitro and in vivo settings. Nevertheless, the feedback activation of JAK1-STAT3 signaling reinstated cell and organoid survival, leading to resistance against the PI3K inhibitor. Mechanistically, the PI3K inhibitor suppresses PTPN11 expression, a negative regulator of the JAK-STAT pathway, thereby activating STAT3. Conversely, restoration of PTPN11 enhances the sensitivity of cancer cells to the PI3K inhibitor. Simultaneous inhibition of both PI3K and STAT3 with small-molecule inhibitors resulted in sustained tumor regression in patient-derived bladder cancer xenografts. These findings advocate for a combinational therapeutic approach targeting both PI3K and STAT3 pathways to achieve enduring cancer eradication in vitro and in vivo, underscoring their promising therapeutic efficacy for treating bladder cancer.

膀胱癌的特点是磷脂酰肌醇-3-OH 激酶(PI3K)信号的异常激活,这突出了将治疗工作引向 PI3K 通路作为一种有前途的策略的重要性。在这项研究中,我们通过高通量筛选抑制分子,发现PI3K是膀胱癌的有效治疗靶点。经体外和体内验证,PI3K 抑制剂具有强大的抗肿瘤功效。然而,JAK1-STAT3 信号的反馈激活恢复了细胞和类器官的存活,导致了对 PI3K 抑制剂的耐药性。从机理上讲,PI3K 抑制剂抑制了 JAK-STAT 通路的负调控因子 PTPN11 的表达,从而激活了 STAT3。相反,恢复 PTPN11 会增强癌细胞对 PI3K 抑制剂的敏感性。用小分子抑制剂同时抑制 PI3K 和 STAT3 可使源自患者的膀胱癌异种移植物的肿瘤持续消退。这些研究结果主张采用针对 PI3K 和 STAT3 通路的联合治疗方法,在体外和体内实现持久的癌症根除,强调了它们对治疗膀胱癌的巨大疗效。
{"title":"Combined Inhibition of PI3K and STAT3 signaling effectively inhibits bladder cancer growth","authors":"Weidong Peng, Haojie Zhang, Mingwei Yin, Dejie Kong, Liping Kang, Xinkun Teng, Jingjing Wang, Zhimin Chu, Yating Sun, Pengpeng Long, Chengying Cui, Bin Lyu, Jinzhi Zhang, Han Xiao, Mingqing Wu, Yongqiang Wang, Yang Li","doi":"10.1038/s41389-024-00529-y","DOIUrl":"https://doi.org/10.1038/s41389-024-00529-y","url":null,"abstract":"<p>Bladder cancer is characterized by aberrant activation of the phosphatidylinositol-3-OH kinase (PI3K) signaling, underscoring the significance of directing therapeutic efforts toward the PI3K pathway as a promising strategy. In this study, we discovered that PI3K serves as a potent therapeutic target for bladder cancer through a high-throughput screening of inhibitory molecules. The PI3K inhibitor demonstrated a robust anti-tumor efficacy, validated both in vitro and in vivo settings. Nevertheless, the feedback activation of JAK1-STAT3 signaling reinstated cell and organoid survival, leading to resistance against the PI3K inhibitor. Mechanistically, the PI3K inhibitor suppresses PTPN11 expression, a negative regulator of the JAK-STAT pathway, thereby activating STAT3. Conversely, restoration of PTPN11 enhances the sensitivity of cancer cells to the PI3K inhibitor. Simultaneous inhibition of both PI3K and STAT3 with small-molecule inhibitors resulted in sustained tumor regression in patient-derived bladder cancer xenografts. These findings advocate for a combinational therapeutic approach targeting both PI3K and STAT3 pathways to achieve enduring cancer eradication in vitro and in vivo, underscoring their promising therapeutic efficacy for treating bladder cancer.</p><figure></figure>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"40 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141782188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell competition in primary and metastatic colorectal cancer. 原发性和转移性结直肠癌中的细胞竞争。
IF 5.9 2区 医学 Q1 ONCOLOGY Pub Date : 2024-07-26 DOI: 10.1038/s41389-024-00530-5
Merel Elise van Luyk, Ana Krotenberg Garcia, Maria Lamprou, Saskia Jacoba Elisabeth Suijkerbuijk

Adult tissues set the scene for a continuous battle between cells, where a comparison of cellular fitness results in the elimination of weaker "loser" cells. This phenomenon, named cell competition, is beneficial for tissue integrity and homeostasis. In fact, cell competition plays a crucial role in tumor suppression, through elimination of early malignant cells, as part of Epithelial Defense Against Cancer. However, it is increasingly apparent that cell competition doubles as a tumor-promoting mechanism. The comparative nature of cell competition means that mutational background, proliferation rate and polarity all factor in to determine the outcome of these processes. In this review, we explore the intricate and context-dependent involvement of cell competition in homeostasis and regeneration, as well as during initiation and progression of primary and metastasized colorectal cancer. We provide a comprehensive overview of molecular and cellular mechanisms governing cell competition and its parallels with regeneration.

成体组织中的细胞之间会进行持续的较量,通过比较细胞的健康状况,淘汰较弱的 "失败者 "细胞。这种现象被称为细胞竞争,有利于组织的完整性和平衡。事实上,作为上皮细胞抗癌防御的一部分,细胞竞争通过消灭早期恶性细胞,在抑制肿瘤方面发挥着至关重要的作用。然而,越来越明显的是,细胞竞争同时也是一种肿瘤促进机制。细胞竞争的比较性质意味着突变背景、增殖率和极性都是决定这些过程结果的因素。在这篇综述中,我们探讨了细胞竞争在平衡和再生过程中,以及在原发性和转移性结直肠癌的发生和发展过程中错综复杂且与环境相关的参与。我们全面概述了细胞竞争的分子和细胞机制及其与再生的相似之处。
{"title":"Cell competition in primary and metastatic colorectal cancer.","authors":"Merel Elise van Luyk, Ana Krotenberg Garcia, Maria Lamprou, Saskia Jacoba Elisabeth Suijkerbuijk","doi":"10.1038/s41389-024-00530-5","DOIUrl":"10.1038/s41389-024-00530-5","url":null,"abstract":"<p><p>Adult tissues set the scene for a continuous battle between cells, where a comparison of cellular fitness results in the elimination of weaker \"loser\" cells. This phenomenon, named cell competition, is beneficial for tissue integrity and homeostasis. In fact, cell competition plays a crucial role in tumor suppression, through elimination of early malignant cells, as part of Epithelial Defense Against Cancer. However, it is increasingly apparent that cell competition doubles as a tumor-promoting mechanism. The comparative nature of cell competition means that mutational background, proliferation rate and polarity all factor in to determine the outcome of these processes. In this review, we explore the intricate and context-dependent involvement of cell competition in homeostasis and regeneration, as well as during initiation and progression of primary and metastasized colorectal cancer. We provide a comprehensive overview of molecular and cellular mechanisms governing cell competition and its parallels with regeneration.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"13 1","pages":"28"},"PeriodicalIF":5.9,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282291/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141767003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
USP32 facilitates non-small cell lung cancer progression via deubiquitinating BAG3 and activating RAF-MEK-ERK signaling pathway. USP32 通过去泛素化 BAG3 和激活 RAF-MEK-ERK 信号通路促进非小细胞肺癌的进展。
IF 5.9 2区 医学 Q1 ONCOLOGY Pub Date : 2024-07-19 DOI: 10.1038/s41389-024-00528-z
Shuang Li, Lina Yang, Xiaoyan Ding, Hongxiao Sun, Xiaolei Dong, Fanghao Yang, Mengjun Wang, Huhu Zhang, Ya Li, Bing Li, Chunyan Liu

The regulatory significance of ubiquitin-specific peptidase 32 (USP32) in tumor is significant, nevertheless, the biological roles and regulatory mechanisms of USP32 in non-small cell lung cancer (NSCLC) remain unclear. According to our research, USP32 was strongly expressed in NSCLC cell lines and tissues and was linked to a bad prognosis for NSCLC patients. Interference with USP32 resulted in a significant inhibition of NSCLC cell proliferation, migration potential, and EMT development; on the other hand, USP32 overexpression had the opposite effect. To further elucidate the mechanism of action of USP32 in NSCLC, we screened H1299 cells for interacting proteins and found that USP32 interacts with BAG3 (Bcl2-associated athanogene 3) and deubiquitinates and stabilizes BAG3 in a deubiquitinating activity-dependent manner. Functionally, restoration of BAG3 expression abrogated the antitumor effects of USP32 silencing. Furthermore, USP32 increased the phosphorylation level of the RAF/MEK/ERK signaling pathway in NSCLC cells by stabilizing BAG3. In summary, these findings imply that USP32 is critical to the development of NSCLC and could offer a theoretical framework for the clinical diagnosis and management of NSCLC patients in the future.

泛素特异性肽酶32(USP32)在肿瘤中的调控意义重大,然而,USP32在非小细胞肺癌(NSCLC)中的生物学作用和调控机制仍不清楚。根据我们的研究,USP32 在 NSCLC 细胞系和组织中强表达,并且与 NSCLC 患者的不良预后有关。干扰 USP32 会显著抑制 NSCLC 细胞的增殖、迁移潜能和 EMT 的发展;另一方面,USP32 的过表达则会产生相反的效果。为了进一步阐明USP32在NSCLC中的作用机制,我们筛选了H1299细胞中的相互作用蛋白,发现USP32与BAG3(Bcl2-associated athanogene 3)相互作用,并以去泛素活性依赖的方式去泛素化和稳定BAG3。从功能上讲,恢复 BAG3 的表达会减弱 USP32 沉默的抗肿瘤作用。此外,USP32 通过稳定 BAG3 增加了 NSCLC 细胞中 RAF/MEK/ERK 信号通路的磷酸化水平。总之,这些研究结果表明,USP32 对 NSCLC 的发展至关重要,可为今后 NSCLC 患者的临床诊断和管理提供一个理论框架。
{"title":"USP32 facilitates non-small cell lung cancer progression via deubiquitinating BAG3 and activating RAF-MEK-ERK signaling pathway.","authors":"Shuang Li, Lina Yang, Xiaoyan Ding, Hongxiao Sun, Xiaolei Dong, Fanghao Yang, Mengjun Wang, Huhu Zhang, Ya Li, Bing Li, Chunyan Liu","doi":"10.1038/s41389-024-00528-z","DOIUrl":"10.1038/s41389-024-00528-z","url":null,"abstract":"<p><p>The regulatory significance of ubiquitin-specific peptidase 32 (USP32) in tumor is significant, nevertheless, the biological roles and regulatory mechanisms of USP32 in non-small cell lung cancer (NSCLC) remain unclear. According to our research, USP32 was strongly expressed in NSCLC cell lines and tissues and was linked to a bad prognosis for NSCLC patients. Interference with USP32 resulted in a significant inhibition of NSCLC cell proliferation, migration potential, and EMT development; on the other hand, USP32 overexpression had the opposite effect. To further elucidate the mechanism of action of USP32 in NSCLC, we screened H1299 cells for interacting proteins and found that USP32 interacts with BAG3 (Bcl2-associated athanogene 3) and deubiquitinates and stabilizes BAG3 in a deubiquitinating activity-dependent manner. Functionally, restoration of BAG3 expression abrogated the antitumor effects of USP32 silencing. Furthermore, USP32 increased the phosphorylation level of the RAF/MEK/ERK signaling pathway in NSCLC cells by stabilizing BAG3. In summary, these findings imply that USP32 is critical to the development of NSCLC and could offer a theoretical framework for the clinical diagnosis and management of NSCLC patients in the future.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"13 1","pages":"27"},"PeriodicalIF":5.9,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271578/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141727512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
YAP/TAZ interacts with RBM39 to confer resistance against indisulam. YAP/TAZ 与 RBM39 相互作用,赋予茚虫威抗性。
IF 5.9 2区 医学 Q1 ONCOLOGY Pub Date : 2024-07-15 DOI: 10.1038/s41389-024-00527-0
Toshinori Ando, Kento Okamoto, Yume Ueda, Nanako Kataoka, Tomoaki Shintani, Souichi Yanamoto, Mutsumi Miyauchi, Mikihito Kajiya

The Hippo pathway and its downstream effectors, Yes-associated protein/transcriptional coactivator with PDZ-binding motif (YAP/TAZ), are essential for cell growth and organ development. Emerging evidence revealed that the Hippo pathway and YAP/TAZ are frequently dysregulated by multiple genetic alterations in solid cancers including head and neck squamous cell carcinoma (HNSCC); however, the YAP/TAZ-nuclear interactome remains unclear. RNA-binding motif protein 39 (RBM39) enhances transcriptional activity of several transcription factors and also regulates mRNA splicing. Indisulam degrading RBM39 induces alternative splicing, leading to cell death. However, clinical trials of indisulam have failed to show effectiveness. Therefore, clarifying the resistance mechanism against splicing inhibitors is urgently required. In this study, we identified RBM39 as a novel YAP/TAZ-interacting molecule by proteome analysis. RBM39 promoted YAP/TAZ transcriptional activity. We further elucidated that indisulam reduces RBM39/YAP/TAZ-mediated integrin or collagen expression, thereby inactivating focal adhesion kinase (FAK) important for cell survival. Moreover, indisulam also induced alternative splicing of cell cycle- or DNA metabolism-related genes. YAP/TAZ hyperactivation delayed indisulam-induced RBM39 degradation, which restored the integrin/collagen expression to activate FAK, and alternative splicing, thereby conferring resistance against indisulam in vitro and in vivo. Our findings may aid to develop a novel cancer therapy focusing on YAP/TAZ/RBM39 interaction.

Hippo通路及其下游效应物--具有PDZ结合基调的Yes相关蛋白/转录辅激活因子(YAP/TAZ)对细胞生长和器官发育至关重要。新的证据显示,在包括头颈部鳞状细胞癌(HNSCC)在内的实体瘤中,Hippo通路和YAP/TAZ经常因多种基因改变而失调;然而,YAP/TAZ-核相互作用组仍不清楚。RNA 结合基序蛋白 39(RBM39)能增强多种转录因子的转录活性,还能调节 mRNA 的剪接。茚虫威降解 RBM39 会诱导替代剪接,导致细胞死亡。然而,茚虫威的临床试验并未显示出其有效性。因此,迫切需要明确剪接抑制剂的抗性机制。在本研究中,我们通过蛋白质组分析发现了RBM39这一新型YAP/TAZ相互作用分子。RBM39促进了YAP/TAZ的转录活性。我们进一步阐明,茚虫威可减少 RBM39/YAP/TAZ 介导的整合素或胶原蛋白的表达,从而使对细胞存活非常重要的焦点粘附激酶(FAK)失活。此外,茚虫威还能诱导细胞周期或 DNA 代谢相关基因的替代剪接。YAP/TAZ过度激活会延迟茚虫威诱导的RBM39降解,从而恢复整合素/胶原蛋白的表达以激活FAK和替代剪接,从而在体外和体内赋予茚虫威抗性。我们的研究结果可能有助于开发出一种新型癌症疗法,其重点在于YAP/TAZ/RBM39之间的相互作用。
{"title":"YAP/TAZ interacts with RBM39 to confer resistance against indisulam.","authors":"Toshinori Ando, Kento Okamoto, Yume Ueda, Nanako Kataoka, Tomoaki Shintani, Souichi Yanamoto, Mutsumi Miyauchi, Mikihito Kajiya","doi":"10.1038/s41389-024-00527-0","DOIUrl":"10.1038/s41389-024-00527-0","url":null,"abstract":"<p><p>The Hippo pathway and its downstream effectors, Yes-associated protein/transcriptional coactivator with PDZ-binding motif (YAP/TAZ), are essential for cell growth and organ development. Emerging evidence revealed that the Hippo pathway and YAP/TAZ are frequently dysregulated by multiple genetic alterations in solid cancers including head and neck squamous cell carcinoma (HNSCC); however, the YAP/TAZ-nuclear interactome remains unclear. RNA-binding motif protein 39 (RBM39) enhances transcriptional activity of several transcription factors and also regulates mRNA splicing. Indisulam degrading RBM39 induces alternative splicing, leading to cell death. However, clinical trials of indisulam have failed to show effectiveness. Therefore, clarifying the resistance mechanism against splicing inhibitors is urgently required. In this study, we identified RBM39 as a novel YAP/TAZ-interacting molecule by proteome analysis. RBM39 promoted YAP/TAZ transcriptional activity. We further elucidated that indisulam reduces RBM39/YAP/TAZ-mediated integrin or collagen expression, thereby inactivating focal adhesion kinase (FAK) important for cell survival. Moreover, indisulam also induced alternative splicing of cell cycle- or DNA metabolism-related genes. YAP/TAZ hyperactivation delayed indisulam-induced RBM39 degradation, which restored the integrin/collagen expression to activate FAK, and alternative splicing, thereby conferring resistance against indisulam in vitro and in vivo. Our findings may aid to develop a novel cancer therapy focusing on YAP/TAZ/RBM39 interaction.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"13 1","pages":"25"},"PeriodicalIF":5.9,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247092/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141616903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gemcitabine as chemotherapy of head and neck cancer in Fanconi anemia patients. 吉西他滨作为范可尼贫血症患者头颈癌的化疗药物。
IF 5.9 2区 医学 Q1 ONCOLOGY Pub Date : 2024-07-11 DOI: 10.1038/s41389-024-00525-2
Anne M van Harten, Ronak Shah, D Vicky de Boer, Marijke Buijze, Maaike Kreft, Ji-Ying Song, Lisa M Zürcher, Heinz Jacobs, Ruud H Brakenhoff

Fanconi anemia (FA) is a rare hereditary disease resulting from an inactivating mutation in the FA/BRCA pathway, critical for the effective repair of DNA interstrand crosslinks (ICLs). The disease is characterized by congenital abnormalities, progressing bone marrow failure, and an increased risk of developing malignancies early in life, in particular head and neck squamous cell carcinoma (HNSCC). While ICL-inducing cisplatin combined with radiotherapy is a mainstay of HNSCC treatment, cisplatin is contra-indicated for FA-HNSCC patients. This dilemma necessitates the identification of novel treatment modalities tolerated by FA-HNSCC patients. To identify druggable targets, an siRNA-based genetic screen was previously performed in HNSCC-derived cell lines from FA and non-FA tumor origin. Here, we report that the Ribonucleotide Reductase (RNR) complex, consisting of the RRM1 and RRM2 subunits, was identified as a therapeutic target for both, FA and non-FA HNSCC. While non-FA HNSCC cells responded differentially to RNR depletion, FA-HNSCC cells were consistently found hypersensitive. This insight was confirmed pharmacologically using 2', 2'-difluoro 2'deoxycytidine (dFdC), also known as gemcitabine, a clinically used nucleotide analog that is a potent inhibitor of the RNR complex. Importantly, while cisplatin exposure displayed severe, long-lasting toxicity on the hematopoietic stem and progenitor compartments in Fancg-/- mice, gemcitabine was well tolerated and had only a mild, transient impact. Taken together, our data implicate that gemcitabine-based chemoradiotherapy could serve as an alternative HNSCC treatment in Fanconi patients, and deserves clinical testing.

范可尼贫血症(Fanconi anemia,FA)是一种罕见的遗传性疾病,由FA/BRCA通路中的失活突变引起,该通路对DNA链间交联(ICL)的有效修复至关重要。该病的特点是先天性畸形、骨髓衰竭和早期罹患恶性肿瘤的风险增加,尤其是头颈部鳞状细胞癌(HNSCC)。虽然ICL诱导顺铂联合放疗是治疗HNSCC的主要方法,但顺铂却是FA-HNSCC患者的禁忌症。面对这一难题,有必要找出 FA-HNSCC 患者可以耐受的新型治疗方式。为了确定可用药的靶点,以前曾对来自 FA 和非 FA 肿瘤来源的 HNSCC 细胞系进行了基于 siRNA 的基因筛选。在此,我们报告了由 RRM1 和 RRM2 亚基组成的核糖核苷酸还原酶(RNR)复合物被确定为 FA 和非 FA HNSCC 的治疗靶点。虽然非 FA HNSCC 细胞对 RNR 缺失的反应不同,但 FA-HNSCC 细胞始终对其不敏感。这一观点通过使用 2'、2'-二氟 2'脱氧胞苷(dFdC)(也称为吉西他滨)得到了药理证实,这是一种临床常用的核苷酸类似物,是 RNR 复合物的强效抑制剂。重要的是,顺铂暴露对Fancg-/-小鼠的造血干细胞和祖细胞组具有严重、持久的毒性,而吉西他滨的耐受性良好,仅有轻微、短暂的影响。综上所述,我们的数据表明,以吉西他滨为基础的化放疗可作为范可尼患者HNSCC的替代治疗方法,值得进行临床试验。
{"title":"Gemcitabine as chemotherapy of head and neck cancer in Fanconi anemia patients.","authors":"Anne M van Harten, Ronak Shah, D Vicky de Boer, Marijke Buijze, Maaike Kreft, Ji-Ying Song, Lisa M Zürcher, Heinz Jacobs, Ruud H Brakenhoff","doi":"10.1038/s41389-024-00525-2","DOIUrl":"10.1038/s41389-024-00525-2","url":null,"abstract":"<p><p>Fanconi anemia (FA) is a rare hereditary disease resulting from an inactivating mutation in the FA/BRCA pathway, critical for the effective repair of DNA interstrand crosslinks (ICLs). The disease is characterized by congenital abnormalities, progressing bone marrow failure, and an increased risk of developing malignancies early in life, in particular head and neck squamous cell carcinoma (HNSCC). While ICL-inducing cisplatin combined with radiotherapy is a mainstay of HNSCC treatment, cisplatin is contra-indicated for FA-HNSCC patients. This dilemma necessitates the identification of novel treatment modalities tolerated by FA-HNSCC patients. To identify druggable targets, an siRNA-based genetic screen was previously performed in HNSCC-derived cell lines from FA and non-FA tumor origin. Here, we report that the Ribonucleotide Reductase (RNR) complex, consisting of the RRM1 and RRM2 subunits, was identified as a therapeutic target for both, FA and non-FA HNSCC. While non-FA HNSCC cells responded differentially to RNR depletion, FA-HNSCC cells were consistently found hypersensitive. This insight was confirmed pharmacologically using 2', 2'-difluoro 2'deoxycytidine (dFdC), also known as gemcitabine, a clinically used nucleotide analog that is a potent inhibitor of the RNR complex. Importantly, while cisplatin exposure displayed severe, long-lasting toxicity on the hematopoietic stem and progenitor compartments in Fancg-/- mice, gemcitabine was well tolerated and had only a mild, transient impact. Taken together, our data implicate that gemcitabine-based chemoradiotherapy could serve as an alternative HNSCC treatment in Fanconi patients, and deserves clinical testing.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"13 1","pages":"26"},"PeriodicalIF":5.9,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11239817/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Involvement of Kindlin-1 in cutaneous squamous cell carcinoma. 皮肤鳞状细胞癌中 Kindlin-1 的参与。
IF 5.9 2区 医学 Q1 ONCOLOGY Pub Date : 2024-07-09 DOI: 10.1038/s41389-024-00526-1
Giovana Carrasco, Ifigeneia Stavrou, Mairi Treanor-Taylor, Henry Beetham, Martin Lee, Roza Masalmeh, Artur Carreras-Soldevila, David Hardman, Miguel O Bernabeu, Alex von Kriegsheim, Gareth J Inman, Adam Byron, Valerie G Brunton

Kindler syndrome (KS) is a rare genodermatosis resulting from loss-of-function mutations in FERMT1, the gene that encodes Kindlin-1. KS patients have a high propensity to develop aggressive and metastatic cutaneous squamous cell carcinoma (cSCC). Here we show in non-KS-associated patients that elevation of FERMT1 expression is increased in actinic keratoses compared to normal skin, with a further increase in cSCC supporting a pro-tumorigenic role in this population. In contrast, we show that loss of Kindlin-1 leads to increased SCC tumor growth in vivo and in 3D spheroids, which was associated with the development of a hypoxic tumor environment and increased glycolysis. The metalloproteinase Mmp13 was upregulated in Kindlin-1-depleted tumors, and increased expression of MMP13 was responsible for driving increased invasion of the Kindlin-1-depleted SCC cells. These results provide evidence that Kindlin-1 loss in SCC can promote invasion through the upregulation of MMP13, and offer novel insights into how Kindlin-1 loss leads to the development of a hypoxic environment that is permissive for tumor growth.

金德勒综合征(KS)是一种罕见的基因皮肤病,由编码 Kindlin-1 的基因 FERMT1 功能缺失突变引起。KS 患者极易患侵袭性和转移性皮肤鳞状细胞癌(cSCC)。在这里,我们在非 KS 相关患者中发现,与正常皮肤相比,FERMT1 在光化性角化病中的表达升高,而在 cSCC 中的表达进一步升高,这支持了 FERMT1 在这一人群中的致癌作用。与此相反,我们发现 Kindlin-1 的缺失会导致 SCC 肿瘤在体内和三维球体内的生长增加,这与缺氧肿瘤环境的形成和糖酵解的增加有关。金属蛋白酶Mmp13在Kindlin-1缺失的肿瘤中上调,MMP13表达的增加是导致Kindlin-1缺失的SCC细胞侵袭增加的原因。这些结果提供了证据,证明在SCC中Kindlin-1缺失可通过MMP13的上调促进侵袭,并为Kindlin-1缺失如何导致形成有利于肿瘤生长的缺氧环境提供了新的见解。
{"title":"Involvement of Kindlin-1 in cutaneous squamous cell carcinoma.","authors":"Giovana Carrasco, Ifigeneia Stavrou, Mairi Treanor-Taylor, Henry Beetham, Martin Lee, Roza Masalmeh, Artur Carreras-Soldevila, David Hardman, Miguel O Bernabeu, Alex von Kriegsheim, Gareth J Inman, Adam Byron, Valerie G Brunton","doi":"10.1038/s41389-024-00526-1","DOIUrl":"10.1038/s41389-024-00526-1","url":null,"abstract":"<p><p>Kindler syndrome (KS) is a rare genodermatosis resulting from loss-of-function mutations in FERMT1, the gene that encodes Kindlin-1. KS patients have a high propensity to develop aggressive and metastatic cutaneous squamous cell carcinoma (cSCC). Here we show in non-KS-associated patients that elevation of FERMT1 expression is increased in actinic keratoses compared to normal skin, with a further increase in cSCC supporting a pro-tumorigenic role in this population. In contrast, we show that loss of Kindlin-1 leads to increased SCC tumor growth in vivo and in 3D spheroids, which was associated with the development of a hypoxic tumor environment and increased glycolysis. The metalloproteinase Mmp13 was upregulated in Kindlin-1-depleted tumors, and increased expression of MMP13 was responsible for driving increased invasion of the Kindlin-1-depleted SCC cells. These results provide evidence that Kindlin-1 loss in SCC can promote invasion through the upregulation of MMP13, and offer novel insights into how Kindlin-1 loss leads to the development of a hypoxic environment that is permissive for tumor growth.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"13 1","pages":"24"},"PeriodicalIF":5.9,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11233684/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141563991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
USP21-mediated G3BP1 stabilization accelerates proliferation and metastasis of esophageal squamous cell carcinoma via activating Wnt/β-Catenin signaling. USP21 介导的 G3BP1 稳定通过激活 Wnt/β-Catenin 信号加速了食管鳞状细胞癌的增殖和转移。
IF 5.9 2区 医学 Q1 ONCOLOGY Pub Date : 2024-06-21 DOI: 10.1038/s41389-024-00524-3
Jiazhong Guo, Yunpeng Zhao, Huacong Sui, Lei Liu, Fanrong Liu, Lingxiao Yang, Fengyuan Gao, Jinfu Wang, Yilin Zhu, Lingbing Li, Xiangqing Song, Peng Li, Zhongxian Tian, Peichao Li, Xiaogang Zhao

Lacking effective therapeutic targets heavily restricts the improvement of clinical prognosis for patients diagnosed with esophageal squamous cell carcinoma (ESCC). Ubiquitin Specific Peptidase 21 (USP21) is dysregulated in plenty of human cancers, however, its potential function and relevant molecular mechanisms in ESCC malignant progression as well as its value in clinical translation remain largely unknown. Here, in vitro and in vivo experiments revealed that aberrant upregulation of USP21 accelerated the proliferation and metastasis of ESCC in a deubiquitinase-dependent manner. Mechanistically, we found that USP21 binds to, deubiquitinates, and stabilizes the G3BP Stress Granule Assembly Factor 1 (G3BP1) protein, which is required for USP21-mediated ESCC progression. Further molecular studies demonstrated that the USP21/G3BP1 axis played a tumor-promoting role in ESCC progression by activating the Wnt/β-Catenin signaling pathway. Additionally, disulfiram (DSF), an inhibitor against USP21 deubiquitylation activity, markedly abolished the USP21-mediated stability of G3BP1 protein and significantly displayed an anti-tumor effect on USP21-driving ESCC progression. Finally, the regulatory axis of USP21/G3BP1 was demonstrated to be aberrantly activated in ESCC tumor tissues and closely associated with advanced clinical stages and unfavorable prognoses, which provides a promising therapeutic strategy targeting USP21/G3BP1 axis for ESCC patients.

缺乏有效的治疗靶点严重制约了食管鳞状细胞癌(ESCC)患者临床预后的改善。然而,其在食管鳞癌恶性进展中的潜在功能、相关分子机制及其临床转化价值在很大程度上仍不为人所知。本文的体外和体内实验发现,USP21的异常上调以一种去泛素化酶依赖的方式加速了ESCC的增殖和转移。从机理上讲,我们发现USP21与G3BP应激颗粒组装因子1(G3BP1)蛋白结合、去泛素化并使其稳定,而G3BP1是USP21介导的ESCC进展所必需的。进一步的分子研究表明,USP21/G3BP1轴通过激活Wnt/β-Catenin信号通路,在ESCC进展过程中起到了促进肿瘤生长的作用。此外,USP21去泛素化活性抑制剂双硫仑(DSF)能显著降低USP21介导的G3BP1蛋白的稳定性,对USP21驱动的ESCC进展有明显的抗肿瘤作用。最后,USP21/G3BP1调控轴在ESCC肿瘤组织中被异常激活,并与晚期临床分期和预后不良密切相关,这为ESCC患者提供了针对USP21/G3BP1轴的治疗策略。
{"title":"USP21-mediated G3BP1 stabilization accelerates proliferation and metastasis of esophageal squamous cell carcinoma via activating Wnt/β-Catenin signaling.","authors":"Jiazhong Guo, Yunpeng Zhao, Huacong Sui, Lei Liu, Fanrong Liu, Lingxiao Yang, Fengyuan Gao, Jinfu Wang, Yilin Zhu, Lingbing Li, Xiangqing Song, Peng Li, Zhongxian Tian, Peichao Li, Xiaogang Zhao","doi":"10.1038/s41389-024-00524-3","DOIUrl":"10.1038/s41389-024-00524-3","url":null,"abstract":"<p><p>Lacking effective therapeutic targets heavily restricts the improvement of clinical prognosis for patients diagnosed with esophageal squamous cell carcinoma (ESCC). Ubiquitin Specific Peptidase 21 (USP21) is dysregulated in plenty of human cancers, however, its potential function and relevant molecular mechanisms in ESCC malignant progression as well as its value in clinical translation remain largely unknown. Here, in vitro and in vivo experiments revealed that aberrant upregulation of USP21 accelerated the proliferation and metastasis of ESCC in a deubiquitinase-dependent manner. Mechanistically, we found that USP21 binds to, deubiquitinates, and stabilizes the G3BP Stress Granule Assembly Factor 1 (G3BP1) protein, which is required for USP21-mediated ESCC progression. Further molecular studies demonstrated that the USP21/G3BP1 axis played a tumor-promoting role in ESCC progression by activating the Wnt/β-Catenin signaling pathway. Additionally, disulfiram (DSF), an inhibitor against USP21 deubiquitylation activity, markedly abolished the USP21-mediated stability of G3BP1 protein and significantly displayed an anti-tumor effect on USP21-driving ESCC progression. Finally, the regulatory axis of USP21/G3BP1 was demonstrated to be aberrantly activated in ESCC tumor tissues and closely associated with advanced clinical stages and unfavorable prognoses, which provides a promising therapeutic strategy targeting USP21/G3BP1 axis for ESCC patients.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"13 1","pages":"23"},"PeriodicalIF":5.9,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11192907/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141437268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Activated platelet-derived exosomal LRG1 promotes multiple myeloma cell growth. 活化的血小板衍生外泌体 LRG1 可促进多发性骨髓瘤细胞的生长。
IF 6.2 2区 医学 Q1 ONCOLOGY Pub Date : 2024-06-13 DOI: 10.1038/s41389-024-00522-5
Meng Gao, Hang Dong, Siyi Jiang, Fangping Chen, Yunfeng Fu, Yanwei Luo

The hypercoagulable state is a hallmark for patients with multiple myeloma (MM) and is associated with disease progression. Activated platelets secrete exosomes and promote solid tumor growth. However, the role of platelet-derived exosomes in MM is not fully clear. We aim to study the underlying mechanism of how platelet-derived exosomes promote MM cell growth. Flow cytometry, Western blot, proteome analysis, co-immunoprecipitation, immunofluorescence staining, and NOD/SCID mouse subcutaneous transplantation model were performed to investigate the role of exosomal LRG1 on multiple myeloma cell growth. Peripheral blood platelets in MM patients were in a highly activated state, and platelet-rich plasma from MM patients significantly promoted cell proliferation and decreased apoptotic cells in U266 and RPMI8226 cells. Leucine-rich-alpha-2-glycoprotein 1 (LRG1) was significantly enriched in MM platelet-derived exosomes. Blocking LRG1 in recipient cells using LRG1 antibody could significantly eliminate the proliferation-promoting effect of platelet-derived exosomes on MM cells. And high exosomal LRG1 was associated with poor prognosis of patients with MM. Mechanistic studies revealed that LRG1 interacted with Olfactomedin 4 (OLFM4) to accelerate MM progression by activating the epithelial-to-mesenchymal transition (EMT) signaling pathway and promoting angiogenesis. Our results revealed that blocking LRG1 is a promising therapeutic strategy for the treatment of MM.

高凝状态是多发性骨髓瘤(MM)患者的标志,并与疾病进展有关。活化的血小板会分泌外泌体,促进实体瘤的生长。然而,血小板衍生的外泌体在 MM 中的作用尚不完全清楚。我们旨在研究血小板衍生的外泌体如何促进 MM 细胞生长的内在机制。我们通过流式细胞术、Western印迹、蛋白质组分析、共免疫沉淀、免疫荧光染色和NOD/SCID小鼠皮下移植模型来研究外泌体LRG1对多发性骨髓瘤细胞生长的作用。MM患者的外周血血小板处于高度活化状态,来自MM患者的富血小板血浆能显著促进U266细胞和RPMI8226细胞的增殖并减少细胞凋亡。在 MM 血小板衍生的外泌体中,富亮氨酸-α-2-糖蛋白 1(LRG1)明显富集。使用LRG1抗体阻断受体细胞中的LRG1,可明显消除血小板衍生外泌体对MM细胞的增殖促进作用。外泌体LRG1含量高与MM患者预后不良有关。机理研究发现,LRG1与Olfactomedin 4(OLFM4)相互作用,通过激活上皮细胞向间质转化(EMT)信号通路和促进血管生成来加速MM的进展。我们的研究结果表明,阻断LRG1是治疗MM的一种很有前景的治疗策略。
{"title":"Activated platelet-derived exosomal LRG1 promotes multiple myeloma cell growth.","authors":"Meng Gao, Hang Dong, Siyi Jiang, Fangping Chen, Yunfeng Fu, Yanwei Luo","doi":"10.1038/s41389-024-00522-5","DOIUrl":"10.1038/s41389-024-00522-5","url":null,"abstract":"<p><p>The hypercoagulable state is a hallmark for patients with multiple myeloma (MM) and is associated with disease progression. Activated platelets secrete exosomes and promote solid tumor growth. However, the role of platelet-derived exosomes in MM is not fully clear. We aim to study the underlying mechanism of how platelet-derived exosomes promote MM cell growth. Flow cytometry, Western blot, proteome analysis, co-immunoprecipitation, immunofluorescence staining, and NOD/SCID mouse subcutaneous transplantation model were performed to investigate the role of exosomal LRG1 on multiple myeloma cell growth. Peripheral blood platelets in MM patients were in a highly activated state, and platelet-rich plasma from MM patients significantly promoted cell proliferation and decreased apoptotic cells in U266 and RPMI8226 cells. Leucine-rich-alpha-2-glycoprotein 1 (LRG1) was significantly enriched in MM platelet-derived exosomes. Blocking LRG1 in recipient cells using LRG1 antibody could significantly eliminate the proliferation-promoting effect of platelet-derived exosomes on MM cells. And high exosomal LRG1 was associated with poor prognosis of patients with MM. Mechanistic studies revealed that LRG1 interacted with Olfactomedin 4 (OLFM4) to accelerate MM progression by activating the epithelial-to-mesenchymal transition (EMT) signaling pathway and promoting angiogenesis. Our results revealed that blocking LRG1 is a promising therapeutic strategy for the treatment of MM.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"13 1","pages":"21"},"PeriodicalIF":6.2,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11176168/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141317934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive multi-omics analysis of breast cancer reveals distinct long-term prognostic subtypes. 乳腺癌多组学综合分析揭示了不同的长期预后亚型。
IF 6.2 2区 医学 Q1 ONCOLOGY Pub Date : 2024-06-13 DOI: 10.1038/s41389-024-00521-6
Abhibhav Sharma, Julia Debik, Bjørn Naume, Hege Oma Ohnstad, Tone F Bathen, Guro F Giskeødegård

Breast cancer (BC) is a leading cause of cancer-related death worldwide. The diverse nature and heterogeneous biology of BC pose challenges for survival prediction, as patients with similar diagnoses often respond differently to treatment. Clinically relevant BC intrinsic subtypes have been established through gene expression profiling and are implemented in the clinic. While these intrinsic subtypes show a significant association with clinical outcomes, their long-term survival prediction beyond 5 years often deviates from expected clinical outcomes. This study aimed to identify naturally occurring long-term prognostic subgroups of BC based on an integrated multi-omics analysis. This study incorporates a clinical cohort of 335 untreated BC patients from the Oslo2 study with long-term follow-up (>12 years). Multi-Omics Factor Analysis (MOFA+) was employed to integrate transcriptomic, proteomic, and metabolomic data obtained from the tumor tissues. Our analysis revealed three prominent multi-omics clusters of BC patients with significantly different long-term prognoses (p = 0.005). The multi-omics clusters were validated in two independent large cohorts, METABRIC and TCGA. Importantly, a lack of prognostic association to long-term follow-up above 12 years in the previously established intrinsic subtypes was shown for these cohorts. Through a systems-biology approach, we identified varying enrichment levels of cell-cycle and immune-related pathways among the prognostic clusters. Integrated multi-omics analysis of BC revealed three distinct clusters with unique clinical and biological characteristics. Notably, these multi-omics clusters displayed robust associations with long-term survival, outperforming the established intrinsic subtypes.

乳腺癌(BC)是全球癌症相关死亡的主要原因。乳腺癌的多样性和异质性给生存预测带来了挑战,因为诊断相似的患者对治疗的反应往往不同。通过基因表达谱分析已经建立了与临床相关的 BC 固有亚型,并已在临床中应用。虽然这些固有亚型与临床结果有显著关联,但其5年以上的长期生存预测往往偏离预期的临床结果。本研究旨在基于综合多组学分析,确定BC自然发生的长期预后亚组。本研究纳入了奥斯陆2研究中335名未经治疗的BC患者的临床队列,并进行了长期随访(>12年)。研究采用了多组学因子分析(MOFA+)来整合从肿瘤组织中获得的转录组学、蛋白质组学和代谢组学数据。我们的分析揭示了三个显著的多组学群组,这些群组的 BC 患者的长期预后存在显著差异(p = 0.005)。这些多组学集群在两个独立的大型队列(METABRIC 和 TCGA)中得到了验证。重要的是,在这些队列中,以前建立的内在亚型在超过 12 年的长期随访中缺乏预后关联。通过系统生物学方法,我们在预后群组中发现了细胞周期和免疫相关通路的不同富集水平。对 BC 进行多组学综合分析后,发现了三个具有独特临床和生物学特征的不同群组。值得注意的是,这些多组学集群与长期存活率有着密切的联系,优于已确定的固有亚型。
{"title":"Comprehensive multi-omics analysis of breast cancer reveals distinct long-term prognostic subtypes.","authors":"Abhibhav Sharma, Julia Debik, Bjørn Naume, Hege Oma Ohnstad, Tone F Bathen, Guro F Giskeødegård","doi":"10.1038/s41389-024-00521-6","DOIUrl":"10.1038/s41389-024-00521-6","url":null,"abstract":"<p><p>Breast cancer (BC) is a leading cause of cancer-related death worldwide. The diverse nature and heterogeneous biology of BC pose challenges for survival prediction, as patients with similar diagnoses often respond differently to treatment. Clinically relevant BC intrinsic subtypes have been established through gene expression profiling and are implemented in the clinic. While these intrinsic subtypes show a significant association with clinical outcomes, their long-term survival prediction beyond 5 years often deviates from expected clinical outcomes. This study aimed to identify naturally occurring long-term prognostic subgroups of BC based on an integrated multi-omics analysis. This study incorporates a clinical cohort of 335 untreated BC patients from the Oslo2 study with long-term follow-up (>12 years). Multi-Omics Factor Analysis (MOFA+) was employed to integrate transcriptomic, proteomic, and metabolomic data obtained from the tumor tissues. Our analysis revealed three prominent multi-omics clusters of BC patients with significantly different long-term prognoses (p = 0.005). The multi-omics clusters were validated in two independent large cohorts, METABRIC and TCGA. Importantly, a lack of prognostic association to long-term follow-up above 12 years in the previously established intrinsic subtypes was shown for these cohorts. Through a systems-biology approach, we identified varying enrichment levels of cell-cycle and immune-related pathways among the prognostic clusters. Integrated multi-omics analysis of BC revealed three distinct clusters with unique clinical and biological characteristics. Notably, these multi-omics clusters displayed robust associations with long-term survival, outperforming the established intrinsic subtypes.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"13 1","pages":"22"},"PeriodicalIF":6.2,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11176181/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141317935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Oncogenesis
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1