{"title":"Laser-cavity locking at the 10^{-7} instability scale utilizing beam ellipticity","authors":"O. Hosten, Fritz Diorico, A. Zhutov","doi":"10.1364/optica.507451","DOIUrl":"https://doi.org/10.1364/optica.507451","url":null,"abstract":"","PeriodicalId":19515,"journal":{"name":"Optica","volume":"17 3","pages":""},"PeriodicalIF":10.4,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138632977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Far-field speckle correlations over object position for microscopically distinguishing objects hidden in a randomly scattering medium","authors":"Ryan Hastings, David Alexander, Kevin Webb","doi":"10.1364/optica.502231","DOIUrl":"https://doi.org/10.1364/optica.502231","url":null,"abstract":"","PeriodicalId":19515,"journal":{"name":"Optica","volume":"6 1","pages":""},"PeriodicalIF":10.4,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139214645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Kedar, Zhibin Yao, Ivan Ryger, John L. Hall, Jun Ye
The Pound-Drever-Hall (PDH) cavity-locking scheme has found prevalent uses in precision optical interferometry and laser frequency stabilization. A form of frequency modulation spectroscopy, PDH enjoys superior signal-to-noise recovery, large acquisition dynamic range, wide servo bandwidth, and robust rejection of spurious effects. However, residual amplitude modulation at the signal frequency, while significantly suppressed, still presents an important concern for further advancing the state-of-the-art performances. Here we present a simplified and improved scheme for PDH using an acousto-optic modulator to generate digital phase reference sidebands instead of the traditionally used electro-optic modulator approach. We demonstrate four key advantages: (1) the carrier and two modulation tones are individually synthesized and easily reconfigured, (2) robust and orthogonal control of the modulated optical field is applied directly to the amplitude and phase quadratures, (3) modulation synthesis, demodulation, and feedback are implemented in a self-contained and easily reproducible electronic unit, and (4) superior active and passive control of residual amplitude modulation is achieved, especially when the carrier power is vanishingly low. These distinct merits stimulate new ideas on how we optimally enact PDH for a wide range of applications.
{"title":"Synthetic FM triplet for AM-free precision laser stabilization and spectroscopy","authors":"D. Kedar, Zhibin Yao, Ivan Ryger, John L. Hall, Jun Ye","doi":"10.1364/optica.507655","DOIUrl":"https://doi.org/10.1364/optica.507655","url":null,"abstract":"The Pound-Drever-Hall (PDH) cavity-locking scheme has found prevalent uses in precision optical interferometry and laser frequency stabilization. A form of frequency modulation spectroscopy, PDH enjoys superior signal-to-noise recovery, large acquisition dynamic range, wide servo bandwidth, and robust rejection of spurious effects. However, residual amplitude modulation at the signal frequency, while significantly suppressed, still presents an important concern for further advancing the state-of-the-art performances. Here we present a simplified and improved scheme for PDH using an acousto-optic modulator to generate digital phase reference sidebands instead of the traditionally used electro-optic modulator approach. We demonstrate four key advantages: (1) the carrier and two modulation tones are individually synthesized and easily reconfigured, (2) robust and orthogonal control of the modulated optical field is applied directly to the amplitude and phase quadratures, (3) modulation synthesis, demodulation, and feedback are implemented in a self-contained and easily reproducible electronic unit, and (4) superior active and passive control of residual amplitude modulation is achieved, especially when the carrier power is vanishingly low. These distinct merits stimulate new ideas on how we optimally enact PDH for a wide range of applications.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"11 46 1","pages":""},"PeriodicalIF":10.4,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139238473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guiyuan Zhu, Binjie Gao, Linhua Ye, Junxiang Zhang, Li-Gang Wang
Imbert-Fedorov (IF) shift, which refers to a tiny transverse splitting induced by spin-orbit interaction at a reflection/refraction interface, is sensitive to the refractive index of a medium and momentum state of incident light. Most of studies have focused on the shift for an incident light beam with a spin angular momentum (SAM) i.e., circular polarization. Compared to SAM, orbital angular momentum (OAM) has infinite dimensions in theory as a new degree of freedom of light and plays an important role in light-matter coupling. We demonstrate experimentally that the relative IF shifts of vortex beams with large opposite OAMs are highly enhanced in resonant structures when light refracts through a double-prism structure (DPS), in which the thickness and temperature of the air gap are precisely sensed via the observed relative IF shifts. The thickness and temperature sensitivities increase as the absolute value of opposite OAMs increases. Our results offer a technological and practical platform for applications in sensing of thickness and temperature, ingredients of environment gas, spatial displacement, chemical substances and deformation structure.
{"title":"Enhanced opposite Imbert–Fedorov shifts of vortex beams for precise sensing of temperature and thickness","authors":"Guiyuan Zhu, Binjie Gao, Linhua Ye, Junxiang Zhang, Li-Gang Wang","doi":"10.1364/optica.501428","DOIUrl":"https://doi.org/10.1364/optica.501428","url":null,"abstract":"Imbert-Fedorov (IF) shift, which refers to a tiny transverse splitting induced by spin-orbit interaction at a reflection/refraction interface, is sensitive to the refractive index of a medium and momentum state of incident light. Most of studies have focused on the shift for an incident light beam with a spin angular momentum (SAM) i.e., circular polarization. Compared to SAM, orbital angular momentum (OAM) has infinite dimensions in theory as a new degree of freedom of light and plays an important role in light-matter coupling. We demonstrate experimentally that the relative IF shifts of vortex beams with large opposite OAMs are highly enhanced in resonant structures when light refracts through a double-prism structure (DPS), in which the thickness and temperature of the air gap are precisely sensed via the observed relative IF shifts. The thickness and temperature sensitivities increase as the absolute value of opposite OAMs increases. Our results offer a technological and practical platform for applications in sensing of thickness and temperature, ingredients of environment gas, spatial displacement, chemical substances and deformation structure.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"98 4","pages":""},"PeriodicalIF":10.4,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139268418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vishwanath Saragadam, Zheyi Han, Vivek Boominathan, Luocheng Huang, Shiyu Tan, Johannes Froech, Karl Bohringer, Richard Baraniuk, Arka Majumdar, Ashok Veeraraghavan
{"title":"Foveated Thermal Computational Imaging in the Wild Using All-Silicon Meta-Optics","authors":"Vishwanath Saragadam, Zheyi Han, Vivek Boominathan, Luocheng Huang, Shiyu Tan, Johannes Froech, Karl Bohringer, Richard Baraniuk, Arka Majumdar, Ashok Veeraraghavan","doi":"10.1364/optica.502857","DOIUrl":"https://doi.org/10.1364/optica.502857","url":null,"abstract":"","PeriodicalId":19515,"journal":{"name":"Optica","volume":"10 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134956993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Clémentine Rouvière, David Barral Rana, Antonin Grateau, Ilya Karuseichyk, Giacomo Sorelli, Mattia Walschaers, Nicolas Treps
Historically, the resolution of optical imaging systems was dictated by diffraction, and the Rayleigh criterion was long considered an unsurpassable limit. In superresolution microscopy, this limit is overcome by manipulating the emission properties of the object. However, in passive imaging, when sources are uncontrolled, reaching sub-Rayleigh resolution remains a challenge. Here, we implement a quantum-metrolgy-inspired approach for estimating the separation between two incoherent sources, achieving a sensitivity five orders of magnitude beyond the Rayleigh limit. Using a spatial mode demultiplexer, we examine scenes with bright and faint sources, through intensity measurements in the Hermite-Gauss basis. Analysing sensitivity and accuracy over an extensive range of separations, we demonstrate the remarkable effectiveness of demultiplexing for sub-Rayleigh separation estimation. These results effectively render the Rayleigh limit obsolete for passive imaging.
{"title":"Ultra-sensitive separation estimation of optical sources","authors":"Clémentine Rouvière, David Barral Rana, Antonin Grateau, Ilya Karuseichyk, Giacomo Sorelli, Mattia Walschaers, Nicolas Treps","doi":"10.1364/optica.500039","DOIUrl":"https://doi.org/10.1364/optica.500039","url":null,"abstract":"Historically, the resolution of optical imaging systems was dictated by diffraction, and the Rayleigh criterion was long considered an unsurpassable limit. In superresolution microscopy, this limit is overcome by manipulating the emission properties of the object. However, in passive imaging, when sources are uncontrolled, reaching sub-Rayleigh resolution remains a challenge. Here, we implement a quantum-metrolgy-inspired approach for estimating the separation between two incoherent sources, achieving a sensitivity five orders of magnitude beyond the Rayleigh limit. Using a spatial mode demultiplexer, we examine scenes with bright and faint sources, through intensity measurements in the Hermite-Gauss basis. Analysing sensitivity and accuracy over an extensive range of separations, we demonstrate the remarkable effectiveness of demultiplexing for sub-Rayleigh separation estimation. These results effectively render the Rayleigh limit obsolete for passive imaging.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"85 9","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135092421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}