Zhetao Jia, Wayesh Qarony, Jagang Park, Sean Hooten, Difan Wen, Yertay Zhiyenbayev, Matteo Seclì, Walid Redjem, Scott Dhuey, Adam Schwartzberg, Eli Yablonovitch, and Boubacar Kanté
Inverse design is a powerful tool in wave physics for compact, high-performance devices. To date, applications in photonics have mostly been limited to linear systems and it has rarely been investigated or demonstrated in the nonlinear regime. In addition, the “black box” nature of inverse design techniques has hindered the understanding of optimized inverse-designed structures. We propose an inverse design method with interpretable results to enhance the efficiency of on-chip photon generation rate through nonlinear processes by controlling the effective phase-matching conditions. We fabricate and characterize a compact, inverse-designed device using a silicon-on-insulator platform that allows a spontaneous four-wave mixing process to generate photon pairs at a rate of 1.1 MHz with a coincidence to accidental ratio of 162. Our design method accounts for fabrication constraints and can be used for scalable quantum light sources in large-scale communication and computing applications.
{"title":"Interpretable inverse-designed cavity for on-chip nonlinear photon pair generation","authors":"Zhetao Jia, Wayesh Qarony, Jagang Park, Sean Hooten, Difan Wen, Yertay Zhiyenbayev, Matteo Seclì, Walid Redjem, Scott Dhuey, Adam Schwartzberg, Eli Yablonovitch, and Boubacar Kanté","doi":"10.1364/optica.502732","DOIUrl":"https://doi.org/10.1364/optica.502732","url":null,"abstract":"Inverse design is a powerful tool in wave physics for compact, high-performance devices. To date, applications in photonics have mostly been limited to linear systems and it has rarely been investigated or demonstrated in the nonlinear regime. In addition, the “black box” nature of inverse design techniques has hindered the understanding of optimized inverse-designed structures. We propose an inverse design method with interpretable results to enhance the efficiency of on-chip photon generation rate through nonlinear processes by controlling the effective phase-matching conditions. We fabricate and characterize a compact, inverse-designed device using a silicon-on-insulator platform that allows a spontaneous four-wave mixing process to generate photon pairs at a rate of 1.1 MHz with a coincidence to accidental ratio of 162. Our design method accounts for fabrication constraints and can be used for scalable quantum light sources in large-scale communication and computing applications.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"55 26","pages":""},"PeriodicalIF":10.4,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72364947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. W. Goodwin-Jones, Ricardo Cabrita, M. Korobko, M. Beuzekom, Daniel D. Brown, V. Fafone, J. V. Heijningen, A. Rocchi, M. Schiworski, M. Tacca
Adaptive optics has made significant advancement over the past decade, becoming the essential technology in a wide variety of applications, particularly in the realm of quantum optics. One key area of impact is gravitational-wave detection, where quantum correlations are distributed over kilometer-long distances by beams with hundreds of kilowatts of optical power. Decades of development were required to develop robust and stable techniques to sense mismatches between the Gaussian beams and the resonators, all while maintaining the quantum correlations. Here we summarize the crucial advancements in transverse mode control required for gravitational-wave detection. As we look towards the advanced designs of future detectors, we highlight key challenges and offer recommendations for the design of these instruments. We conclude the review with a discussion of the broader application of adaptive optics in quantum technologies: communication, computation, imaging and sensing.
{"title":"Transverse Mode Control in Quantum Enhanced Interferometers: A Review and Recommendations for a New Generation","authors":"A. W. Goodwin-Jones, Ricardo Cabrita, M. Korobko, M. Beuzekom, Daniel D. Brown, V. Fafone, J. V. Heijningen, A. Rocchi, M. Schiworski, M. Tacca","doi":"10.1364/optica.511924","DOIUrl":"https://doi.org/10.1364/optica.511924","url":null,"abstract":"Adaptive optics has made significant advancement over the past decade, becoming the essential technology in a wide variety of applications, particularly in the realm of quantum optics. One key area of impact is gravitational-wave detection, where quantum correlations are distributed over kilometer-long distances by beams with hundreds of kilowatts of optical power. Decades of development were required to develop robust and stable techniques to sense mismatches between the Gaussian beams and the resonators, all while maintaining the quantum correlations. Here we summarize the crucial advancements in transverse mode control required for gravitational-wave detection. As we look towards the advanced designs of future detectors, we highlight key challenges and offer recommendations for the design of these instruments. We conclude the review with a discussion of the broader application of adaptive optics in quantum technologies: communication, computation, imaging and sensing.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"4 1","pages":""},"PeriodicalIF":10.4,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139282795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Optical contrasts in microscopy are sensitive to light polarization, whose interaction with molecular dipoles provides an important lever for probing molecular orientation. Polarization microscopy has evolved considerably during the last decade, integrating strategies ranging from traditional linear dichroism to single-molecule orientation and localization imaging. This review aims to provide a summary of concepts and techniques behind orientation and structural imaging at the molecular level, from ensemble microscopy in 2D to single-molecule super-resolution microscopy in 3D.
{"title":"Polarization microscopy: from ensemble structural imaging to single-molecule 3D orientation and localization microscopy","authors":"Sophie Brasselet and Miguel A. Alonso","doi":"10.1364/optica.502119","DOIUrl":"https://doi.org/10.1364/optica.502119","url":null,"abstract":"Optical contrasts in microscopy are sensitive to light polarization, whose interaction with molecular dipoles provides an important lever for probing molecular orientation. Polarization microscopy has evolved considerably during the last decade, integrating strategies ranging from traditional linear dichroism to single-molecule orientation and localization imaging. This review aims to provide a summary of concepts and techniques behind orientation and structural imaging at the molecular level, from ensemble microscopy in 2D to single-molecule super-resolution microscopy in 3D.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"45 4","pages":""},"PeriodicalIF":10.4,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71518006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yisheng Lei, Faezeh Kimiaee Asadi, Tian Zhong, Alex Kuzmich, Christoph Simon, and Mahdi Hosseini
Optical photons are powerful carriers of quantum information, which can be delivered in free space by satellites or in fibers on the ground over long distances. Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing. Quantum optical memories are devices designed to store quantum information in the form of stationary excitations, such as atomic coherence, and are capable of coherently mapping these excitations to flying qubits. Quantum memories can effectively store and manipulate quantum states, making them indispensable elements in future long-distance quantum networks. Over the past two decades, quantum optical memories with high fidelities, high efficiencies, long storage times, and promising multiplexing capabilities have been developed, especially at the single-photon level. In this review, we introduce the working principles of commonly used quantum memory protocols and summarize the recent advances in quantum memory demonstrations. We also offer a vision for future quantum optical memory devices that may enable entanglement distribution over long distances.
{"title":"Quantum optical memory for entanglement distribution","authors":"Yisheng Lei, Faezeh Kimiaee Asadi, Tian Zhong, Alex Kuzmich, Christoph Simon, and Mahdi Hosseini","doi":"10.1364/optica.493732","DOIUrl":"https://doi.org/10.1364/optica.493732","url":null,"abstract":"Optical photons are powerful carriers of quantum information, which can be delivered in free space by satellites or in fibers on the ground over long distances. Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing. Quantum optical memories are devices designed to store quantum information in the form of stationary excitations, such as atomic coherence, and are capable of coherently mapping these excitations to flying qubits. Quantum memories can effectively store and manipulate quantum states, making them indispensable elements in future long-distance quantum networks. Over the past two decades, quantum optical memories with high fidelities, high efficiencies, long storage times, and promising multiplexing capabilities have been developed, especially at the single-photon level. In this review, we introduce the working principles of commonly used quantum memory protocols and summarize the recent advances in quantum memory demonstrations. We also offer a vision for future quantum optical memory devices that may enable entanglement distribution over long distances.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"56 9","pages":""},"PeriodicalIF":10.4,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71517147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juwon Choi, Byoung-Uk Sohn, Ezgi Sahin, George F. R. Chen, Peng Xing, Doris K. T. Ng, Benjamin J. Eggleton, and Dawn T. H. Tan
Pure-quartic solitons have gained significant attention recently due to their ability to achieve higher energy than classical solitons for short pulse durations, leveraging the interaction between self-phase modulation and anomalous fourth-order dispersion. However, challenges in generating the required dispersion profile and the scarcity of sufficiently low-loss devices with high nonlinearity and negligible nonlinear loss have restricted experimental progress. In this paper, we report a class of pure-quartic Bragg solitons that balances self-phase modulation and the ultra-strong Bragg-grating-induced negative fourth-order dispersion in combination with negligible group velocity dispersion and negligible third-order dispersion. We demonstrate pure-quartic Bragg soliton-effect compression of 2.4× in a compact millimeter-scale integrated low-loss and highly nonlinear waveguide circuit. Our findings show the potential of exploiting the exceptional dispersion profile of nonlinear Bragg gratings for advanced soliton generation and pulse shaping, particularly the advantageous energy scaling and associated compression of pure-quartic solitons.
{"title":"Pure-quartic Bragg solitons in chip-scale nonlinear integrated circuits","authors":"Juwon Choi, Byoung-Uk Sohn, Ezgi Sahin, George F. R. Chen, Peng Xing, Doris K. T. Ng, Benjamin J. Eggleton, and Dawn T. H. Tan","doi":"10.1364/optica.496026","DOIUrl":"https://doi.org/10.1364/optica.496026","url":null,"abstract":"Pure-quartic solitons have gained significant attention recently due to their ability to achieve higher energy than classical solitons for short pulse durations, leveraging the interaction between self-phase modulation and anomalous fourth-order dispersion. However, challenges in generating the required dispersion profile and the scarcity of sufficiently low-loss devices with high nonlinearity and negligible nonlinear loss have restricted experimental progress. In this paper, we report a class of pure-quartic Bragg solitons that balances self-phase modulation and the ultra-strong Bragg-grating-induced negative fourth-order dispersion in combination with negligible group velocity dispersion and negligible third-order dispersion. We demonstrate pure-quartic Bragg soliton-effect compression of <span><span style=\"color: inherit;\"><span><span><span>2.4</span></span><span style=\"margin-left: 0.267em; margin-right: 0.267em;\">×</span></span></span><script type=\"math/tex\">{2.4} times</script></span> in a compact millimeter-scale integrated low-loss and highly nonlinear waveguide circuit. Our findings show the potential of exploiting the exceptional dispersion profile of nonlinear Bragg gratings for advanced soliton generation and pulse shaping, particularly the advantageous energy scaling and associated compression of pure-quartic solitons.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"22 4","pages":""},"PeriodicalIF":10.4,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71509807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jaesung Heo, Junghyun Kim, Taek Jeong, Yong Sup Ihn, Duk Y. Kim, Zaeill Kim, and Yonggi Jo
In this paper, we propose a quantum-secured single-pixel imaging method that utilizes non-classical correlations of a photon pair. Our method can detect any attempts to deceive it by exploiting a non-classical correlation of photon pairs while rejecting strong chaotic light illumination through photon heralding. A security analysis based on polarization-correlation has been conducted, demonstrating that our method has improved security compared to existing quantum-secured imaging. More specifically, a partial deceiving attack, which sends a mixture of a true and a false signal, can be detected with our proposed analysis, while currently employed methods cannot. We also provide proof-of-principle demonstrations of our method and trustworthy images reconstructed using our security analysis. Our method can be developed using matured techniques used in quantum secure communication, thus offering a promising direction for practical applications in secure imaging.
{"title":"Quantum-secured single-pixel imaging with enhanced security","authors":"Jaesung Heo, Junghyun Kim, Taek Jeong, Yong Sup Ihn, Duk Y. Kim, Zaeill Kim, and Yonggi Jo","doi":"10.1364/optica.494050","DOIUrl":"https://doi.org/10.1364/optica.494050","url":null,"abstract":"In this paper, we propose a quantum-secured single-pixel imaging method that utilizes non-classical correlations of a photon pair. Our method can detect any attempts to deceive it by exploiting a non-classical correlation of photon pairs while rejecting strong chaotic light illumination through photon heralding. A security analysis based on polarization-correlation has been conducted, demonstrating that our method has improved security compared to existing quantum-secured imaging. More specifically, a partial deceiving attack, which sends a mixture of a true and a false signal, can be detected with our proposed analysis, while currently employed methods cannot. We also provide proof-of-principle demonstrations of our method and trustworthy images reconstructed using our security analysis. Our method can be developed using matured techniques used in quantum secure communication, thus offering a promising direction for practical applications in secure imaging.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"22 5","pages":""},"PeriodicalIF":10.4,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71509806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haowen Zhou, Brandon Feng, Haiyun Guo, Siyu lin, Mingshu Liang, Chris Metzler, Changhuei Yang
Image stacks provide invaluable 3D information in various biological and pathological imaging applications. Fourier ptychographic microscopy (FPM) enables reconstructing high-resolution, wide field-of-view image stacks without z-stack scanning, thus significantly accelerating image acquisition. However, existing FPM methods take tens of minutes to reconstruct and gigabytes of memory to store a high-resolution volumetric scene, impeding fast gigapixel-scale remote digital pathology. While deep learning approaches have been explored to address this challenge, existing methods poorly generalize to novel datasets and can produce unreliable hallucinations. This work presents FPM-INR, a compact and efficient framework that integrates physics-based optical models with implicit neural representations (INR) to represent and reconstruct FPM image stacks. FPM-INR is agnostic to system design or sample types and does not require external training data. In our demonstrated experiments, FPM-INR substantially outperforms traditional FPM algorithms with up to a 25-fold increase in speed and an 80-fold reduction in memory usage for continuous image stack representations.
{"title":"FPM-INR: Fourier ptychographic microscopy image stack reconstruction using implicit neural representations","authors":"Haowen Zhou, Brandon Feng, Haiyun Guo, Siyu lin, Mingshu Liang, Chris Metzler, Changhuei Yang","doi":"10.1364/optica.505283","DOIUrl":"https://doi.org/10.1364/optica.505283","url":null,"abstract":"Image stacks provide invaluable 3D information in various biological and pathological imaging applications. Fourier ptychographic microscopy (FPM) enables reconstructing high-resolution, wide field-of-view image stacks without z-stack scanning, thus significantly accelerating image acquisition. However, existing FPM methods take tens of minutes to reconstruct and gigabytes of memory to store a high-resolution volumetric scene, impeding fast gigapixel-scale remote digital pathology. While deep learning approaches have been explored to address this challenge, existing methods poorly generalize to novel datasets and can produce unreliable hallucinations. This work presents FPM-INR, a compact and efficient framework that integrates physics-based optical models with implicit neural representations (INR) to represent and reconstruct FPM image stacks. FPM-INR is agnostic to system design or sample types and does not require external training data. In our demonstrated experiments, FPM-INR substantially outperforms traditional FPM algorithms with up to a 25-fold increase in speed and an 80-fold reduction in memory usage for continuous image stack representations.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"3 7‐8","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135589330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alessandro Lupo, Enrico Picco, Marina Zajnulina, and Serge Massar
Reservoir computers (RCs) are randomized recurrent neural networks well adapted to process time series, performing tasks such as nonlinear distortion compensation or prediction of chaotic dynamics. Deep reservoir computers (deep-RCs), in which the output of one reservoir is used as the input for another one, can lead to improved performance because, as in other deep artificial neural networks, the successive layers represent the data in more and more abstract ways. We present a fiber-based photonic implementation of a two-layer deep-RC based on frequency multiplexing. The two RC layers are encoded in two frequency combs propagating in the same experimental setup. The connection between the layers is fully analog and does not require any digital processing. We find that the deep-RC outperforms a traditional RC by up to two orders of magnitude on two benchmark tasks. This work paves the way towards using fully analog photonic neuromorphic computing for complex processing of time series, while avoiding costly analog-to-digital and digital-to-analog conversions.
{"title":"Deep photonic reservoir computer based on frequency multiplexing with fully analog connection between layers","authors":"Alessandro Lupo, Enrico Picco, Marina Zajnulina, and Serge Massar","doi":"10.1364/optica.489501","DOIUrl":"https://doi.org/10.1364/optica.489501","url":null,"abstract":"Reservoir computers (RCs) are randomized recurrent neural networks well adapted to process time series, performing tasks such as nonlinear distortion compensation or prediction of chaotic dynamics. Deep reservoir computers (deep-RCs), in which the output of one reservoir is used as the input for another one, can lead to improved performance because, as in other deep artificial neural networks, the successive layers represent the data in more and more abstract ways. We present a fiber-based photonic implementation of a two-layer deep-RC based on frequency multiplexing. The two RC layers are encoded in two frequency combs propagating in the same experimental setup. The connection between the layers is fully analog and does not require any digital processing. We find that the deep-RC outperforms a traditional RC by up to two orders of magnitude on two benchmark tasks. This work paves the way towards using fully analog photonic neuromorphic computing for complex processing of time series, while avoiding costly analog-to-digital and digital-to-analog conversions.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"22 3","pages":""},"PeriodicalIF":10.4,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71509808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ben M. Burridge, Imad I. Faruque, John G. Rarity, and Jorge Barreto
Integrated photonics is a powerful contender in the race for a fault-tolerant quantum computer, claiming to be a platform capable of scaling to the necessary number of qubits. This necessitates the use of high-quality quantum states, which we create here using an all-around high-performing photon source on an integrated photonics platform. We use a photonic molecule architecture and broadband directional couplers to protect against fabrication tolerances and ensure reliable operation. As a result, we simultaneously measure a spectral purity of 99.1 pm 0.1%, a pair generation rate of 4.4 pm 0.1;{rm MHz},{{rm mW}^{- 2}}, and an intrinsic source heralding efficiency of 94.0 pm 2.9%. We also see a maximum coincidence-to-accidental ratio of 1644 pm 263. We claim over an order of magnitude improvement in the trivariate trade-off among source heralding efficiency, purity, and brightness. Future implementations of the source could achieve in excess of 99% purity and heralding efficiency using the lowest reported propagation losses.
{"title":"Integrate and scale: a source of spectrally separable photon pairs","authors":"Ben M. Burridge, Imad I. Faruque, John G. Rarity, and Jorge Barreto","doi":"10.1364/optica.491965","DOIUrl":"https://doi.org/10.1364/optica.491965","url":null,"abstract":"Integrated photonics is a powerful contender in the race for a fault-tolerant quantum computer, claiming to be a platform capable of scaling to the necessary number of qubits. This necessitates the use of high-quality quantum states, which we create here using an all-around high-performing photon source on an integrated photonics platform. We use a photonic molecule architecture and broadband directional couplers to protect against fabrication tolerances and ensure reliable operation. As a result, we simultaneously measure a spectral purity of <span><span>99.1 pm 0.1%</span><script type=\"math/tex\">99.1 pm 0.1%</script></span>, a pair generation rate of <span><span>4.4 pm 0.1;{rm MHz},{{rm mW}^{- 2}}</span><script type=\"math/tex\">4.4 pm 0.1;{rm MHz},{{rm mW}^{- 2}}</script></span>, and an intrinsic source heralding efficiency of <span><span>94.0 pm 2.9%</span><script type=\"math/tex\">94.0 pm 2.9%</script></span>. We also see a maximum coincidence-to-accidental ratio of <span><span>1644 pm 263</span><script type=\"math/tex\">1644 pm 263</script></span>. We claim over an order of magnitude improvement in the trivariate trade-off among source heralding efficiency, purity, and brightness. Future implementations of the source could achieve in excess of 99% purity and heralding efficiency using the lowest reported propagation losses.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"22 6","pages":""},"PeriodicalIF":10.4,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71509805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}