Metastasis is the major cause of breast cancer mortality, with angiogenesis and tumor-released exosomes playing key roles. However, the communication between breast cancer cells and endothelial cells and its role in tumor metastasis remains unclear. Here, we characterize a long noncoding RNA, RPPH1, which is upregulated in breast cancer tissues and positively associated with poor prognosis. Hypoxia microenvironment upregulates the expression of RPPH1 in breast cancer cells, and promotes its packaging into exosomes through hnRNPA1, leading to the maintenance of stemness and aggressive traits in cancer cells and angiogenesis in endothelial cells. The function of cellular and exosomal RPPH1 was confirmed in the MMTV-PyMT mouse model, in which ASO-RPPH1 therapy effectively inhibited tumor progression and metastasis. Mechanistically, RPPH1 protects IGF2BP2 from ubiquitination-induced degradation, stabilizes N6-methyladenosine (m6A)-modified FGFR2 mRNA, and activates the PI3K/AKT pathway. Our research unveils the role of RPPH1 in breast cancer metastasis and highlights its potential as a therapeutic target.
{"title":"Hypoxia induced cellular and exosomal RPPH1 promotes breast cancer angiogenesis and metastasis through stabilizing the IGF2BP2/FGFR2 axis.","authors":"Wentao Ning, Jingyan Yang, Ruiqi Ni, Qianqian Yin, Manqi Zhang, Fangfang Zhang, Yue Yang, Yanfeng Zhang, Meng Cao, Liang Jin, Yi Pan","doi":"10.1038/s41388-024-03213-y","DOIUrl":"10.1038/s41388-024-03213-y","url":null,"abstract":"<p><p>Metastasis is the major cause of breast cancer mortality, with angiogenesis and tumor-released exosomes playing key roles. However, the communication between breast cancer cells and endothelial cells and its role in tumor metastasis remains unclear. Here, we characterize a long noncoding RNA, RPPH1, which is upregulated in breast cancer tissues and positively associated with poor prognosis. Hypoxia microenvironment upregulates the expression of RPPH1 in breast cancer cells, and promotes its packaging into exosomes through hnRNPA1, leading to the maintenance of stemness and aggressive traits in cancer cells and angiogenesis in endothelial cells. The function of cellular and exosomal RPPH1 was confirmed in the MMTV-PyMT mouse model, in which ASO-RPPH1 therapy effectively inhibited tumor progression and metastasis. Mechanistically, RPPH1 protects IGF2BP2 from ubiquitination-induced degradation, stabilizes N6-methyladenosine (m6A)-modified FGFR2 mRNA, and activates the PI3K/AKT pathway. Our research unveils the role of RPPH1 in breast cancer metastasis and highlights its potential as a therapeutic target.</p>","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-03DOI: 10.1038/s41388-024-03208-9
Khalid N M Abdelazeem, Diemmy Nguyen, Sophia Corbo, Laurel B Darragh, Mike W Matsumoto, Benjamin Van Court, Brooke Neupert, Justin Yu, Nicholas A Olimpo, Douglas Grant Osborne, Jacob Gadwa, Richard B Ross, Alexander Nguyen, Shilpa Bhatia, Mohit Kapoor, Rachel S Friedman, Jordan Jacobelli, Anthony J Saviola, Michael W Knitz, Elena B Pasquale, Sana D Karam
The EphB4-ephrinB2 signaling axis has been heavily implicated in metastasis across numerous cancer types. Our emerging understanding of the dichotomous roles that EphB4 and ephrinB2 play in head and neck squamous cell carcinoma (HNSCC) poses a significant challenge to rational drug design. We find that EphB4 knockdown in cancer cells enhances metastasis in preclinical HNSCC models by augmenting immunosuppressive cells like T regulatory cells (Tregs) within the tumor microenvironment. EphB4 inhibition in cancer cells also amplifies their ability to metastasize through increased expression of genes associated with hallmark pathways of metastasis along with classical and non-classical epithelial-mesenchymal transition. In contrast, vascular ephrinB2 knockout coupled with radiation therapy (RT) enhances anti-tumor immunity, reduces Treg accumulation into the tumor, and decreases metastasis. Notably, targeting the EphB4-ephrinB2 signaling axis with the engineered ligands ephrinB2-Fc-His and Fc-TNYL-RAW-GS reduces local tumor growth and distant metastasis in a preclinical model of HNSCC. Our data suggests that targeted inhibition of vascular ephrinB2 while avoiding inhibition of EphB4 in cancer cells could be a promising strategy to mitigate HNSCC metastasis.
{"title":"Manipulating the EphB4-ephrinB2 axis to reduce metastasis in HNSCC.","authors":"Khalid N M Abdelazeem, Diemmy Nguyen, Sophia Corbo, Laurel B Darragh, Mike W Matsumoto, Benjamin Van Court, Brooke Neupert, Justin Yu, Nicholas A Olimpo, Douglas Grant Osborne, Jacob Gadwa, Richard B Ross, Alexander Nguyen, Shilpa Bhatia, Mohit Kapoor, Rachel S Friedman, Jordan Jacobelli, Anthony J Saviola, Michael W Knitz, Elena B Pasquale, Sana D Karam","doi":"10.1038/s41388-024-03208-9","DOIUrl":"10.1038/s41388-024-03208-9","url":null,"abstract":"<p><p>The EphB4-ephrinB2 signaling axis has been heavily implicated in metastasis across numerous cancer types. Our emerging understanding of the dichotomous roles that EphB4 and ephrinB2 play in head and neck squamous cell carcinoma (HNSCC) poses a significant challenge to rational drug design. We find that EphB4 knockdown in cancer cells enhances metastasis in preclinical HNSCC models by augmenting immunosuppressive cells like T regulatory cells (Tregs) within the tumor microenvironment. EphB4 inhibition in cancer cells also amplifies their ability to metastasize through increased expression of genes associated with hallmark pathways of metastasis along with classical and non-classical epithelial-mesenchymal transition. In contrast, vascular ephrinB2 knockout coupled with radiation therapy (RT) enhances anti-tumor immunity, reduces Treg accumulation into the tumor, and decreases metastasis. Notably, targeting the EphB4-ephrinB2 signaling axis with the engineered ligands ephrinB2-Fc-His and Fc-TNYL-RAW-GS reduces local tumor growth and distant metastasis in a preclinical model of HNSCC. Our data suggests that targeted inhibition of vascular ephrinB2 while avoiding inhibition of EphB4 in cancer cells could be a promising strategy to mitigate HNSCC metastasis.</p>","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sine oculis homeobox homolog 1 (SIX1) is a new identified cancer driver in the development of prostate cancer (PC). However, the upstream regulatory mechanisms for SIX1 reactivation in cancer remains elusive. Here, we found that Ku70 robustly interacts with SIX1 in the nucleus of PC cells. The HD domain of SIX1 and the DBD domain of Ku70 are required for formation of Ku70-SIX1 complex. 20 groups of hydrogen bonds were identified in this complex by molecular dynamics simulation. Depletion of Ku70/SIX1 notably abrogates the proliferation and migration of PC. Further studies revealed that SIX1 is recruited to the promoter region on glutamate-pyruvate transaminase 2 (GPT2). Ku70 enhances the SIX1-mediated transcriptional activation on GPT2, thereby facilitating the generation of alpha-ketoglutarate (α-KG). In addition, formation of the Ku70-SIX1 complex promotes GPT2-dependent cell proliferation and migration in PC. Moreover, the expression of GPT2 is upregulated and strongly correlated with the expression of Ku70/SIX1 in PC tissues. In summary, our findings not only provide insight into the mechanistic interactions between Ku70 and SIX1, but also highlight the significance of the Ku70-SIX1-GPT2 axis for α-KG metabolism and PC carcinogenesis.
{"title":"The Ku70-SIX1-GPT2 axis regulates alpha-ketoglutarate metabolism to drive progression of prostate cancer.","authors":"Hongbiao Huang, Xuefen Zhuang, Shusha Yin, Wenshuang Sun, Ji Cheng, E-Ying Peng, Yujie Xiang, Xiaoyue He, Mengfan Tang, Yuting Li, Yu Yao, Yuanfei Deng, Qing Liu, Zhenlong Shao, Xiaohong Xia, Gengxi Cai, Yuning Liao","doi":"10.1038/s41388-024-03209-8","DOIUrl":"10.1038/s41388-024-03209-8","url":null,"abstract":"<p><p>Sine oculis homeobox homolog 1 (SIX1) is a new identified cancer driver in the development of prostate cancer (PC). However, the upstream regulatory mechanisms for SIX1 reactivation in cancer remains elusive. Here, we found that Ku70 robustly interacts with SIX1 in the nucleus of PC cells. The HD domain of SIX1 and the DBD domain of Ku70 are required for formation of Ku70-SIX1 complex. 20 groups of hydrogen bonds were identified in this complex by molecular dynamics simulation. Depletion of Ku70/SIX1 notably abrogates the proliferation and migration of PC. Further studies revealed that SIX1 is recruited to the promoter region on glutamate-pyruvate transaminase 2 (GPT2). Ku70 enhances the SIX1-mediated transcriptional activation on GPT2, thereby facilitating the generation of alpha-ketoglutarate (α-KG). In addition, formation of the Ku70-SIX1 complex promotes GPT2-dependent cell proliferation and migration in PC. Moreover, the expression of GPT2 is upregulated and strongly correlated with the expression of Ku70/SIX1 in PC tissues. In summary, our findings not only provide insight into the mechanistic interactions between Ku70 and SIX1, but also highlight the significance of the Ku70-SIX1-GPT2 axis for α-KG metabolism and PC carcinogenesis.</p>","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1038/s41388-024-03197-9
Chunxiao Zhang, Taisen Hao, Alessia Bortoluzzi, Min-Hsuan Chen, Xiwei Wu, Jinhui Wang, Richard Ermel, Young Kim, Shiuan Chen, WenYong Chen
Sex influences many biological outcomes, but how sex affects hematopoietic stem cell (HSC) aging and hematological disorders is poorly understood. The widespread use of young animal models to study age-related diseases further complicates these matters. Using aged and long-lived BALB/c mouse models, we discovered that aging mice exhibit sex-dependent disparities, mirroring aging humans, in developing myeloid skewing, anemia, and leukemia. These disparities are underlined by sex-differentiated HSC aging characteristics across the population, single-cell, and molecular levels. The HSC population expanded significantly with aging and longevity in males, but this occurred to a much lesser degree in aging females that instead expanded committed progenitors. Aging male HSCs are more susceptible to BCR-ABL1 transformation with faster development of chronic myeloid leukemia (CML) than female HSCs. Additionally, the loss of the aging regulator Sirt1 inhibited CML development in aging male but not female mice. Our results showed for the first time that sex-differentiated HSC aging impacts hematopoiesis, leukemogenesis, and certain gene functions. This discovery provides insights into understanding age-dependent hematological diseases and sex-targeted strategies for the treatment and prevention of certain blood disorders and cancer.
{"title":"Sex-dependent differences in hematopoietic stem cell aging and leukemogenic potential.","authors":"Chunxiao Zhang, Taisen Hao, Alessia Bortoluzzi, Min-Hsuan Chen, Xiwei Wu, Jinhui Wang, Richard Ermel, Young Kim, Shiuan Chen, WenYong Chen","doi":"10.1038/s41388-024-03197-9","DOIUrl":"10.1038/s41388-024-03197-9","url":null,"abstract":"<p><p>Sex influences many biological outcomes, but how sex affects hematopoietic stem cell (HSC) aging and hematological disorders is poorly understood. The widespread use of young animal models to study age-related diseases further complicates these matters. Using aged and long-lived BALB/c mouse models, we discovered that aging mice exhibit sex-dependent disparities, mirroring aging humans, in developing myeloid skewing, anemia, and leukemia. These disparities are underlined by sex-differentiated HSC aging characteristics across the population, single-cell, and molecular levels. The HSC population expanded significantly with aging and longevity in males, but this occurred to a much lesser degree in aging females that instead expanded committed progenitors. Aging male HSCs are more susceptible to BCR-ABL1 transformation with faster development of chronic myeloid leukemia (CML) than female HSCs. Additionally, the loss of the aging regulator Sirt1 inhibited CML development in aging male but not female mice. Our results showed for the first time that sex-differentiated HSC aging impacts hematopoiesis, leukemogenesis, and certain gene functions. This discovery provides insights into understanding age-dependent hematological diseases and sex-targeted strategies for the treatment and prevention of certain blood disorders and cancer.</p>","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1038/s41388-024-03199-7
Maryne Dupuy, Maxime Gueguinou, Anaïs Postec, Régis Brion, Robel Tesfaye, Mathilde Mullard, Laura Regnier, Jérôme Amiaud, Clémence Hubsch, Marie Potier-Cartereau, Aurélie Chantôme, Bénédicte Brounais-Le Royer, Marc Baud'huin, Steven Georges, François Lamoureux, Benjamin Ory, Natacha Entz-Werlé, Olivier Delattre, Françoise Rédini, Christophe Vandier, Franck Verrecchia
Ewing sarcoma (ES) is characterized by EWS::FLI1 or EWS::ERG fusion proteins. Knowing that ion channels are involved in tumorigenesis, this work aimed to study the involvement of the KCNN1 gene, which encodes the SK1 potassium channel, in ES development. Bioinformatics analyses from databases were used to study KCNN1 expression in patients and cell lines. Molecular approaches and in vitro assays were used to study the transcriptional regulation of KCNN1 and its involvement in the regulation of ES cell proliferation. KCNN1 is overexpressed in ES patient biopsies, and its expression is inversely correlated with patient survival. EWS::FLI1, like EWS::ERG, promotes KCNN1 and SK1 expression, binding to GGAA microsatellites near the promoter of KCNN1 isoforms. KCNN1 is involved in the regulation of ES cell proliferation, with its silencing being associated with a slowing of the cell cycle, and its expression modulates membrane potential and therefore calcium flux. These results highlight that KCNN1 is a direct target of EWS::FLI1 and EWS::ERG and demonstrate that KCNN1 is involved in the regulation of intracellular calcium activity and ES cell proliferation, making it a promising therapeutic target in ES.
尤文肉瘤(ES)的特征是EWS::FLI1或EWS::ERG融合蛋白。鉴于离子通道参与肿瘤发生,这项工作旨在研究编码 SK1 钾通道的 KCNN1 基因参与 ES 发育的情况。我们利用数据库中的生物信息学分析来研究 KCNN1 在患者和细胞系中的表达。利用分子方法和体外试验研究了 KCNN1 的转录调控及其参与 ES 细胞增殖调控的情况。KCNN1在ES患者活检组织中过度表达,其表达与患者存活率成反比。EWS::FLI1与EWS::ERG一样,能促进KCNN1和SK1的表达,与KCNN1同工酶启动子附近的GGAA微卫星结合。KCNN1 参与 ES 细胞增殖的调控,其沉默与细胞周期减慢有关,其表达可调节膜电位,从而调节钙通量。这些结果突出表明,KCNN1是EWS::FLI1和EWS::ERG的直接靶标,并证明KCNN1参与细胞内钙活性和ES细胞增殖的调控,使其成为ES的一个有希望的治疗靶标。
{"title":"Chimeric protein EWS::FLI1 drives cell proliferation in Ewing Sarcoma via aberrant expression of KCNN1/SK1 and dysregulation of calcium signaling.","authors":"Maryne Dupuy, Maxime Gueguinou, Anaïs Postec, Régis Brion, Robel Tesfaye, Mathilde Mullard, Laura Regnier, Jérôme Amiaud, Clémence Hubsch, Marie Potier-Cartereau, Aurélie Chantôme, Bénédicte Brounais-Le Royer, Marc Baud'huin, Steven Georges, François Lamoureux, Benjamin Ory, Natacha Entz-Werlé, Olivier Delattre, Françoise Rédini, Christophe Vandier, Franck Verrecchia","doi":"10.1038/s41388-024-03199-7","DOIUrl":"https://doi.org/10.1038/s41388-024-03199-7","url":null,"abstract":"<p><p>Ewing sarcoma (ES) is characterized by EWS::FLI1 or EWS::ERG fusion proteins. Knowing that ion channels are involved in tumorigenesis, this work aimed to study the involvement of the KCNN1 gene, which encodes the SK1 potassium channel, in ES development. Bioinformatics analyses from databases were used to study KCNN1 expression in patients and cell lines. Molecular approaches and in vitro assays were used to study the transcriptional regulation of KCNN1 and its involvement in the regulation of ES cell proliferation. KCNN1 is overexpressed in ES patient biopsies, and its expression is inversely correlated with patient survival. EWS::FLI1, like EWS::ERG, promotes KCNN1 and SK1 expression, binding to GGAA microsatellites near the promoter of KCNN1 isoforms. KCNN1 is involved in the regulation of ES cell proliferation, with its silencing being associated with a slowing of the cell cycle, and its expression modulates membrane potential and therefore calcium flux. These results highlight that KCNN1 is a direct target of EWS::FLI1 and EWS::ERG and demonstrate that KCNN1 is involved in the regulation of intracellular calcium activity and ES cell proliferation, making it a promising therapeutic target in ES.</p>","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-29DOI: 10.1038/s41388-024-03200-3
Teresa Börding, Tobias Janik, Philip Bischoff, Markus Morkel, Christine Sers, David Horst
GPA33 is a promising surface antigen for targeted therapy in colorectal cancer (CRC). It is expressed almost exclusively in CRC and intestinal epithelia. However, previous clinical studies have not achieved expected response rates. We investigated GPA33 expression and regulation in CRC and developed a GPA33-targeted cellular therapy. We examined GPA33 expression in CRC cohorts using immunohistochemistry and immunofluorescence. We analyzed GPA33 regulation by interference with oncogenic signaling in vitro and in vivo using inhibitors and conditional inducible regulators. Furthermore, we engineered anti-GPA33-CAR T cells and assessed their activity in vitro and in vivo. GPA33 expression showed consistent intratumoral heterogeneity in CRC with antigen loss at the infiltrative tumor edge. This pattern was preserved at metastatic sites. GPA33-positive cells had a differentiated phenotype and low WNT activity. Low GPA33 expression levels were linked to tumor progression in patients with CRC. Downregulation of WNT activity induced GPA33 expression in vitro and in GPA33-negative tumor cell subpopulations in xenografts. GPA33-CAR T cells were activated in response to GPA33 and reduced xenograft growth in mice after intratumoral application. GPA33-targeted therapy may be improved by simultaneous WNT inhibition to enhance GPA33 expression. Furthermore, GPA33 is a promising target for cellular immunotherapy in CRC.
{"title":"GPA33 expression in colorectal cancer can be induced by WNT inhibition and targeted by cellular therapy.","authors":"Teresa Börding, Tobias Janik, Philip Bischoff, Markus Morkel, Christine Sers, David Horst","doi":"10.1038/s41388-024-03200-3","DOIUrl":"https://doi.org/10.1038/s41388-024-03200-3","url":null,"abstract":"<p><p>GPA33 is a promising surface antigen for targeted therapy in colorectal cancer (CRC). It is expressed almost exclusively in CRC and intestinal epithelia. However, previous clinical studies have not achieved expected response rates. We investigated GPA33 expression and regulation in CRC and developed a GPA33-targeted cellular therapy. We examined GPA33 expression in CRC cohorts using immunohistochemistry and immunofluorescence. We analyzed GPA33 regulation by interference with oncogenic signaling in vitro and in vivo using inhibitors and conditional inducible regulators. Furthermore, we engineered anti-GPA33-CAR T cells and assessed their activity in vitro and in vivo. GPA33 expression showed consistent intratumoral heterogeneity in CRC with antigen loss at the infiltrative tumor edge. This pattern was preserved at metastatic sites. GPA33-positive cells had a differentiated phenotype and low WNT activity. Low GPA33 expression levels were linked to tumor progression in patients with CRC. Downregulation of WNT activity induced GPA33 expression in vitro and in GPA33-negative tumor cell subpopulations in xenografts. GPA33-CAR T cells were activated in response to GPA33 and reduced xenograft growth in mice after intratumoral application. GPA33-targeted therapy may be improved by simultaneous WNT inhibition to enhance GPA33 expression. Furthermore, GPA33 is a promising target for cellular immunotherapy in CRC.</p>","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-29DOI: 10.1038/s41388-024-03191-1
Joanne D Tejero, Rebecca S Hesterberg, Stanislav Drapela, Didem Ilter, Devesh Raizada, Felicia Lazure, Hossein Kashfi, Min Liu, Leonardo Silvane, Dorina Avram, Juan Fernández-García, John M Asara, Sarah-Maria Fendt, John L Cleveland, Ana P Gomes
Systemic levels of methylmalonic acid (MMA), a byproduct of propionate metabolism, increase with age and MMA promotes tumor progression via its direct effects in tumor cells. However, the role of MMA in modulating the tumor ecosystem remains to be investigated. The proliferation and function of CD8+ T cells, key anti-tumor immune cells, declines with age and in conditions of vitamin B12 deficiency, which are the two most well-established conditions that lead to increased systemic levels of MMA. Thus, we hypothesized that increased circulatory levels of MMA would lead to a suppression of CD8+ T cell immunity. Treatment of primary CD8+ T cells with MMA induced a dysfunctional phenotype characterized by robust immunosuppressive transcriptional reprogramming and marked increases in the expression of the exhaustion regulator, TOX. Accordingly, MMA treatment upregulated exhaustion markers in CD8+ T cells and decreased their effector functions, which drove the suppression of anti-tumor immunity in vitro and in vivo. Mechanistically, MMA-induced CD8+ T cell exhaustion was associated with a suppression of NADH-regenerating reactions in the TCA cycle and concomitant defects in mitochondrial function. Thus, MMA has immunomodulatory roles, thereby highlighting MMA as an important link between aging, immune dysfunction, and cancer.
随着年龄的增长,丙酸代谢的副产品甲基丙二酸(MMA)的全身含量也会增加,MMA通过对肿瘤细胞的直接作用促进肿瘤的发展。然而,MMA 在调节肿瘤生态系统中的作用仍有待研究。CD8+ T 细胞是关键的抗肿瘤免疫细胞,其增殖和功能会随着年龄的增长和维生素 B12 的缺乏而下降,而这两种情况是导致全身 MMA 水平升高的最常见原因。因此,我们假设 MMA 循环水平的增加会导致 CD8+ T 细胞免疫受到抑制。用 MMA 处理原代 CD8+ T 细胞会诱导出一种功能障碍表型,其特征是强大的免疫抑制转录重编程和衰竭调节因子 TOX 表达的显著增加。因此,MMA 处理会上调 CD8+ T 细胞的衰竭标记物,并降低其效应功能,从而抑制体外和体内的抗肿瘤免疫。从机理上讲,MMA 诱导的 CD8+ T 细胞衰竭与 TCA 循环中 NADH 再生反应的抑制以及随之而来的线粒体功能缺陷有关。因此,MMA 具有免疫调节作用,从而凸显了 MMA 是衰老、免疫功能障碍和癌症之间的重要联系。
{"title":"Methylmalonic acid induces metabolic abnormalities and exhaustion in CD8<sup>+</sup> T cells to suppress anti-tumor immunity.","authors":"Joanne D Tejero, Rebecca S Hesterberg, Stanislav Drapela, Didem Ilter, Devesh Raizada, Felicia Lazure, Hossein Kashfi, Min Liu, Leonardo Silvane, Dorina Avram, Juan Fernández-García, John M Asara, Sarah-Maria Fendt, John L Cleveland, Ana P Gomes","doi":"10.1038/s41388-024-03191-1","DOIUrl":"https://doi.org/10.1038/s41388-024-03191-1","url":null,"abstract":"<p><p>Systemic levels of methylmalonic acid (MMA), a byproduct of propionate metabolism, increase with age and MMA promotes tumor progression via its direct effects in tumor cells. However, the role of MMA in modulating the tumor ecosystem remains to be investigated. The proliferation and function of CD8<sup>+</sup> T cells, key anti-tumor immune cells, declines with age and in conditions of vitamin B12 deficiency, which are the two most well-established conditions that lead to increased systemic levels of MMA. Thus, we hypothesized that increased circulatory levels of MMA would lead to a suppression of CD8<sup>+</sup> T cell immunity. Treatment of primary CD8<sup>+</sup> T cells with MMA induced a dysfunctional phenotype characterized by robust immunosuppressive transcriptional reprogramming and marked increases in the expression of the exhaustion regulator, TOX. Accordingly, MMA treatment upregulated exhaustion markers in CD8<sup>+</sup> T cells and decreased their effector functions, which drove the suppression of anti-tumor immunity in vitro and in vivo. Mechanistically, MMA-induced CD8<sup>+</sup> T cell exhaustion was associated with a suppression of NADH-regenerating reactions in the TCA cycle and concomitant defects in mitochondrial function. Thus, MMA has immunomodulatory roles, thereby highlighting MMA as an important link between aging, immune dysfunction, and cancer.</p>","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1038/s41388-024-03192-0
Ran Yehuda, Ido Dromi, Yishai Levin, Thomas Carell, Nicholas Geacintov, Zvi Livneh
Hypoxia is common in tumors and is associated with cancer progression and drug resistance, driven, at least in part, by genetic instability. Little is known on how hypoxia affects Translesion DNA Synthesis (TLS), in which error-prone DNA polymerases bypass lesions, thereby maintaining DNA continuity at the price of increased mutations. Here we show that under acute hypoxia, PCNA monoubiquitination, a key step in TLS, and expression of error-prone DNA polymerases increased under regulation of the HIF1α transcription factor. Knocking-down expression of DNA polymerase η, or using PCNA ubiquitination-resistant cells, inhibited genomic DNA replication specifically under hypoxia, and iPOND analysis revealed massive recruitment of TLS DNA polymerases to nascent DNA under hypoxia, uncovering a dramatic involvement of error-prone DNA polymerases in genomic replication. Of note, expression of TLS-polymerases correlates with VEGFA (primary HIF1α target) in a database of renal cell carcinoma, a cancer which accumulates HIF1α. Our results suggest that the tumor microenvironment can lead the cell to forgo, to some extent, the fast and accurate canonical DNA polymerases, for the more flexible and robust, but low-fidelity TLS DNA polymerases. This might endow cancer cells with resilience to overcome replication stress, and mutability to escape the immune system and chemotherapeutic drugs.
缺氧在肿瘤中很常见,与癌症进展和耐药性有关,至少部分原因是遗传不稳定性。人们对缺氧如何影响DNA转座合成(TLS)知之甚少,在TLS中,易出错的DNA聚合酶绕过病变,从而以增加突变为代价维持DNA的连续性。在这里,我们发现在急性缺氧条件下,PCNA单泛素化(TLS的关键步骤)和易错DNA聚合酶的表达在HIF1α转录因子的调控下增加。敲除 DNA 聚合酶 η 的表达,或使用 PCNA 泛素化抗性细胞,可在缺氧条件下抑制基因组 DNA 复制,iPOND 分析显示,在缺氧条件下,TLS DNA 聚合酶被大量招募到新生 DNA 上,从而揭示了易错 DNA 聚合酶在基因组复制中的显著参与。值得注意的是,在肾细胞癌数据库中,TLS聚合酶的表达与血管内皮生长因子(VEGFA)(HIF1α的主要靶标)相关,而肾细胞癌是一种蓄积HIF1α的癌症。我们的研究结果表明,肿瘤微环境会在一定程度上导致细胞放弃快速准确的典型 DNA 聚合酶,转而使用更灵活、更稳健但保真度低的 TLS DNA 聚合酶。这可能会赋予癌细胞克服复制压力的韧性,以及逃避免疫系统和化疗药物的突变性。
{"title":"Hypoxia-dependent recruitment of error-prone DNA polymerases to genome replication.","authors":"Ran Yehuda, Ido Dromi, Yishai Levin, Thomas Carell, Nicholas Geacintov, Zvi Livneh","doi":"10.1038/s41388-024-03192-0","DOIUrl":"https://doi.org/10.1038/s41388-024-03192-0","url":null,"abstract":"<p><p>Hypoxia is common in tumors and is associated with cancer progression and drug resistance, driven, at least in part, by genetic instability. Little is known on how hypoxia affects Translesion DNA Synthesis (TLS), in which error-prone DNA polymerases bypass lesions, thereby maintaining DNA continuity at the price of increased mutations. Here we show that under acute hypoxia, PCNA monoubiquitination, a key step in TLS, and expression of error-prone DNA polymerases increased under regulation of the HIF1α transcription factor. Knocking-down expression of DNA polymerase η, or using PCNA ubiquitination-resistant cells, inhibited genomic DNA replication specifically under hypoxia, and iPOND analysis revealed massive recruitment of TLS DNA polymerases to nascent DNA under hypoxia, uncovering a dramatic involvement of error-prone DNA polymerases in genomic replication. Of note, expression of TLS-polymerases correlates with VEGFA (primary HIF1α target) in a database of renal cell carcinoma, a cancer which accumulates HIF1α. Our results suggest that the tumor microenvironment can lead the cell to forgo, to some extent, the fast and accurate canonical DNA polymerases, for the more flexible and robust, but low-fidelity TLS DNA polymerases. This might endow cancer cells with resilience to overcome replication stress, and mutability to escape the immune system and chemotherapeutic drugs.</p>","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1038/s41388-024-03174-2
Simon T Jakobsen, Rasmus Siersbæk
The transcription factor MYC has long been recognized for its pivotal role in transcriptional regulation of genes fundamental for cellular processes such as cell cycle, apoptosis, and metabolism. Dysregulation of MYC activity is implicated in various diseases, most notably cancer, where MYC drives uncontrolled cell proliferation and growth. Despite its significant role in cancer biology, targeting MYC for therapeutic purposes has been challenging due to its highly disordered protein structure. Hence, recent research efforts have focused on identifying the transcriptional mechanisms underlying MYC function to identify alternative strategies for intervention. This review summarizes recent advances in our understanding of how MYC orchestrates context-dependent and -independent gene-regulatory activities in cancer. Based on recent insights into the gene-regulatory function of MYC at enhancers, we propose an extension of the gene-specific affinity model. In this revised model, MYC enhancer activity drives context-specific gene programs that are distinct from the ubiquitously activated set of core MYC target genes driven by MYC promoter binding. The increased MYC enhancer activity in cancer and the distinct function of MYC at these regions compared to promoters may provide an opportunity for designing therapeutic approaches selectively targeting MYC enhancer activity in cancer cells.
{"title":"Transcriptional regulation by MYC: an emerging new model.","authors":"Simon T Jakobsen, Rasmus Siersbæk","doi":"10.1038/s41388-024-03174-2","DOIUrl":"https://doi.org/10.1038/s41388-024-03174-2","url":null,"abstract":"<p><p>The transcription factor MYC has long been recognized for its pivotal role in transcriptional regulation of genes fundamental for cellular processes such as cell cycle, apoptosis, and metabolism. Dysregulation of MYC activity is implicated in various diseases, most notably cancer, where MYC drives uncontrolled cell proliferation and growth. Despite its significant role in cancer biology, targeting MYC for therapeutic purposes has been challenging due to its highly disordered protein structure. Hence, recent research efforts have focused on identifying the transcriptional mechanisms underlying MYC function to identify alternative strategies for intervention. This review summarizes recent advances in our understanding of how MYC orchestrates context-dependent and -independent gene-regulatory activities in cancer. Based on recent insights into the gene-regulatory function of MYC at enhancers, we propose an extension of the gene-specific affinity model. In this revised model, MYC enhancer activity drives context-specific gene programs that are distinct from the ubiquitously activated set of core MYC target genes driven by MYC promoter binding. The increased MYC enhancer activity in cancer and the distinct function of MYC at these regions compared to promoters may provide an opportunity for designing therapeutic approaches selectively targeting MYC enhancer activity in cancer cells.</p>","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1038/s41388-024-03201-2
Joseph Hsieh, Etienne P Danis, Charles R Owens, Janet K Parrish, Nathan L Nowling, Arthur R Wolin, Stephen Connor Purdy, Sheera R Rosenbaum, Atma M Ivancevic, Edward B Chuong, Heide L Ford, Paul Jedlicka
Rhabdomyosarcoma (RMS), a malignancy of impaired myogenic differentiation, is the most common soft tissue pediatric cancer. PAX3-FOXO1 oncofusions drive the majority of the clinically more aggressive fusion-positive rhabdomyosarcoma (FP-RMS). Recent studies have established an epigenetic basis for PAX3-FOXO1-driven oncogenic processes. However, details of PAX3-FOXO1 epigenetic mechanisms, including interactions with, and dependence on, other chromatin and transcription factors, are incompletely understood. We previously identified a novel disease-promoting epigenetic axis in RMS, involving the histone demethylase KDM3A and the ETS1 transcription factor, and demonstrated that this epigenetic axis interfaces with PAX3-FOXO1 both phenotypically and transcriptomically, including co-regulation of biological processes and genes important to FP-RMS progression. In this study, we demonstrate that KDM3A and ETS1 colocalize with PAX3-FOXO1 to enhancers of important disease-promoting genes in FP-RMS, including FGF8, IL4R, and MEST, as well as PODXL, which we define herein as a new FP-RMS-promoting gene. We show that ETS1, which is induced by both PAX3-FOXO1 and KDM3A, exists in complex with PAX3-FOXO1, and augments PAX3-FOXO1 chromatin occupancy. We further show that the PAX3-FOXO1/ETS1 complex can be disrupted by the clinically relevant small molecule inhibitor YK-4-279. YK-4-279 displaces PAX3-FOXO1 from chromatin and interferes with PAX3-FOXO1-dependent gene regulation, resulting in potent inhibition of growth and invasive properties in FP-RMS, along with downregulation of FGF8, IL4R, MEST and PODXL expression. We additionally show that, in some FP-RMS, KDM3A also increases PAX3-FOXO1 levels. Together, our studies illuminate mechanisms of action of the KDM3A/ETS1 regulatory module, and reveal novel targetable mechanisms of PAX3-FOXO1 chromatin complex regulation, in FP-RMS.
{"title":"Dependence of PAX3-FOXO1 chromatin occupancy on ETS1 at important disease-promoting genes exposes new targetable vulnerability in Fusion-Positive Rhabdomyosarcoma.","authors":"Joseph Hsieh, Etienne P Danis, Charles R Owens, Janet K Parrish, Nathan L Nowling, Arthur R Wolin, Stephen Connor Purdy, Sheera R Rosenbaum, Atma M Ivancevic, Edward B Chuong, Heide L Ford, Paul Jedlicka","doi":"10.1038/s41388-024-03201-2","DOIUrl":"https://doi.org/10.1038/s41388-024-03201-2","url":null,"abstract":"<p><p>Rhabdomyosarcoma (RMS), a malignancy of impaired myogenic differentiation, is the most common soft tissue pediatric cancer. PAX3-FOXO1 oncofusions drive the majority of the clinically more aggressive fusion-positive rhabdomyosarcoma (FP-RMS). Recent studies have established an epigenetic basis for PAX3-FOXO1-driven oncogenic processes. However, details of PAX3-FOXO1 epigenetic mechanisms, including interactions with, and dependence on, other chromatin and transcription factors, are incompletely understood. We previously identified a novel disease-promoting epigenetic axis in RMS, involving the histone demethylase KDM3A and the ETS1 transcription factor, and demonstrated that this epigenetic axis interfaces with PAX3-FOXO1 both phenotypically and transcriptomically, including co-regulation of biological processes and genes important to FP-RMS progression. In this study, we demonstrate that KDM3A and ETS1 colocalize with PAX3-FOXO1 to enhancers of important disease-promoting genes in FP-RMS, including FGF8, IL4R, and MEST, as well as PODXL, which we define herein as a new FP-RMS-promoting gene. We show that ETS1, which is induced by both PAX3-FOXO1 and KDM3A, exists in complex with PAX3-FOXO1, and augments PAX3-FOXO1 chromatin occupancy. We further show that the PAX3-FOXO1/ETS1 complex can be disrupted by the clinically relevant small molecule inhibitor YK-4-279. YK-4-279 displaces PAX3-FOXO1 from chromatin and interferes with PAX3-FOXO1-dependent gene regulation, resulting in potent inhibition of growth and invasive properties in FP-RMS, along with downregulation of FGF8, IL4R, MEST and PODXL expression. We additionally show that, in some FP-RMS, KDM3A also increases PAX3-FOXO1 levels. Together, our studies illuminate mechanisms of action of the KDM3A/ETS1 regulatory module, and reveal novel targetable mechanisms of PAX3-FOXO1 chromatin complex regulation, in FP-RMS.</p>","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}