Metabolic reprogramming has become increasingly important in tumor biology research. The glucose metabolic pathway is a major energy source and is often dysregulated in breast cancer. DAB2IP is widely reported to be a tumor suppressor that acts as a scaffold protein to suppress tumor malignancy in breast cancer. Interestingly, DAB2IP has also been found to be a potential regulator of glucose uptake; however, the exact mechanism remains unclear. In this study, we found that DAB2IP inhibited glucose uptake under hypoxia conditions in breast cancer cells by suppressing HIF-1α signals. Mechanically, DAB2IP interacted with the E3 ubiquitin ligase STUB1 via its PER domain, thus triggering STUB1 mediated HIF-1α ubiquitylation and degradation, and inhibit glucose metabolism and tumor progression. Deleting the PER domain abrogated the DAB2IP-related inhibitory effects on glucose uptake, intracellular ATP production, and lactic acid production in breast cancer cells. These findings elucidate the biological roles of DAB2IP in cancer-related glucose metabolism as well as a novel mechanism by which STUB1-driven HIF-1α ubiquitylated degradation is regulated in breast cancer.
代谢重编程在肿瘤生物学研究中变得越来越重要。葡萄糖代谢途径是一种主要的能量来源,在乳腺癌中经常出现失调。据广泛报道,DAB2IP 是一种肿瘤抑制因子,可作为支架蛋白抑制乳腺癌中肿瘤的恶性程度。有趣的是,DAB2IP 还被发现是葡萄糖摄取的潜在调节因子,但其确切机制仍不清楚。本研究发现,在缺氧条件下,DAB2IP 通过抑制 HIF-1α 信号来抑制乳腺癌细胞的葡萄糖摄取。在机制上,DAB2IP通过其PER结构域与E3泛素连接酶STUB1相互作用,从而引发STUB1介导的HIF-1α泛素化和降解,抑制葡萄糖代谢和肿瘤进展。删除 PER 结构域可减弱 DAB2IP 对乳腺癌细胞葡萄糖摄取、细胞内 ATP 生成和乳酸生成的抑制作用。这些发现阐明了 DAB2IP 在与癌症相关的葡萄糖代谢中的生物学作用,以及 STUB1 驱动的 HIF-1α 泛素化降解在乳腺癌中的新调控机制。
{"title":"DAB2IP inhibits glucose uptake by modulating HIF-1α ubiquitination under hypoxia in breast cancer.","authors":"Hongliang Dong, Weiyi Jia, Weijian Meng, Rui Zhang, Zhihong Qi, Zhuo Chen, Sophia Xie, Jiang Min, Liang Liu, Jie Shen","doi":"10.1038/s41389-024-00523-4","DOIUrl":"10.1038/s41389-024-00523-4","url":null,"abstract":"<p><p>Metabolic reprogramming has become increasingly important in tumor biology research. The glucose metabolic pathway is a major energy source and is often dysregulated in breast cancer. DAB2IP is widely reported to be a tumor suppressor that acts as a scaffold protein to suppress tumor malignancy in breast cancer. Interestingly, DAB2IP has also been found to be a potential regulator of glucose uptake; however, the exact mechanism remains unclear. In this study, we found that DAB2IP inhibited glucose uptake under hypoxia conditions in breast cancer cells by suppressing HIF-1α signals. Mechanically, DAB2IP interacted with the E3 ubiquitin ligase STUB1 via its PER domain, thus triggering STUB1 mediated HIF-1α ubiquitylation and degradation, and inhibit glucose metabolism and tumor progression. Deleting the PER domain abrogated the DAB2IP-related inhibitory effects on glucose uptake, intracellular ATP production, and lactic acid production in breast cancer cells. These findings elucidate the biological roles of DAB2IP in cancer-related glucose metabolism as well as a novel mechanism by which STUB1-driven HIF-1α ubiquitylated degradation is regulated in breast cancer.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"13 1","pages":"20"},"PeriodicalIF":6.2,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166643/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141306489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-29DOI: 10.1038/s41389-024-00519-0
Changhwan Yoon, Jun Lu, Brendan C Yi, Kevin K Chang, M Celeste Simon, Sandra Ryeom, Sam S Yoon
{"title":"Retraction Note: PI3K/Akt pathway and Nanog maintain cancer stem cells in sarcomas.","authors":"Changhwan Yoon, Jun Lu, Brendan C Yi, Kevin K Chang, M Celeste Simon, Sandra Ryeom, Sam S Yoon","doi":"10.1038/s41389-024-00519-0","DOIUrl":"10.1038/s41389-024-00519-0","url":null,"abstract":"","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"13 1","pages":"18"},"PeriodicalIF":6.2,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11137036/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141175952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-29DOI: 10.1038/s41389-024-00520-7
Kevin K Chang, Changhwan Yoon, Brendan C Yi, William D Tap, M Celeste Simon, Sam S Yoon
{"title":"Retraction Note: Platelet-derived growth factor receptor-α and -β promote cancer stem cell phenotypes in sarcomas.","authors":"Kevin K Chang, Changhwan Yoon, Brendan C Yi, William D Tap, M Celeste Simon, Sam S Yoon","doi":"10.1038/s41389-024-00520-7","DOIUrl":"10.1038/s41389-024-00520-7","url":null,"abstract":"","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"13 1","pages":"19"},"PeriodicalIF":6.2,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11137002/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141176004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The mitotic MTH1 inhibitor TH1579 is a dual inhibitor that inhibits mitosis and incorporation of oxidative DNA damage and leads to cancer-specific cell death. The response to immune checkpoint inhibitor (ICI) treatment is often augmented by DNA damaging agents through the cGAS-STING pathway. This study investigates whether TH1579 can improve the efficacy of immune checkpoint blockades through its immunomodulatory properties. Various human and murine cancer cell lines were treated with mitotic MTH1i TH1579, and the expression of PD-L1 and T-cell infiltration-related chemokines was analysed by flow cytometry and real-time qPCR. Syngeneic mouse models were established to examine the combined effect of TH1579 and PD-L1 blockade. In our investigation, we found that TH1579 upregulates PD-L1 expression at both the protein and mRNA levels in human cancer cell lines. However, in murine cell lines, the increase was less pronounced. An in vivo experiment in a syngeneic mouse melanoma model showed that TH1579 treatment significantly increased the efficacy of atezolizumab, an anti-PD-L1 antibody, compared to vehicle or atezolizumab monotherapy. Furthermore, TH1579 exhibited immune-modulatory properties, elevating cytokines such as IFN-β and chemokines including CCL5 and CXCL10, in a cGAS-STING pathway-dependent manner. In conclusion, TH1579 has the potential to improve ICI treatment by modulating immune checkpoint-related proteins and pathways.
{"title":"Mitotic MTH1 inhibitor TH1579 induces PD-L1 expression and inflammatory response through the cGAS-STING pathway","authors":"Jianyu Shen, Emilio Guillén Mancina, Shenyu Chen, Theodora Manolakou, Helge Gad, Ulrika Warpman Berglund, Kumar Sanjiv, Thomas Helleday","doi":"10.1038/s41389-024-00518-1","DOIUrl":"https://doi.org/10.1038/s41389-024-00518-1","url":null,"abstract":"<p>The mitotic MTH1 inhibitor TH1579 is a dual inhibitor that inhibits mitosis and incorporation of oxidative DNA damage and leads to cancer-specific cell death. The response to immune checkpoint inhibitor (ICI) treatment is often augmented by DNA damaging agents through the cGAS-STING pathway. This study investigates whether TH1579 can improve the efficacy of immune checkpoint blockades through its immunomodulatory properties. Various human and murine cancer cell lines were treated with mitotic MTH1i TH1579, and the expression of PD-L1 and T-cell infiltration-related chemokines was analysed by flow cytometry and real-time qPCR. Syngeneic mouse models were established to examine the combined effect of TH1579 and PD-L1 blockade. In our investigation, we found that TH1579 upregulates PD-L1 expression at both the protein and mRNA levels in human cancer cell lines. However, in murine cell lines, the increase was less pronounced. An in vivo experiment in a syngeneic mouse melanoma model showed that TH1579 treatment significantly increased the efficacy of atezolizumab, an anti-PD-L1 antibody, compared to vehicle or atezolizumab monotherapy. Furthermore, TH1579 exhibited immune-modulatory properties, elevating cytokines such as IFN-β and chemokines including CCL5 and CXCL10, in a cGAS-STING pathway-dependent manner. In conclusion, TH1579 has the potential to improve ICI treatment by modulating immune checkpoint-related proteins and pathways.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"10 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141147822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-20DOI: 10.1038/s41389-024-00517-2
Liuliu Shi, Xianglan Fang, Lijie Du, Jin Yang, Juan Xue, Xiaokai Yue, Duoshuang Xie, Yuanjian Hui, Kun Meng
Accumulating studies have shown that E3 ligases play crucial roles in regulating cellular biological processes and signaling pathways during carcinogenesis via ubiquitination. Tripartite-motif (TRIM) ubiquitin E3 ligases consist of over 70 members. However, the clinical significance and their contributions to tumorigenesis remain largely unknown. In this study, we analyzed the RNA-sequencing expression of TRIM E3 ligases in colorectal cancer (CRC) and identified 10 differentially expressed genes, among which TRIM1 expression predicted poor prognosis of CRC patients. We demonstrated that TRIM1 expression is positively associated with CRC pathological stages, and higher expression is positively correlated with infiltrating levels of immune cells and immunotherapy biomarkers. TRIM1 expression promotes the proliferation and migration of colorectal cancer cells in vitro and in vivo. Transcriptional analysis showed that TRIM1 is responsible for metabolism promotion and immune suppression. Mechanistically, we found that TRIM1 binds HIF1α and mediates its K63-linked ubiquitination, which is required for HIF1α nuclear translocation and subsequent activation. Ubiquitination occurs at Lys214 in the loop between the two PAS domains of HIF1α, and mutation of Lys214 severely disturbs the function of HIF1α. Besides, HIF1α ubiquitination enhances its binding with proteins involved in cellular trafficking and nucleocytoplasmic transport pathway. Collectively, our results indicate TRIM1's role in predicting prognosis and reveal how TRIM1 functions to upregulate HIF1α expression and promote tumor cell proliferation.
{"title":"An E3 ligase TRIM1 promotes colorectal cancer progression via K63-linked ubiquitination and activation of HIF1α.","authors":"Liuliu Shi, Xianglan Fang, Lijie Du, Jin Yang, Juan Xue, Xiaokai Yue, Duoshuang Xie, Yuanjian Hui, Kun Meng","doi":"10.1038/s41389-024-00517-2","DOIUrl":"10.1038/s41389-024-00517-2","url":null,"abstract":"<p><p>Accumulating studies have shown that E3 ligases play crucial roles in regulating cellular biological processes and signaling pathways during carcinogenesis via ubiquitination. Tripartite-motif (TRIM) ubiquitin E3 ligases consist of over 70 members. However, the clinical significance and their contributions to tumorigenesis remain largely unknown. In this study, we analyzed the RNA-sequencing expression of TRIM E3 ligases in colorectal cancer (CRC) and identified 10 differentially expressed genes, among which TRIM1 expression predicted poor prognosis of CRC patients. We demonstrated that TRIM1 expression is positively associated with CRC pathological stages, and higher expression is positively correlated with infiltrating levels of immune cells and immunotherapy biomarkers. TRIM1 expression promotes the proliferation and migration of colorectal cancer cells in vitro and in vivo. Transcriptional analysis showed that TRIM1 is responsible for metabolism promotion and immune suppression. Mechanistically, we found that TRIM1 binds HIF1α and mediates its K63-linked ubiquitination, which is required for HIF1α nuclear translocation and subsequent activation. Ubiquitination occurs at Lys214 in the loop between the two PAS domains of HIF1α, and mutation of Lys214 severely disturbs the function of HIF1α. Besides, HIF1α ubiquitination enhances its binding with proteins involved in cellular trafficking and nucleocytoplasmic transport pathway. Collectively, our results indicate TRIM1's role in predicting prognosis and reveal how TRIM1 functions to upregulate HIF1α expression and promote tumor cell proliferation.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"13 1","pages":"16"},"PeriodicalIF":5.9,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11106307/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141071647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-04DOI: 10.1038/s41389-024-00515-4
Wenbiao Chen, Liliangzi Guo, Huixuan Xu, Yong Dai, Jun Yao, Lisheng Wang
Our study aimed to elucidate the molecular mechanisms underlying NAC1 (nucleus accumbens associated 1) transcriptional regulation of LDHA and its role in HBV immune evasion, thus contributing to the development of cirrhosis and hepatocellular carcinoma (HCC). Utilizing public datasets, we performed differential gene expression and weighted gene co-expression network analysis (WGCNA) on HBV-induced cirrhosis/HCC data. We identified candidate genes by intersecting differentially expressed genes with co-expression modules. We validated these genes using the TCGA database, conducting survival analysis to pinpoint key genes affecting HBV-HCC prognosis. We also employed the TIMER database for immune cell infiltration data and analyzed correlations with identified key genes to uncover potential immune escape pathways. In vitro, we investigated the impact of NAC1 and LDHA on immune cell apoptosis and HBV immune evasion. In vivo, we confirmed these findings using an HBV-induced cirrhosis model. Bioinformatics analysis revealed 676 genes influenced by HBV infection, with 475 genes showing differential expression in HBV-HCC. NAC1 emerged as a key gene, potentially mediating HBV immune escape through LDHA transcriptional regulation. Experimental data demonstrated that NAC1 transcriptionally activates LDHA, promoting immune cell apoptosis and HBV immune evasion. Animal studies confirmed these findings, linking NAC1-mediated LDHA activation to cirrhosis and HCC development. NAC1, highly expressed in HBV-infected liver cells, likely drives HBV immune escape by activating LDHA expression, inhibiting CD8 + T cells, and promoting cirrhosis and HCC development.
{"title":"NAC1 transcriptional activation of LDHA induces hepatitis B virus immune evasion leading to cirrhosis and hepatocellular carcinoma development","authors":"Wenbiao Chen, Liliangzi Guo, Huixuan Xu, Yong Dai, Jun Yao, Lisheng Wang","doi":"10.1038/s41389-024-00515-4","DOIUrl":"https://doi.org/10.1038/s41389-024-00515-4","url":null,"abstract":"<p>Our study aimed to elucidate the molecular mechanisms underlying NAC1 (nucleus accumbens associated 1) transcriptional regulation of LDHA and its role in HBV immune evasion, thus contributing to the development of cirrhosis and hepatocellular carcinoma (HCC). Utilizing public datasets, we performed differential gene expression and weighted gene co-expression network analysis (WGCNA) on HBV-induced cirrhosis/HCC data. We identified candidate genes by intersecting differentially expressed genes with co-expression modules. We validated these genes using the TCGA database, conducting survival analysis to pinpoint key genes affecting HBV-HCC prognosis. We also employed the TIMER database for immune cell infiltration data and analyzed correlations with identified key genes to uncover potential immune escape pathways. In vitro, we investigated the impact of NAC1 and LDHA on immune cell apoptosis and HBV immune evasion. In vivo, we confirmed these findings using an HBV-induced cirrhosis model. Bioinformatics analysis revealed 676 genes influenced by HBV infection, with 475 genes showing differential expression in HBV-HCC. NAC1 emerged as a key gene, potentially mediating HBV immune escape through LDHA transcriptional regulation. Experimental data demonstrated that NAC1 transcriptionally activates LDHA, promoting immune cell apoptosis and HBV immune evasion. Animal studies confirmed these findings, linking NAC1-mediated LDHA activation to cirrhosis and HCC development. NAC1, highly expressed in HBV-infected liver cells, likely drives HBV immune escape by activating LDHA expression, inhibiting CD8 + T cells, and promoting cirrhosis and HCC development.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"2019 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140826988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-26DOI: 10.1038/s41389-024-00516-3
Diego Leiva, Estefanía Lucendo, Alicia Belén García-Jareño, Mónica Sancho, Mar Orzáez
The BCL2 family of proteins controls cell death by modulating the permeabilization of the mitochondrial outer membrane through a fine-tuned equilibrium of interactions among anti- and pro-apoptotic members. The upregulation of anti-apoptotic BCL2 proteins represents an unfavorable prognostic factor in many tumor types due to their ability to shift the equilibrium toward cancer cell survival. Furthermore, cancer-associated somatic mutations in BCL2 genes interfere with the protein interaction network, thereby promoting cell survival. A range of studies have documented how these mutations affect the interactions between the cytosolic domains of BCL2 and evaluate the impact on cell death; however, as the BCL2 transmembrane interaction network remains poorly understood, somatic mutations affecting transmembrane regions have been classified as pathogenic-based solely on prediction algorithms. We comprehensively investigated cancer-associated somatic mutations affecting the transmembrane domain of BCL2 proteins and elucidated their effect on membrane insertion, hetero-interactions with the pro-apoptotic protein BAX, and modulation of cell death in cancer cells. Our findings reveal how specific mutations disrupt switchable interactions, alter the modulation of apoptosis, and contribute to cancer cell survival. These results provide experimental evidence to distinguish BCL2 transmembrane driver mutations from passenger mutations and provide new insight regarding selecting precision anti-tumor treatments.
{"title":"Phenotyping of cancer-associated somatic mutations in the BCL2 transmembrane domain","authors":"Diego Leiva, Estefanía Lucendo, Alicia Belén García-Jareño, Mónica Sancho, Mar Orzáez","doi":"10.1038/s41389-024-00516-3","DOIUrl":"https://doi.org/10.1038/s41389-024-00516-3","url":null,"abstract":"<p>The BCL2 family of proteins controls cell death by modulating the permeabilization of the mitochondrial outer membrane through a fine-tuned equilibrium of interactions among anti- and pro-apoptotic members. The upregulation of anti-apoptotic BCL2 proteins represents an unfavorable prognostic factor in many tumor types due to their ability to shift the equilibrium toward cancer cell survival. Furthermore, cancer-associated somatic mutations in <i>BCL2</i> genes interfere with the protein interaction network, thereby promoting cell survival. A range of studies have documented how these mutations affect the interactions between the cytosolic domains of BCL2 and evaluate the impact on cell death; however, as the BCL2 transmembrane interaction network remains poorly understood, somatic mutations affecting transmembrane regions have been classified as pathogenic-based solely on prediction algorithms. We comprehensively investigated cancer-associated somatic mutations affecting the transmembrane domain of BCL2 proteins and elucidated their effect on membrane insertion, hetero-interactions with the pro-apoptotic protein BAX, and modulation of cell death in cancer cells. Our findings reveal how specific mutations disrupt switchable interactions, alter the modulation of apoptosis, and contribute to cancer cell survival. These results provide experimental evidence to distinguish BCL2 transmembrane driver mutations from passenger mutations and provide new insight regarding selecting precision anti-tumor treatments.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"56 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140803172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-03DOI: 10.1038/s41389-024-00513-6
Joshua K. Stone, Natalia von Muhlinen, Chenran Zhang, Ana I. Robles, Amy L. Flis, Eleazar Vega-Valle, Akihiko Miyanaga, Masaru Matsumoto, K. Leigh Greathouse, Tomer Cooks, Giorgio Trinchieri, Curtis C. Harris
Change within the intratumoral microbiome is a common feature in lung and other cancers and may influence inflammation and immunity in the tumor microenvironment, affecting growth and metastases. We previously characterized the lung cancer microbiome in patients and identified Acidovorax temperans as enriched in tumors. Here, we instilled A. temperans in an animal model driven by mutant K-ras and Tp53. This revealed A. temperans accelerates tumor development and burden through infiltration of proinflammatory cells. Neutrophils exposed to A. temperans displayed a mature, pro-tumorigenic phenotype with increased cytokine signaling, with a global shift away from IL-1β signaling. Neutrophil to monocyte and macrophage signaling upregulated MHC II to activate CD4+ T cells, polarizing them to an IL-17A+ phenotype detectable in CD4+ and γδ populations (T17). These T17 cells shared a common gene expression program predictive of poor survival in human LUAD. These data indicate bacterial exposure promotes tumor growth by modulating inflammation.
{"title":"Acidovorax temperans skews neutrophil maturation and polarizes Th17 cells to promote lung adenocarcinoma development","authors":"Joshua K. Stone, Natalia von Muhlinen, Chenran Zhang, Ana I. Robles, Amy L. Flis, Eleazar Vega-Valle, Akihiko Miyanaga, Masaru Matsumoto, K. Leigh Greathouse, Tomer Cooks, Giorgio Trinchieri, Curtis C. Harris","doi":"10.1038/s41389-024-00513-6","DOIUrl":"https://doi.org/10.1038/s41389-024-00513-6","url":null,"abstract":"<p>Change within the intratumoral microbiome is a common feature in lung and other cancers and may influence inflammation and immunity in the tumor microenvironment, affecting growth and metastases. We previously characterized the lung cancer microbiome in patients and identified <i>Acidovorax temperans</i> as enriched in tumors. Here, we instilled <i>A. temperans</i> in an animal model driven by mutant K-ras and Tp53. This revealed <i>A. temperans</i> accelerates tumor development and burden through infiltration of proinflammatory cells. Neutrophils exposed to <i>A. temperans</i> displayed a mature, pro-tumorigenic phenotype with increased cytokine signaling, with a global shift away from IL-1β signaling. Neutrophil to monocyte and macrophage signaling upregulated MHC II to activate CD4<sup>+</sup> T cells, polarizing them to an IL-17A<sup>+</sup> phenotype detectable in CD4<sup>+</sup> and γδ populations (T17). These T17 cells shared a common gene expression program predictive of poor survival in human LUAD. These data indicate bacterial exposure promotes tumor growth by modulating inflammation.</p><figure></figure>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"53 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140600136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-07DOI: 10.1038/s41389-024-00514-5
Nan Zhang, Lu Dong, Tingting Ning, Feng Du, Mengran Zhao, Junxuan Xu, Sian Xie, Si Liu, Xiujing Sun, Peng Li, Shutian Zhang, Shengtao Zhu
Glucose oxidation via the pentose phosphate pathway serves as the primary cellular mechanism for generating nicotinamide adenine dinucleotide phosphate (NADPH). The central regions of solid tumors typically experience glucose deficiency, emphasizing the need for sustained NADPH production crucial to tumor cell survival. This study highlights the crucial role of RIOK3 in maintaining NADPH production and colorectal cancer (CRC) cell survival during glucose deficiency. Our findings revealed upregulated RIOK3 expression upon glucose deprivation, with RIOK3 knockout significantly reducing cancer cell survival. Mechanistically, RIOK3 interacts with heat shock protein 90α (HSP90α), a chaperone integral to various cellular processes, thereby facilitating HSP90α binding to isocitrate dehydrogenase 1 (IDH1). This interaction further upregulates IDH1 expression, enhancing NADPH production and preserving redox balance. Furthermore, RIOK3 inhibition had no discernible effect on intracellular NADPH levels and cell death rates in HSP90α-knockdown cells. Collectively, our findings suggest that RIOK3 sustains colon cancer cell survival in low-glucose environments through an HSP90α-dependent pathway. This highlights the significance of the RIOK3–HSP90α–IDH1 cascade, providing insights into potential targeted therapeutic strategies for CRC in metabolic stress conditions.
{"title":"RIOK3 sustains colorectal cancer cell survival under glucose deprivation via an HSP90α-dependent pathway","authors":"Nan Zhang, Lu Dong, Tingting Ning, Feng Du, Mengran Zhao, Junxuan Xu, Sian Xie, Si Liu, Xiujing Sun, Peng Li, Shutian Zhang, Shengtao Zhu","doi":"10.1038/s41389-024-00514-5","DOIUrl":"https://doi.org/10.1038/s41389-024-00514-5","url":null,"abstract":"<p>Glucose oxidation via the pentose phosphate pathway serves as the primary cellular mechanism for generating nicotinamide adenine dinucleotide phosphate (NADPH). The central regions of solid tumors typically experience glucose deficiency, emphasizing the need for sustained NADPH production crucial to tumor cell survival. This study highlights the crucial role of RIOK3 in maintaining NADPH production and colorectal cancer (CRC) cell survival during glucose deficiency. Our findings revealed upregulated RIOK3 expression upon glucose deprivation, with RIOK3 knockout significantly reducing cancer cell survival. Mechanistically, RIOK3 interacts with heat shock protein 90α (HSP90α), a chaperone integral to various cellular processes, thereby facilitating HSP90α binding to isocitrate dehydrogenase 1 (IDH1). This interaction further upregulates IDH1 expression, enhancing NADPH production and preserving redox balance. Furthermore, RIOK3 inhibition had no discernible effect on intracellular NADPH levels and cell death rates in HSP90α-knockdown cells. Collectively, our findings suggest that RIOK3 sustains colon cancer cell survival in low-glucose environments through an HSP90α-dependent pathway. This highlights the significance of the RIOK3–HSP90α–IDH1 cascade, providing insights into potential targeted therapeutic strategies for CRC in metabolic stress conditions.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"286 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140057699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01DOI: 10.1038/s41389-024-00510-9
Mehdi Mirzaie, Elham Gholizadeh, Juho J Miettinen, Filipp Ianevski, Tanja Ruokoranta, Jani Saarela, Mikko Manninen, Susanna Miettinen, Caroline A Heckman, Mohieddin Jafari
Acute myeloid leukemia (AML), a heterogeneous and aggressive blood cancer, does not respond well to single-drug therapy. A combination of drugs is required to effectively treat this disease. Computational models are critical for combination therapy discovery due to the tens of thousands of two-drug combinations, even with approved drugs. While predicting synergistic drugs is the focus of current methods, few consider drug efficacy and potential toxicity, which are crucial for treatment success. To find effective new drug candidates, we constructed a bipartite network using patient-derived tumor samples and drugs. The network is based on drug-response screening and summarizes all treatment response heterogeneity as drug response weights. This bipartite network is then projected onto the drug part, resulting in the drug similarity network. Distinct drug clusters were identified using community detection methods, each targeting different biological processes and pathways as revealed by enrichment and pathway analysis of the drugs' protein targets. Four drugs with the highest efficacy and lowest toxicity from each cluster were selected and tested for drug sensitivity using cell viability assays on various samples. Results show that ruxolitinib-ulixertinib and sapanisertib-LY3009120 are the most effective combinations with the least toxicity and the best synergistic effect on blast cells. These findings lay the foundation for personalized and successful AML therapies, ultimately leading to the development of drug combinations that can be used alongside standard first-line AML treatment.
{"title":"Designing patient-oriented combination therapies for acute myeloid leukemia based on efficacy/toxicity integration and bipartite network modeling.","authors":"Mehdi Mirzaie, Elham Gholizadeh, Juho J Miettinen, Filipp Ianevski, Tanja Ruokoranta, Jani Saarela, Mikko Manninen, Susanna Miettinen, Caroline A Heckman, Mohieddin Jafari","doi":"10.1038/s41389-024-00510-9","DOIUrl":"10.1038/s41389-024-00510-9","url":null,"abstract":"<p><p>Acute myeloid leukemia (AML), a heterogeneous and aggressive blood cancer, does not respond well to single-drug therapy. A combination of drugs is required to effectively treat this disease. Computational models are critical for combination therapy discovery due to the tens of thousands of two-drug combinations, even with approved drugs. While predicting synergistic drugs is the focus of current methods, few consider drug efficacy and potential toxicity, which are crucial for treatment success. To find effective new drug candidates, we constructed a bipartite network using patient-derived tumor samples and drugs. The network is based on drug-response screening and summarizes all treatment response heterogeneity as drug response weights. This bipartite network is then projected onto the drug part, resulting in the drug similarity network. Distinct drug clusters were identified using community detection methods, each targeting different biological processes and pathways as revealed by enrichment and pathway analysis of the drugs' protein targets. Four drugs with the highest efficacy and lowest toxicity from each cluster were selected and tested for drug sensitivity using cell viability assays on various samples. Results show that ruxolitinib-ulixertinib and sapanisertib-LY3009120 are the most effective combinations with the least toxicity and the best synergistic effect on blast cells. These findings lay the foundation for personalized and successful AML therapies, ultimately leading to the development of drug combinations that can be used alongside standard first-line AML treatment.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"13 1","pages":"11"},"PeriodicalIF":6.2,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10907624/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140013100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}