[This corrects the article DOI: 10.18632/oncoscience.519.].
[This corrects the article DOI: 10.18632/oncoscience.519.].
Inhibitor of differentiation 4 (Id4), a member of the helix-loop-helix family of transcriptional regulators has emerged as a tumor suppressor in prostate cancer. In this study we investigated the effect of loss of Id4 (Id4-/-) on mouse prostate development. Histological analysis was performed on prostates from 25 days, 3 months and 6 months old Id4-/- mice. Expression of Amacr, Ck8, Ck18, Fkbp51, Fkbp52, androgen receptor, Pten, sca-1 and Nkx3.1 was investigated by immunohistochemistry. Results were compared to the prostates from Nkx3.1-/- mice. Id4-/- mice had smaller prostates with fewer and smaller tubules. Subtle PIN like lesions were observed at 6mo. Decreased Nkx3.1 and Pten and increased stem cell marker sca-1, PIN marker Amacr and basal cell marker p63 was observed at all ages. Persistent Ck8 and Ck18 expression suggested that loss of Id4 results in epithelial commitment but not terminal differentiation in spite of active Ar. Loss of Id4 attenuates normal prostate development and promotes hyperplasia/ dysplasia with PIN like lesions. The results suggest that loss of Id4 maintains stem cell phenotype of "luminal committed basal cells", identifying a unique prostate developmental pathway regulated by Id4.
Metastatic renal cell carcinoma (mRCC) treatments have rapidly evolved in the last few years. While vascular endothelial growth factor (VEGF) inhibition had previously been the mainstay of treatment for first-line advanced RCC therapy in the past decade, it has now rapidly changed into combination checkpoint inhibitors with or without VEGF TKIs, although there remains a role for VEGF tyrosine kinase inhibitor monotherapy for patients with favorable-risk disease and for those with intermediate and poor-risk disease with the use of cabozantinib. Perspectives on the Quality-adjusted survival Time without Symptoms of disease or Toxicity (Q-TWiST) analysis for the CABOSUN trial, as well as different aspects of efficacy regarding different first-line therapy for advanced or metastatic RCC are discussed herein.
Preclinical evidence indicates the potential of targeting mitochondrial respiration as a therapeutic strategy. We previously demonstrated that mitochondrial inhibitors' efficacy was restricted to a metabolic context in which mitochondrial respiration was the predominant energy source, a situation achievable by inducing vascular normalization/hypoxia correction with antiangiogenics. Using molecular imaging, we showed how the same antiangiogenic agent may display different normalizing properties in patients with the same tumor type. This is of key importance, since patients experiencing normalization seem to get more benefit from standard chemotherapy combinations, and also could be eligible for combination with antimitochondrial agents. This scenario emphasizes the need for monitoring vascular normalization in order to optimize the use of antiangiogenics. We have also proposed a method to evaluate anti-mitochondrial agents' pharmacodynamics; despite promising accuracy in animal studies the clinical results were inconclusive, highlighting the need for research in this field. Regarding patients that respond to antiangiogenics increasing vessel abnormality, in this case an immunosuppressive tumor microenvironment is generated. Whether anti-mitochondrial agents can positively modulate the activity of T effector cell subpopulations remains an area of active research. Our research sheds light on the importance of refining the use of antiangiogenics, highlighting the relevance of tracing vascular normalization as a potential biomarker for antiangiogenics to assist patient-tailored medicine and exploring the role of mitochondrial inhibitors in the context of vascular normalization and correction of hypoxia.
Breast cancer is a highly heterogeneous disease with dynamic changes in the tumor microenvironment. Precision medicine will in the future provide the possibility to treat each individual cancer patient with the right (combination) therapy specifically tailored to personal needs. However, in order to accomplish this, more accurate biomarkers for precise diagnosis, prognosis, therapy response, and target-specific drugs are required. Although an increasing number of (epi)genetic driving alterations have been reported in breast cancer, the major stumbling block for clinical application of many of them is that they are difficult to therapeutically target. Deubiquitinases (DUBs) are emerging drug targets that play important roles in cancer progression. Hence, we devoted our efforts to uncover the global DUB activity landscape of breast cancer in order to discover potential novel biomarkers or therapeutic targets. We developed a specific DUB activity-based inhibitor and probe and applied it to obtain new insights into breast cancer.
The transforming growth factor beta (TGF-β) signaling pathway plays important roles in cell differentiation, stem cell modulation, organ lineage, and immune suppression. TGF-β signaling is negatively regulated by the ubiquitin-proteasome pathway. Although mouse models of cancer arising from a defective TGF-β pathway clearly demonstrate the tumor-suppressive role of TGF-β, the underlying mechanism by which a defective TGF-β pathway triggers liver cancer development is poorly understood. This review summarizes key findings from our recent studies connecting TGF-β to hepatic oncogenesis and highlights the vulnerability of TGF-β signaling to PJA1-mediated ubiquitination. TGF-β, together with the chromatin insulator CCCTC-binding factor (CTCF), epigenetically and transcriptionally regulate tumor promoter genes, including IGF2 and TERT, in TGF-β-defective mice and in human liver cancers. Dysfunction of the TGF-β-regulated SPTBN1/SMAD3/CTCF complex increases stem cell-like properties in hepatocellular carcinoma (HCC) cells and enhances tumorigenesis in tumor-initiating cells in a mouse model. PJA1, a novel E3 ubiquitin ligase, is a key negative regulator of TGF-β signaling. PJA1 overexpression is detected in HCCs and is sufficient to suppress SMAD3- and SPTBN1-mediated TGF-β tumor suppressor signaling, promoting HCC proliferation. Dysregulated PJA1-TGF-β signaling activates oncogenic genes and promotes tumorigenesis in human liver cancers. In addition, inhibition of PJA1 by treatment with E3 ligase inhibitors restores TGF-β tumor-suppressor function and suppresses liver cancer progression. These new findings suggest potential therapeutic avenues for targeting dysregulated PJA1-TGF-β signaling via cancer stem cells in liver cancers.