Pub Date : 2023-02-11DOI: 10.1038/s41389-023-00452-8
Serena Diazzi, Sophie Tartare-Deckert, Marcel Deckert
Advanced cutaneous melanoma is the deadliest form of skin cancer and one of the most aggressive human cancers. Targeted therapies (TT) against BRAF mutated melanoma and immune checkpoints blockade therapies (ICB) have been a breakthrough in the treatment of metastatic melanoma. However, therapy-driven resistance remains a major hurdle in the clinical management of the metastatic disease. Besides shaping the tumor microenvironment, current treatments impact transition states to promote melanoma cell phenotypic plasticity and intratumor heterogeneity, which compromise treatment efficacy and clinical outcomes. In this context, mesenchymal-like dedifferentiated melanoma cells exhibit a remarkable ability to autonomously assemble their own extracellular matrix (ECM) and to biomechanically adapt in response to therapeutic insults, thereby fueling tumor relapse. Here, we review recent studies that highlight mechanical phenotypic plasticity of melanoma cells as a hallmark of adaptive and non-genetic resistance to treatment and emerging driver in cross-resistance to TT and ICB. We also discuss how targeting BRAF-mutant dedifferentiated cells and ECM-based mechanotransduction pathways may overcome melanoma cross-resistance.
{"title":"The mechanical phenotypic plasticity of melanoma cell: an emerging driver of therapy cross-resistance.","authors":"Serena Diazzi, Sophie Tartare-Deckert, Marcel Deckert","doi":"10.1038/s41389-023-00452-8","DOIUrl":"https://doi.org/10.1038/s41389-023-00452-8","url":null,"abstract":"<p><p>Advanced cutaneous melanoma is the deadliest form of skin cancer and one of the most aggressive human cancers. Targeted therapies (TT) against BRAF mutated melanoma and immune checkpoints blockade therapies (ICB) have been a breakthrough in the treatment of metastatic melanoma. However, therapy-driven resistance remains a major hurdle in the clinical management of the metastatic disease. Besides shaping the tumor microenvironment, current treatments impact transition states to promote melanoma cell phenotypic plasticity and intratumor heterogeneity, which compromise treatment efficacy and clinical outcomes. In this context, mesenchymal-like dedifferentiated melanoma cells exhibit a remarkable ability to autonomously assemble their own extracellular matrix (ECM) and to biomechanically adapt in response to therapeutic insults, thereby fueling tumor relapse. Here, we review recent studies that highlight mechanical phenotypic plasticity of melanoma cells as a hallmark of adaptive and non-genetic resistance to treatment and emerging driver in cross-resistance to TT and ICB. We also discuss how targeting BRAF-mutant dedifferentiated cells and ECM-based mechanotransduction pathways may overcome melanoma cross-resistance.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"12 1","pages":"7"},"PeriodicalIF":6.2,"publicationDate":"2023-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9922263/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10696363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-08DOI: 10.1038/s41389-023-00450-w
Francesca Favaro, Demi Both, Ingrid A M Derks, Marcel Spaargaren, Cristina Muñoz-Pinedo, Eric Eldering
Impairments in protein folding in the endoplasmic reticulum (ER) lead to a condition called ER stress, which can trigger apoptosis via the mitochondrial or the death receptor (extrinsic) pathway. There is controversy concerning involvement of the death receptor (DR)4 and DR5-Caspase-8 -Bid pathway in ER stress-mediated cell death, and this axis has not been fully studied in B-cell malignancies. Using three B-cell lines from Mantle Cell Lymphoma, Waldenström's macroglobulinemia and Multiple Myeloma origins, we engineered a set of CRISPR KOs of key components of these cell death pathways to address this controversy. We demonstrate that DR4 and/or DR5 are essential for killing via TRAIL, however, they were dispensable for ER-stress induced-cell death, by Thapsigargin, Brefeldin A or Bortezomib, as were Caspase-8 and Bid. In contrast, the deficiency of Bax and Bak fully protected from ER stressors. Caspase-8 and Bid were cleaved upon ER-stress stimulation, but this was DR4/5 independent and rather a result of mitochondrial-induced feedback loop subsequent to Bax/Bak activation. Finally, combined activation of the ER-stress and TRAIL cell-death pathways was synergistic with putative clinical relevance for B-cell malignancies.
{"title":"Negligible role of TRAIL death receptors in cell death upon endoplasmic reticulum stress in B-cell malignancies.","authors":"Francesca Favaro, Demi Both, Ingrid A M Derks, Marcel Spaargaren, Cristina Muñoz-Pinedo, Eric Eldering","doi":"10.1038/s41389-023-00450-w","DOIUrl":"https://doi.org/10.1038/s41389-023-00450-w","url":null,"abstract":"<p><p>Impairments in protein folding in the endoplasmic reticulum (ER) lead to a condition called ER stress, which can trigger apoptosis via the mitochondrial or the death receptor (extrinsic) pathway. There is controversy concerning involvement of the death receptor (DR)4 and DR5-Caspase-8 -Bid pathway in ER stress-mediated cell death, and this axis has not been fully studied in B-cell malignancies. Using three B-cell lines from Mantle Cell Lymphoma, Waldenström's macroglobulinemia and Multiple Myeloma origins, we engineered a set of CRISPR KOs of key components of these cell death pathways to address this controversy. We demonstrate that DR4 and/or DR5 are essential for killing via TRAIL, however, they were dispensable for ER-stress induced-cell death, by Thapsigargin, Brefeldin A or Bortezomib, as were Caspase-8 and Bid. In contrast, the deficiency of Bax and Bak fully protected from ER stressors. Caspase-8 and Bid were cleaved upon ER-stress stimulation, but this was DR4/5 independent and rather a result of mitochondrial-induced feedback loop subsequent to Bax/Bak activation. Finally, combined activation of the ER-stress and TRAIL cell-death pathways was synergistic with putative clinical relevance for B-cell malignancies.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"12 1","pages":"6"},"PeriodicalIF":6.2,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9908905/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10681096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-07DOI: 10.1038/s41389-023-00451-9
Lu Qi, Xiangyu Pan, Xuelan Chen, Pengpeng Liu, Mei Chen, Qi Zhang, Xiaohang Hang, Minghai Tang, Dan Wen, Lunzhi Dai, Chong Chen, Yu Liu, Zhengmin Xu
Deletions of chromosome 17p, where TP53 gene locates, are the most frequent chromosome alterations in human cancers and associated with poor outcomes in patients. Our previous work suggested that there were p53-independent mechanisms involved in chromosome 17p deletions-driven cancers. Here, we report that altered arachidonate metabolism, due to the deficiency of mouse Alox8 on chromosome 11B3 (homologous to human ALOX15B on chromosome 17p), contributes to the B cell malignancy. While the metabolites produced from lipoxygenase pathway reduced, chromosome 11B3 deletions or Alox8 loss, lead to upregulating its paralleling cyclooxygenase pathway, indicated by the increased levels of oncometabolite prostaglandin E2. Ectopic PGE2 prevented the apoptosis and differentiation of pre-B cells. Further studies revealed that Alox8 deficiency dramatically and specifically induced Cox-2(Ptgs2) gene expression. Repressing Cox-2 by its shRNAs impaired the tumorigenesis driven by Alox8 loss. And, in turn, tumor cells with Alox8 or 11B3 loss were sensitive to the COX-2 inhibitor celecoxib. This correlation between COX-2 upregulation and chromosome 17p deletions was consistent in human B-cell lymphomas. Hence, our studies reveal that the arachidonate metabolism abnormality with unbalanced ALOX and COX pathways underlies human cancers with 17p deletions and suggest new susceptibility for this disease.
{"title":"COX-2/PGE2 upregulation contributes to the chromosome 17p-deleted lymphoma.","authors":"Lu Qi, Xiangyu Pan, Xuelan Chen, Pengpeng Liu, Mei Chen, Qi Zhang, Xiaohang Hang, Minghai Tang, Dan Wen, Lunzhi Dai, Chong Chen, Yu Liu, Zhengmin Xu","doi":"10.1038/s41389-023-00451-9","DOIUrl":"https://doi.org/10.1038/s41389-023-00451-9","url":null,"abstract":"<p><p>Deletions of chromosome 17p, where TP53 gene locates, are the most frequent chromosome alterations in human cancers and associated with poor outcomes in patients. Our previous work suggested that there were p53-independent mechanisms involved in chromosome 17p deletions-driven cancers. Here, we report that altered arachidonate metabolism, due to the deficiency of mouse Alox8 on chromosome 11B3 (homologous to human ALOX15B on chromosome 17p), contributes to the B cell malignancy. While the metabolites produced from lipoxygenase pathway reduced, chromosome 11B3 deletions or Alox8 loss, lead to upregulating its paralleling cyclooxygenase pathway, indicated by the increased levels of oncometabolite prostaglandin E2. Ectopic PGE2 prevented the apoptosis and differentiation of pre-B cells. Further studies revealed that Alox8 deficiency dramatically and specifically induced Cox-2(Ptgs2) gene expression. Repressing Cox-2 by its shRNAs impaired the tumorigenesis driven by Alox8 loss. And, in turn, tumor cells with Alox8 or 11B3 loss were sensitive to the COX-2 inhibitor celecoxib. This correlation between COX-2 upregulation and chromosome 17p deletions was consistent in human B-cell lymphomas. Hence, our studies reveal that the arachidonate metabolism abnormality with unbalanced ALOX and COX pathways underlies human cancers with 17p deletions and suggest new susceptibility for this disease.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"12 1","pages":"5"},"PeriodicalIF":6.2,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9905509/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9243491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-06DOI: 10.1038/s41389-023-00449-3
Tatsuo Kido, Yun-Fai Chris Lau
Androgen receptor variant 7 (AR-V7), an AR isoform with a truncated ligand-binding domain, functions as a transcription factor in an androgen-independent manner. AR-V7 is expressed in a subpopulation of hepatocellular carcinoma (HCC), however, its role(s) in this cancer is undefined. In this study, we investigated the potential roles of AR-V7 in hepatocarcinogenesis in vivo in a c-MYC-driven mouse HCC model generated by the hydrodynamic tail-vein injection system. The impacts of AR-V7 on gene expression in mouse HCC were elucidated by RNA-seq transcriptome and ontology analyses. The results showed that AR-V7 significantly exacerbated the c-MYC-mediated oncogenesis in the livers of both sexes. The transcriptome and bioinformatics analyses revealed that AR-V7 and c-MYC synergistically altered the gene sets involved in various cancer-related biological processes, particularly in lipid and steroid/sterol metabolisms. Importantly, AR-V7 suppressed a tumor suppressor Claudin 7 expression, upregulated by c-MYC overexpression via the p53 signaling pathway. Claudin 7 overexpression significantly suppressed the c-MYC-driven HCC development under p53-deficient conditions. Our results suggest that the AR-V7 exacerbates the c-MYC-driven hepatocarcinogenesis by potentiating the oncogenic roles and minimizing the anti-oncogenic functions of c-MYC. Since AR-V7 is expressed in a subpopulation of HCC cases, it could contribute to the inter- and intra-heterogeneity of HCC.
{"title":"Androgen receptor variant 7 exacerbates hepatocarcinogenesis in a c-MYC-driven mouse HCC model.","authors":"Tatsuo Kido, Yun-Fai Chris Lau","doi":"10.1038/s41389-023-00449-3","DOIUrl":"https://doi.org/10.1038/s41389-023-00449-3","url":null,"abstract":"<p><p>Androgen receptor variant 7 (AR-V7), an AR isoform with a truncated ligand-binding domain, functions as a transcription factor in an androgen-independent manner. AR-V7 is expressed in a subpopulation of hepatocellular carcinoma (HCC), however, its role(s) in this cancer is undefined. In this study, we investigated the potential roles of AR-V7 in hepatocarcinogenesis in vivo in a c-MYC-driven mouse HCC model generated by the hydrodynamic tail-vein injection system. The impacts of AR-V7 on gene expression in mouse HCC were elucidated by RNA-seq transcriptome and ontology analyses. The results showed that AR-V7 significantly exacerbated the c-MYC-mediated oncogenesis in the livers of both sexes. The transcriptome and bioinformatics analyses revealed that AR-V7 and c-MYC synergistically altered the gene sets involved in various cancer-related biological processes, particularly in lipid and steroid/sterol metabolisms. Importantly, AR-V7 suppressed a tumor suppressor Claudin 7 expression, upregulated by c-MYC overexpression via the p53 signaling pathway. Claudin 7 overexpression significantly suppressed the c-MYC-driven HCC development under p53-deficient conditions. Our results suggest that the AR-V7 exacerbates the c-MYC-driven hepatocarcinogenesis by potentiating the oncogenic roles and minimizing the anti-oncogenic functions of c-MYC. Since AR-V7 is expressed in a subpopulation of HCC cases, it could contribute to the inter- and intra-heterogeneity of HCC.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"12 1","pages":"4"},"PeriodicalIF":6.2,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9902460/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9450906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PBX1 is a transcription factor that regulates a variety of genes, involved in intracellular lipid metabolism, cell proliferation, and other pathways. The promoting and inhibiting function of PBX1 in various cancer types was extensively discussed, however, there have been no studies on PBX1 proteins in colorectal cancer (CRC). This study aimed to reveal the anti-tumor function of PBX1 in CRC and the underlying molecular mechanism. Bioinformatics analysis revealed that PBX1 is downregulated in CRC, indicating that is a potential antioncogene in CRC. Overexpression of PBX1 suppresses tumor growth and metastasis in vitro and in vivo. Mechanistically, we found that PBX1 acted as a transcription factor that suppressed DCDC2 expression and inhibited spindle function. Moreover, the PBX1-DCDC2 axis controlled the Wnt pathway in CRC cells. Overexpression of DCDC2 restored CRC proliferation, metastasis abilities and Wnt pathway. In conclusion, this study suggests that PBX1 acts as a transcription factor to suppress DCDC2 expression and inhibit cell proliferation and metastasis by disrupting spindle function and the Wnt pathway in CRC.
{"title":"Spindle function and Wnt pathway inhibition by PBX1 to suppress tumor progression via downregulating DCDC2 in colorectal cancer.","authors":"Weigang Dai, Yinan Liu, Tianhao Zhang, Zhixin Huang, Xiang Xu, Zeyu Zhao, Jianqiu Liu, Ertao Zhai, Shirong Cai, Jianhui Chen","doi":"10.1038/s41389-023-00448-4","DOIUrl":"https://doi.org/10.1038/s41389-023-00448-4","url":null,"abstract":"<p><p>PBX1 is a transcription factor that regulates a variety of genes, involved in intracellular lipid metabolism, cell proliferation, and other pathways. The promoting and inhibiting function of PBX1 in various cancer types was extensively discussed, however, there have been no studies on PBX1 proteins in colorectal cancer (CRC). This study aimed to reveal the anti-tumor function of PBX1 in CRC and the underlying molecular mechanism. Bioinformatics analysis revealed that PBX1 is downregulated in CRC, indicating that is a potential antioncogene in CRC. Overexpression of PBX1 suppresses tumor growth and metastasis in vitro and in vivo. Mechanistically, we found that PBX1 acted as a transcription factor that suppressed DCDC2 expression and inhibited spindle function. Moreover, the PBX1-DCDC2 axis controlled the Wnt pathway in CRC cells. Overexpression of DCDC2 restored CRC proliferation, metastasis abilities and Wnt pathway. In conclusion, this study suggests that PBX1 acts as a transcription factor to suppress DCDC2 expression and inhibit cell proliferation and metastasis by disrupting spindle function and the Wnt pathway in CRC.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"12 1","pages":"3"},"PeriodicalIF":6.2,"publicationDate":"2023-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9899229/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9228719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Helicase-like transcription factor (HLTF) has been found to be involved in the progression of several tumors, but the role of HLTF in hepatocellular carcinoma (HCC) progression has not been studied. Here, our study explored the underlying mechanism of HLTF in HCC progression for the first time. Database analysis and clinical sample examination indicated that HLTF was upregulated in HCC tissues and was related to poor clinicopathological features in patients. Upregulation of HLTF accelerated the growth and metastasis of HCC cells both in vitro and in vivo. Bioinformatics analysis and subsequent experiments revealed that ERK/MAPK signaling pathway activation was vital to HLTF-mediated proliferation and metastasis in HCC cells. Moreover, HLTF was demonstrated to interact with SRSF1 and contribute to its protein stability to activate the ERK/MAPK signaling pathway and enhance HCC growth and metastasis. In addition, miR-511-5p was expressed at a low level in HCC tissues, was negatively correlated HLTF, and regulated HLTF expression. Our study shows that HLTF plays an oncogenic role in HCC progression and provides a novel biomarker and therapeutic target for the diagnosis and treatment of HCC.
{"title":"HLTF promotes hepatocellular carcinoma progression by enhancing SRSF1 stability and activating ERK/MAPK pathway.","authors":"Yanan Xu, Shanjia Ke, Shounan Lu, Chaoqun Wang, Zihao Li, Zhigang Feng, Hongjun Yu, Miaoyu Bai, Baolin Qian, Bing Yin, Xinglong Li, Yongliang Hua, Hongchi Jiang, Yong Ma","doi":"10.1038/s41389-023-00447-5","DOIUrl":"https://doi.org/10.1038/s41389-023-00447-5","url":null,"abstract":"<p><p>Helicase-like transcription factor (HLTF) has been found to be involved in the progression of several tumors, but the role of HLTF in hepatocellular carcinoma (HCC) progression has not been studied. Here, our study explored the underlying mechanism of HLTF in HCC progression for the first time. Database analysis and clinical sample examination indicated that HLTF was upregulated in HCC tissues and was related to poor clinicopathological features in patients. Upregulation of HLTF accelerated the growth and metastasis of HCC cells both in vitro and in vivo. Bioinformatics analysis and subsequent experiments revealed that ERK/MAPK signaling pathway activation was vital to HLTF-mediated proliferation and metastasis in HCC cells. Moreover, HLTF was demonstrated to interact with SRSF1 and contribute to its protein stability to activate the ERK/MAPK signaling pathway and enhance HCC growth and metastasis. In addition, miR-511-5p was expressed at a low level in HCC tissues, was negatively correlated HLTF, and regulated HLTF expression. Our study shows that HLTF plays an oncogenic role in HCC progression and provides a novel biomarker and therapeutic target for the diagnosis and treatment of HCC.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"12 1","pages":"2"},"PeriodicalIF":6.2,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9859789/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10575771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-02DOI: 10.1038/s41389-022-00446-y
Yongming Fu, Tuoyu Cao, Xiaorui Zou, Yubing Ye, Youhong Liu, Yuchong Peng, Tanggang Deng, Linglong Yin, Xiong Li
Oncogenic activation of PI3K/AKT signaling pathway, together with epigenetic aberrations are the characters of castration-resistant prostate cancer (CRPC). UHRF1 as a key epigenetic regulator, plays a critical role in prostate cancer (PCa) development, and its expression is positively correlated with the degree of malignancy. In this present study we investigated the potential regulatory mechanism of AKT1 on UHRF1, and further validated the in vitro and in vivo anticancer efficacy of AKT phosphorylation inhibitor MK2206 in combination with abiraterone. Both UHRF1 and p-AKT aberrantly overexpressed in the abiraterone-resistant PCa cells. Further studies revealed that AKT1 protein interacts with UHRF1, and AKT1 directly phosphorylates UHRF1 via the site Thr-210. MK2206 induced UHRF1 protein degradation by inhibiting AKT1-induced UHRF1 phosphorylation, and then reduced the interaction between UHRF1 and deubiquitinase USP7, while promoted the interaction between UHRF1 and E3 ubiquitin protein ligase BTRC. MK2206 significantly promoted the sensitivity of abiraterone-refractory PCa cells and xenografts to abiraterone by decreasing UHRF1 protein level, and reversed the phenotype of NEPC, evently induced cellular senescence and cell apoptosis. Altogether, our present study for the first time revealed a novel molecular mechanism of abiraterone resistance through PI3K/AKT-UHRF1 pathway, and provided a novel therapeutic modality by targeting PI3K/AKT1 to promote the drug sensitivity of abiraterone in PCa patients.
{"title":"AKT1 regulates UHRF1 protein stability and promotes the resistance to abiraterone in prostate cancer.","authors":"Yongming Fu, Tuoyu Cao, Xiaorui Zou, Yubing Ye, Youhong Liu, Yuchong Peng, Tanggang Deng, Linglong Yin, Xiong Li","doi":"10.1038/s41389-022-00446-y","DOIUrl":"https://doi.org/10.1038/s41389-022-00446-y","url":null,"abstract":"<p><p>Oncogenic activation of PI3K/AKT signaling pathway, together with epigenetic aberrations are the characters of castration-resistant prostate cancer (CRPC). UHRF1 as a key epigenetic regulator, plays a critical role in prostate cancer (PCa) development, and its expression is positively correlated with the degree of malignancy. In this present study we investigated the potential regulatory mechanism of AKT1 on UHRF1, and further validated the in vitro and in vivo anticancer efficacy of AKT phosphorylation inhibitor MK2206 in combination with abiraterone. Both UHRF1 and p-AKT aberrantly overexpressed in the abiraterone-resistant PCa cells. Further studies revealed that AKT1 protein interacts with UHRF1, and AKT1 directly phosphorylates UHRF1 via the site Thr-210. MK2206 induced UHRF1 protein degradation by inhibiting AKT1-induced UHRF1 phosphorylation, and then reduced the interaction between UHRF1 and deubiquitinase USP7, while promoted the interaction between UHRF1 and E3 ubiquitin protein ligase BTRC. MK2206 significantly promoted the sensitivity of abiraterone-refractory PCa cells and xenografts to abiraterone by decreasing UHRF1 protein level, and reversed the phenotype of NEPC, evently induced cellular senescence and cell apoptosis. Altogether, our present study for the first time revealed a novel molecular mechanism of abiraterone resistance through PI3K/AKT-UHRF1 pathway, and provided a novel therapeutic modality by targeting PI3K/AKT1 to promote the drug sensitivity of abiraterone in PCa patients.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"12 1","pages":"1"},"PeriodicalIF":6.2,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9807647/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10487103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-28DOI: 10.1038/s41389-022-00445-z
Andreas Konopa, Melanie A Meier, Miriam J Franz, Emanuele Bernardinelli, Anna-Lena Voegele, Raja Atreya, Silvia Ribback, Stephanie Roessler, Achim Aigner, Kerstin Singer, Stephan Singer, Antonio Sarikas, Susanne Muehlich
Myocardin-related transcription factors A and B (MRTFs) are coactivators of Serum Response Factor (SRF), which controls fundamental biological processes such as cell growth, migration, and differentiation. MRTF and SRF transcriptional activity play an important role in hepatocellular carcinoma (HCC) growth, which represents the second leading cause of cancer-related mortality in humans worldwide. We, therefore, searched for druggable targets in HCC that regulate MRTF/SRF transcriptional activity and can be exploited therapeutically for HCC therapy. We identified the G protein-coupled lysophosphatidic acid receptor 1 (LPAR1) as a novel interaction partner of MRTF-A and Filamin A (FLNA) using fluorescence resonance energy transfer-(FRET) and proximity ligation assay (PLA) in vitro in HCC cells and in vivo in organoids. We found that LPAR1 promotes FLNA phosphorylation at S2152 which enhances the complex formation of FLNA and MRTF-A, actin polymerization, and MRTF transcriptional activity. Pharmacological blockade or depletion of LPAR1 prevents FLNA phosphorylation and complex formation with MRTF-A, resulting in reduced MRTF/SRF target gene expression and oncogene-induced senescence. Thus, inhibition of the LPAR1-FLNA-MRTF-A interaction represents a promising strategy for HCC therapy.
{"title":"LPA receptor 1 (LPAR1) is a novel interaction partner of Filamin A that promotes Filamin A phosphorylation, MRTF-A transcriptional activity and oncogene-induced senescence.","authors":"Andreas Konopa, Melanie A Meier, Miriam J Franz, Emanuele Bernardinelli, Anna-Lena Voegele, Raja Atreya, Silvia Ribback, Stephanie Roessler, Achim Aigner, Kerstin Singer, Stephan Singer, Antonio Sarikas, Susanne Muehlich","doi":"10.1038/s41389-022-00445-z","DOIUrl":"https://doi.org/10.1038/s41389-022-00445-z","url":null,"abstract":"<p><p>Myocardin-related transcription factors A and B (MRTFs) are coactivators of Serum Response Factor (SRF), which controls fundamental biological processes such as cell growth, migration, and differentiation. MRTF and SRF transcriptional activity play an important role in hepatocellular carcinoma (HCC) growth, which represents the second leading cause of cancer-related mortality in humans worldwide. We, therefore, searched for druggable targets in HCC that regulate MRTF/SRF transcriptional activity and can be exploited therapeutically for HCC therapy. We identified the G protein-coupled lysophosphatidic acid receptor 1 (LPAR1) as a novel interaction partner of MRTF-A and Filamin A (FLNA) using fluorescence resonance energy transfer-(FRET) and proximity ligation assay (PLA) in vitro in HCC cells and in vivo in organoids. We found that LPAR1 promotes FLNA phosphorylation at S2152 which enhances the complex formation of FLNA and MRTF-A, actin polymerization, and MRTF transcriptional activity. Pharmacological blockade or depletion of LPAR1 prevents FLNA phosphorylation and complex formation with MRTF-A, resulting in reduced MRTF/SRF target gene expression and oncogene-induced senescence. Thus, inhibition of the LPAR1-FLNA-MRTF-A interaction represents a promising strategy for HCC therapy.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"11 1","pages":"69"},"PeriodicalIF":6.2,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9797565/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10512964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-06DOI: 10.1038/s41389-022-00430-6
Stephanie C Wu, Ahhyun Kim, Yijun Gu, Daniel I Martinez, Loredana Zocchi, Claire C Chen, Jocelyne Lopez, Kelsey Salcido, Sarah Singh, Jie Wu, Ali Nael, Claudia A Benavente
Loss-of-function mutations at the retinoblastoma (RB1) gene are associated with increased mortality, metastasis, and poor therapeutic outcome in several cancers, including osteosarcoma. However, the mechanism(s) through which RB1 loss worsens clinical outcome remains understudied. Ubiquitin-like with PHD and Ring Finger domains 1 (UHRF1) has been identified as a critical downstream effector of the RB/E2F signaling pathway that is overexpressed in various cancers. Here, we determined the role and regulatory mechanisms of UHRF1 in rendering osteosarcoma cells more aggressive. Higher UHRF1 expression correlated with malignancy in osteosarcoma cell lines, clinical samples, and genetically engineered mouse models. Gain- and loss-of-function assays revealed that UHRF1 has cell-intrinsic and extrinsic functions promoting cell proliferation, migration, invasion, angiogenesis, and metastasis. UHRF1 overexpression induced angiogenesis by suppressing AMPK activation and Semaphorin 3E (SEMA3E) expression. Further, UHRF1-mediated migration and metastasis resulted, at least in part, through altered expression of extracellular vesicles and their cargo, including urokinase-type plasminogen activator (uPA). Novel osteosarcoma genetically engineered mouse models confirmed that knocking out Uhrf1 considerably decreased metastasis and reversed the poorer survival associated with Rb1 loss. This presents a new mechanistic insight into RB1 loss-associated poor prognosis and novel oncogenic roles of UHRF1 in the regulation of angiogenesis and exosome secretion, both critical for osteosarcoma metastasis. This provides substantial support for targeting UHRF1 or its downstream effectors as novel therapeutic options to improve current treatment for osteosarcoma.
{"title":"UHRF1 overexpression promotes osteosarcoma metastasis through altered exosome production and AMPK/SEMA3E suppression.","authors":"Stephanie C Wu, Ahhyun Kim, Yijun Gu, Daniel I Martinez, Loredana Zocchi, Claire C Chen, Jocelyne Lopez, Kelsey Salcido, Sarah Singh, Jie Wu, Ali Nael, Claudia A Benavente","doi":"10.1038/s41389-022-00430-6","DOIUrl":"10.1038/s41389-022-00430-6","url":null,"abstract":"<p><p>Loss-of-function mutations at the retinoblastoma (RB1) gene are associated with increased mortality, metastasis, and poor therapeutic outcome in several cancers, including osteosarcoma. However, the mechanism(s) through which RB1 loss worsens clinical outcome remains understudied. Ubiquitin-like with PHD and Ring Finger domains 1 (UHRF1) has been identified as a critical downstream effector of the RB/E2F signaling pathway that is overexpressed in various cancers. Here, we determined the role and regulatory mechanisms of UHRF1 in rendering osteosarcoma cells more aggressive. Higher UHRF1 expression correlated with malignancy in osteosarcoma cell lines, clinical samples, and genetically engineered mouse models. Gain- and loss-of-function assays revealed that UHRF1 has cell-intrinsic and extrinsic functions promoting cell proliferation, migration, invasion, angiogenesis, and metastasis. UHRF1 overexpression induced angiogenesis by suppressing AMPK activation and Semaphorin 3E (SEMA3E) expression. Further, UHRF1-mediated migration and metastasis resulted, at least in part, through altered expression of extracellular vesicles and their cargo, including urokinase-type plasminogen activator (uPA). Novel osteosarcoma genetically engineered mouse models confirmed that knocking out Uhrf1 considerably decreased metastasis and reversed the poorer survival associated with Rb1 loss. This presents a new mechanistic insight into RB1 loss-associated poor prognosis and novel oncogenic roles of UHRF1 in the regulation of angiogenesis and exosome secretion, both critical for osteosarcoma metastasis. This provides substantial support for targeting UHRF1 or its downstream effectors as novel therapeutic options to improve current treatment for osteosarcoma.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"11 1","pages":"51"},"PeriodicalIF":6.2,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9448786/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10215285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}