首页 > 最新文献

Organogenesis最新文献

英文 中文
Embryonic skin development and repair. 胚胎皮肤发育和修复。
IF 2.3 4区 生物学 Q2 Medicine Pub Date : 2018-01-02 Epub Date: 2018-02-15 DOI: 10.1080/15476278.2017.1421882
Michael S Hu, Mimi R Borrelli, Wan Xing Hong, Samir Malhotra, Alexander T M Cheung, Ryan C Ransom, Robert C Rennert, Shane D Morrison, H Peter Lorenz, Michael T Longaker

Fetal cutaneous wounds have the unique ability to completely regenerate wounded skin and heal without scarring. However, adult cutaneous wounds heal via a fibroproliferative response which results in the formation of a scar. Understanding the mechanism(s) of scarless wound healing leads to enormous clinical potential in facilitating an environment conducive to scarless healing in adult cutaneous wounds. This article reviews the embryonic development of the skin and outlines the structural and functional differences in adult and fetal wound healing phenotypes. A review of current developments made towards applying this clinical knowledge to promote scarless healing in adult wounds is addressed.

胎儿皮肤伤口具有独特的能力,可以完全再生受伤的皮肤并在没有疤痕的情况下愈合。然而,成人皮肤伤口通过纤维增殖反应愈合,从而形成疤痕。了解无瘢痕伤口愈合的机制,在促进成人皮肤伤口无瘢痕愈合的环境方面具有巨大的临床潜力。本文综述了皮肤的胚胎发育,并概述了成人和胎儿伤口愈合表型的结构和功能差异。综述了应用这一临床知识促进成人伤口无瘢痕愈合的最新进展。
{"title":"Embryonic skin development and repair.","authors":"Michael S Hu, Mimi R Borrelli, Wan Xing Hong, Samir Malhotra, Alexander T M Cheung, Ryan C Ransom, Robert C Rennert, Shane D Morrison, H Peter Lorenz, Michael T Longaker","doi":"10.1080/15476278.2017.1421882","DOIUrl":"10.1080/15476278.2017.1421882","url":null,"abstract":"<p><p>Fetal cutaneous wounds have the unique ability to completely regenerate wounded skin and heal without scarring. However, adult cutaneous wounds heal via a fibroproliferative response which results in the formation of a scar. Understanding the mechanism(s) of scarless wound healing leads to enormous clinical potential in facilitating an environment conducive to scarless healing in adult cutaneous wounds. This article reviews the embryonic development of the skin and outlines the structural and functional differences in adult and fetal wound healing phenotypes. A review of current developments made towards applying this clinical knowledge to promote scarless healing in adult wounds is addressed.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2018-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6150059/pdf/kogg-14-01-1421882.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35809515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of TAK1 on osteogenic differentiation of mesenchymal stem cells by regulating BMP-2 via Wnt/β-catenin and MAPK pathway. TAK1通过Wnt/β-catenin和MAPK途径调控BMP-2对间充质干细胞成骨分化的影响。
IF 2.3 4区 生物学 Q2 Medicine Pub Date : 2018-01-02 DOI: 10.1080/15476278.2018.1455010
Hongpeng Yang, Yue Guo, Dawei Wang, Xiaofei Yang, Chengzhi Ha

Mesenchymal stem cells (MSCs) have the ability to differentiate into osteoblasts and chondrocytes. In vitro osteogenic differentiation is critical but the molecular mechanism has yet to be further clarified. The role of TGF-β activated kinase 1 (TAK1) in MSCs osteogenesis differentiation has not been reported. By adding si-TAK1 and rhTAK1, the osteogenic differentiation of MSCs was measured. Expression levels of the osteoblastic marker genes during osteogenic differentiation of MSCs were checked. As well as molecules involved in BMP and Wnt/β-catenin signaling pathways. The phosphorylation of p38 and JNK was also checked. TAK1 is essential for mineralization of MSCs at low concentration, but excessive rhTAK1 inhibits mineralization of MSCs. It up regulates the expression levels of bone sialoprotein (BSP), osteocalcin (OSC), Alkaline phosphatase (ALP), and RUNX2 during osteogenic differentiation of MSCs. It can also promote TGF-β/BMP-2 gene expression and β-catenin expression, and down regulate GSK-3β expression. Meanwhile, TAK1 promotes the phosphorylation of p38 and JNK. Additionally, TAK1 up regulates the expression of BMP-2 at all concentration under the inhibition of p38 and JNK. Our results suggested that TAK1 is essential in MSCs osteogenesis differentiation, and functions as a double-edged sword, probably through regulation of β-catenin and p38/JNK.

间充质干细胞(MSCs)具有向成骨细胞和软骨细胞分化的能力。体外成骨分化是至关重要的,但其分子机制尚未进一步阐明。TGF-β活化激酶1 (TAK1)在MSCs成骨分化中的作用尚未报道。通过添加si-TAK1和rhTAK1检测MSCs的成骨分化。检测骨髓间充质干细胞成骨分化过程中成骨标记基因的表达水平。以及参与BMP和Wnt/β-连环蛋白信号通路的分子。还检测了p38和JNK的磷酸化。在低浓度下,TAK1对MSCs的矿化至关重要,但过量的rhTAK1会抑制MSCs的矿化。上调MSCs成骨分化过程中骨涎蛋白(BSP)、骨钙素(OSC)、碱性磷酸酶(ALP)、RUNX2的表达水平。促进TGF-β/BMP-2基因表达和β-catenin表达,下调GSK-3β表达。同时,TAK1促进p38和JNK的磷酸化。TAK1在p38和JNK的抑制下上调BMP-2的表达。我们的研究结果表明,TAK1在MSCs成骨分化中是必不可少的,并且可能通过调节β-catenin和p38/JNK发挥双刃剑的作用。
{"title":"Effect of TAK1 on osteogenic differentiation of mesenchymal stem cells by regulating BMP-2 via Wnt/β-catenin and MAPK pathway.","authors":"Hongpeng Yang,&nbsp;Yue Guo,&nbsp;Dawei Wang,&nbsp;Xiaofei Yang,&nbsp;Chengzhi Ha","doi":"10.1080/15476278.2018.1455010","DOIUrl":"https://doi.org/10.1080/15476278.2018.1455010","url":null,"abstract":"<p><p>Mesenchymal stem cells (MSCs) have the ability to differentiate into osteoblasts and chondrocytes. In vitro osteogenic differentiation is critical but the molecular mechanism has yet to be further clarified. The role of TGF-β activated kinase 1 (TAK1) in MSCs osteogenesis differentiation has not been reported. By adding si-TAK1 and rhTAK1, the osteogenic differentiation of MSCs was measured. Expression levels of the osteoblastic marker genes during osteogenic differentiation of MSCs were checked. As well as molecules involved in BMP and Wnt/β-catenin signaling pathways. The phosphorylation of p38 and JNK was also checked. TAK1 is essential for mineralization of MSCs at low concentration, but excessive rhTAK1 inhibits mineralization of MSCs. It up regulates the expression levels of bone sialoprotein (BSP), osteocalcin (OSC), Alkaline phosphatase (ALP), and RUNX2 during osteogenic differentiation of MSCs. It can also promote TGF-β/BMP-2 gene expression and β-catenin expression, and down regulate GSK-3β expression. Meanwhile, TAK1 promotes the phosphorylation of p38 and JNK. Additionally, TAK1 up regulates the expression of BMP-2 at all concentration under the inhibition of p38 and JNK. Our results suggested that TAK1 is essential in MSCs osteogenesis differentiation, and functions as a double-edged sword, probably through regulation of β-catenin and p38/JNK.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2018-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2018.1455010","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40441366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 22
Effects of porcine acellular dermal matrix treatment on wound healing and scar formation: Role of Jag1 expression in epidermal stem cells. 猪脱细胞真皮基质处理对伤口愈合和瘢痕形成的影响:表皮干细胞中Jag1表达的作用
IF 2.3 4区 生物学 Q2 Medicine Pub Date : 2018-01-02 Epub Date: 2018-04-27 DOI: 10.1080/15476278.2018.1436023
Xiao-Dong Chen, Shu-Bin Ruan, Ze-Peng Lin, Ziheng Zhou, Feng-Gang Zhang, Rong-Hua Yang, Ju-Lin Xie

Skin wound healing involves Notch/Jagged1 signaling. However, little is known how Jag1 expression level in epidermal stem cells (ESCs) contributes to wound healing and scar formation. We applied multiple cellular and molecular techniques to examine how Jag1 expression in ESCs modulates ESCs differentiation to myofibroblasts (MFB) in vitro, interpret how Jag1 expression in ESCs is involved in wound healing and scar formation in mice, and evaluate the effects of porcine acellular dermal matrix (ADM) treatment on wound healing and scar formation. We found that Jag1, Notch1 and Hes1 expression was up-regulated in the wound tissue during the period of wound healing. Furthermore, Jag1 expression level in the ESCs was positively associated with the level of differentiation to MFB. ESC-specific knockout of Jag1 delayed wound healing and promoted scar formation in vivo. In addition, we reported that porcine ADM treatment after skin incision could accelerate wound closure and reduce scar formation in vivo. This effect was associated with decreased expression of MFB markers, including α-SMA Col-1 and Col-III in wound tissues. Finally, we confirmed that porcine ADM treatment could increase Jag1, Notch1 and Hesl expression in wound tissues. Taken together, our results suggested that ESC-specific Jag1 expression levels are critical for wound healing and scar formation, and porcine ADM treatment would be beneficial in promoting wound healing and preventing scar formation by enhancing Notch/Jagged1 signaling pathway in ESCs.

皮肤伤口愈合涉及Notch/Jagged1信号。然而,Jag1在表皮干细胞(ESCs)中的表达水平对伤口愈合和疤痕形成的影响尚不清楚。我们应用多种细胞和分子技术,在体外研究了Jag1在ESCs中的表达如何调节ESCs向肌成纤维细胞(MFB)的分化,解释了Jag1在ESCs中的表达如何参与小鼠伤口愈合和疤痕形成,并评估了猪脱细胞真皮基质(ADM)处理对伤口愈合和疤痕形成的影响。我们发现,在创面愈合期间,Jag1、Notch1和Hes1在创面组织中的表达上调。此外,Jag1在ESCs中的表达水平与向MFB的分化水平呈正相关。在体内,esc特异性敲除Jag1会延迟伤口愈合并促进疤痕形成。此外,我们报道了猪皮肤切口后的ADM处理可以加速伤口愈合,减少体内疤痕的形成。这种作用与伤口组织中MFB标志物(包括α-SMA Col-1和Col-III)的表达降低有关。最后,我们证实了ADM处理可以提高猪伤口组织中Jag1、Notch1和Hesl的表达。综上所述,我们的研究结果表明,esc特异性Jag1表达水平对伤口愈合和疤痕形成至关重要,猪ADM处理可能通过增强ESCs中Notch/Jagged1信号通路,促进伤口愈合和防止疤痕形成。
{"title":"Effects of porcine acellular dermal matrix treatment on wound healing and scar formation: Role of Jag1 expression in epidermal stem cells.","authors":"Xiao-Dong Chen,&nbsp;Shu-Bin Ruan,&nbsp;Ze-Peng Lin,&nbsp;Ziheng Zhou,&nbsp;Feng-Gang Zhang,&nbsp;Rong-Hua Yang,&nbsp;Ju-Lin Xie","doi":"10.1080/15476278.2018.1436023","DOIUrl":"https://doi.org/10.1080/15476278.2018.1436023","url":null,"abstract":"<p><p>Skin wound healing involves Notch/Jagged1 signaling. However, little is known how Jag1 expression level in epidermal stem cells (ESCs) contributes to wound healing and scar formation. We applied multiple cellular and molecular techniques to examine how Jag1 expression in ESCs modulates ESCs differentiation to myofibroblasts (MFB) in vitro, interpret how Jag1 expression in ESCs is involved in wound healing and scar formation in mice, and evaluate the effects of porcine acellular dermal matrix (ADM) treatment on wound healing and scar formation. We found that Jag1, Notch1 and Hes1 expression was up-regulated in the wound tissue during the period of wound healing. Furthermore, Jag1 expression level in the ESCs was positively associated with the level of differentiation to MFB. ESC-specific knockout of Jag1 delayed wound healing and promoted scar formation in vivo. In addition, we reported that porcine ADM treatment after skin incision could accelerate wound closure and reduce scar formation in vivo. This effect was associated with decreased expression of MFB markers, including α-SMA Col-1 and Col-III in wound tissues. Finally, we confirmed that porcine ADM treatment could increase Jag1, Notch1 and Hesl expression in wound tissues. Taken together, our results suggested that ESC-specific Jag1 expression levels are critical for wound healing and scar formation, and porcine ADM treatment would be beneficial in promoting wound healing and preventing scar formation by enhancing Notch/Jagged1 signaling pathway in ESCs.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2018-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2018.1436023","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35810874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Erratum. 勘误表。
IF 2.3 4区 生物学 Q2 Medicine Pub Date : 2018-01-02 Epub Date: 2017-12-06 DOI: 10.1080/15476278.2017.1407509
Correspondence to: Yumei Zhao, PhD, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Department of Pediatric Dentistry, School of Stomatology, Tongji University, 339 Middle Yanchang Road, Shanghai, 200072, China. Email: yumeizhao@tongji.edu.cn; Shouliang Zhao, PhD, Department of Stomatology, Huashan Hospital, Fudan University, 12 Urumqi Road, Shanghai, 200040, China. Email: slzhao@fudan.edu.cn; Shangfeng Liu, PhD, Department of Stomatology, Huashan Hospital, Fudan University, 12 Urumqi Road, Shanghai, 200040, China. Email: shangfengliufudan@163.com.
{"title":"Erratum.","authors":"","doi":"10.1080/15476278.2017.1407509","DOIUrl":"https://doi.org/10.1080/15476278.2017.1407509","url":null,"abstract":"Correspondence to: Yumei Zhao, PhD, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Department of Pediatric Dentistry, School of Stomatology, Tongji University, 339 Middle Yanchang Road, Shanghai, 200072, China. Email: yumeizhao@tongji.edu.cn; Shouliang Zhao, PhD, Department of Stomatology, Huashan Hospital, Fudan University, 12 Urumqi Road, Shanghai, 200040, China. Email: slzhao@fudan.edu.cn; Shangfeng Liu, PhD, Department of Stomatology, Huashan Hospital, Fudan University, 12 Urumqi Road, Shanghai, 200040, China. Email: shangfengliufudan@163.com.","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2018-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2017.1407509","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35583610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prolongation of liver-specific function for primary hepatocytes maintenance in 3D printed architectures. 3D打印结构中原发性肝细胞维持的肝脏特异性功能延长。
IF 2.3 4区 生物学 Q2 Medicine Pub Date : 2018-01-02 Epub Date: 2018-02-01 DOI: 10.1080/15476278.2018.1423931
Yohan Kim, Kyojin Kang, Sangtae Yoon, Ji Sook Kim, Su A Park, Wan Doo Kim, Seung Bum Lee, Ki-Young Ryu, Jaemin Jeong, Dongho Choi

Isolated primary hepatocytes from the liver are very similar to in vivo native liver hepatocytes, but they have the disadvantage of a limited lifespan in 2D culture. Although a sandwich culture and 3D organoids with mesenchymal stem cells (MSCs) as an attractive assistant cell source to extend lifespan can be used, it cannot fully reproduce the in vivo architecture. Moreover, long-term 3D culture leads to cell death because of hypoxic stress. Therefore, to overcome the drawback of 2D and 3D organoids, we try to use a 3D printing technique using alginate hydrogels with primary hepatocytes and MSCs. The viability of isolated hepatocytes was more than 90%, and the cells remained alive for 7 days without morphological changes in the 3D hepatic architecture with MSCs. Compared to a 2D system, the expression level of functional hepatic genes and proteins was higher for up to 7 days in the 3D hepatic architecture. These results suggest that both the 3D bio-printing technique and paracrine molecules secreted by MSCs supported long-term culture of hepatocytes without morphological changes. Thus, this technique allows for widespread expansion of cells while forming multicellular aggregates, may be applied to drug screening and could be an efficient method for developing an artificial liver.

从肝脏分离的原代肝细胞与体内天然肝细胞非常相似,但它们在二维培养中存在寿命有限的缺点。虽然夹层培养和具有间充质干细胞(MSCs)的三维类器官可以作为延长寿命的有吸引力的辅助细胞来源,但它不能完全复制体内结构。此外,长期3D培养会导致细胞因缺氧应激而死亡。因此,为了克服2D和3D类器官的缺点,我们尝试使用海藻酸盐水凝胶与原代肝细胞和间充质干细胞进行3D打印技术。分离的肝细胞存活率超过90%,在MSCs的三维肝脏结构中,细胞存活7天,无形态学改变。与2D系统相比,在3D肝脏结构中,功能肝脏基因和蛋白质的表达水平最高可达7天。这些结果表明,3D生物打印技术和MSCs分泌的旁分泌分子都支持肝细胞长期培养而不发生形态学改变。因此,该技术允许细胞在形成多细胞聚集体的同时广泛扩增,可应用于药物筛选,并可能成为开发人工肝脏的有效方法。
{"title":"Prolongation of liver-specific function for primary hepatocytes maintenance in 3D printed architectures.","authors":"Yohan Kim,&nbsp;Kyojin Kang,&nbsp;Sangtae Yoon,&nbsp;Ji Sook Kim,&nbsp;Su A Park,&nbsp;Wan Doo Kim,&nbsp;Seung Bum Lee,&nbsp;Ki-Young Ryu,&nbsp;Jaemin Jeong,&nbsp;Dongho Choi","doi":"10.1080/15476278.2018.1423931","DOIUrl":"https://doi.org/10.1080/15476278.2018.1423931","url":null,"abstract":"<p><p>Isolated primary hepatocytes from the liver are very similar to in vivo native liver hepatocytes, but they have the disadvantage of a limited lifespan in 2D culture. Although a sandwich culture and 3D organoids with mesenchymal stem cells (MSCs) as an attractive assistant cell source to extend lifespan can be used, it cannot fully reproduce the in vivo architecture. Moreover, long-term 3D culture leads to cell death because of hypoxic stress. Therefore, to overcome the drawback of 2D and 3D organoids, we try to use a 3D printing technique using alginate hydrogels with primary hepatocytes and MSCs. The viability of isolated hepatocytes was more than 90%, and the cells remained alive for 7 days without morphological changes in the 3D hepatic architecture with MSCs. Compared to a 2D system, the expression level of functional hepatic genes and proteins was higher for up to 7 days in the 3D hepatic architecture. These results suggest that both the 3D bio-printing technique and paracrine molecules secreted by MSCs supported long-term culture of hepatocytes without morphological changes. Thus, this technique allows for widespread expansion of cells while forming multicellular aggregates, may be applied to drug screening and could be an efficient method for developing an artificial liver.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2018-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2018.1423931","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35759824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 27
Xenotransplantation. 异种移植。
IF 2.3 4区 生物学 Q2 Medicine Pub Date : 2018-01-01 Epub Date: 2018-09-25 DOI: 10.1080/15476278.2018.1517508
Srijan Tandukar, Sundaram Hariharan

The transplantation of living cells, tissues or organs from one species to another is termed xenotransplantation. The history of xenotransplantation is as old as allogeneic transplantation itself. Early attempts were made at a time when the immunologic basis of organ rejection were poorly understood. The advent of potent immunosuppressive medications along with the parallel advances in the field of genetic engineering has provided a fresh perspective on the role of xenotransplantation as a means to alleviate the disparity between the number of candidates on the waitlist and the available organs. As the science behind xenotransplantation advances, the transplantation community must take it upon themselves to educate the community at large regarding both the benefits and potential risks of this promising field.

将活细胞、组织或器官从一个物种移植到另一个物种被称为异种移植。异种器官移植的历史与同种异体移植本身一样悠久。早期的尝试是在器官排斥的免疫学基础尚不清楚的时候进行的。有效的免疫抑制药物的出现以及基因工程领域的平行进展为异种移植的作用提供了一个新的视角,异种移植作为一种手段,可以缓解等待名单上的候选者数量与可用器官之间的差距。随着异种移植背后的科学进步,移植界必须承担起自己的责任,向广大公众宣传这一有前途的领域的好处和潜在风险。
{"title":"Xenotransplantation.","authors":"Srijan Tandukar,&nbsp;Sundaram Hariharan","doi":"10.1080/15476278.2018.1517508","DOIUrl":"https://doi.org/10.1080/15476278.2018.1517508","url":null,"abstract":"<p><p>The transplantation of living cells, tissues or organs from one species to another is termed xenotransplantation. The history of xenotransplantation is as old as allogeneic transplantation itself. Early attempts were made at a time when the immunologic basis of organ rejection were poorly understood. The advent of potent immunosuppressive medications along with the parallel advances in the field of genetic engineering has provided a fresh perspective on the role of xenotransplantation as a means to alleviate the disparity between the number of candidates on the waitlist and the available organs. As the science behind xenotransplantation advances, the transplantation community must take it upon themselves to educate the community at large regarding both the benefits and potential risks of this promising field.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2018.1517508","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36521169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Normothermic ex vivo liver perfusion: platform for liver graft assessment and therapeutic modification. 常温离体肝灌注:肝移植评估和治疗修改的平台。
IF 2.3 4区 生物学 Q2 Medicine Pub Date : 2018-01-01 Epub Date: 2018-10-05 DOI: 10.1080/15476278.2018.1517564
Corey Eymard, James Markmann

Liver transplantation as a treatment for end stage liver failure remains limited in the United States by the number and quality of donor allografts. Static cold storage, the current standard of care for organ storage prior to transplantation, offers no method for assessment or therapeutic modification. Cold ischemia and its attendant hypoxia deplete cellular adenosine triphosphate (ATP) stores, promote cellular damage, and degrade overall organ quality. Normothermic ex vivo liver perfusion (NEVLP) offers the potential for assessment of allograft function and restoration of intracellular energy stores prior to transplantation. A completed phase III randomized trial demonstrated livers undergoing NEVLP prior to transplantation demonstrate superior early graft function and less early graft dysfunction. NEVLP offers a platform for modification of the allograft via the application of defatting or therapeutic cocktails, missense RNA technology, or gene editing modalities. The wide versatility of NEVLP appears to be a promising tool to expand the current pool of transplantable liver allografts.

肝移植作为终末期肝衰竭的一种治疗方法,在美国由于同种异体供体移植的数量和质量仍然有限。静态冷库是目前移植前器官储存的标准,没有提供评估或治疗修改的方法。冷缺血及其伴随的缺氧会耗尽细胞三磷酸腺苷(ATP)的储存,促进细胞损伤,并降低整个器官的质量。常温离体肝灌注(NEVLP)为移植前评估同种异体移植物功能和恢复细胞内能量储存提供了可能。一项完成的III期随机试验表明,移植前接受NEVLP的肝脏表现出更好的早期移植物功能和更少的早期移植物功能障碍。NEVLP提供了一个通过脱脂或治疗鸡尾酒、错义RNA技术或基因编辑方式对同种异体移植物进行修饰的平台。NEVLP的广泛通用性似乎是一个有前途的工具,以扩大目前的可移植同种异体肝脏移植池。
{"title":"Normothermic ex vivo liver perfusion: platform for liver graft assessment and therapeutic modification.","authors":"Corey Eymard,&nbsp;James Markmann","doi":"10.1080/15476278.2018.1517564","DOIUrl":"https://doi.org/10.1080/15476278.2018.1517564","url":null,"abstract":"<p><p>Liver transplantation as a treatment for end stage liver failure remains limited in the United States by the number and quality of donor allografts. Static cold storage, the current standard of care for organ storage prior to transplantation, offers no method for assessment or therapeutic modification. Cold ischemia and its attendant hypoxia deplete cellular adenosine triphosphate (ATP) stores, promote cellular damage, and degrade overall organ quality. Normothermic ex vivo liver perfusion (NEVLP) offers the potential for assessment of allograft function and restoration of intracellular energy stores prior to transplantation. A completed phase III randomized trial demonstrated livers undergoing NEVLP prior to transplantation demonstrate superior early graft function and less early graft dysfunction. NEVLP offers a platform for modification of the allograft via the application of defatting or therapeutic cocktails, missense RNA technology, or gene editing modalities. The wide versatility of NEVLP appears to be a promising tool to expand the current pool of transplantable liver allografts.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2018.1517564","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36560284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Sodium hydroxide based non-detergent decellularizing solution for rat lung. 大鼠肺用氢氧化钠非去污剂脱细胞液。
IF 2.3 4区 生物学 Q2 Medicine Pub Date : 2018-01-01 Epub Date: 2018-06-11 DOI: 10.1080/15476278.2018.1462432
Hideyori Sengyoku, Tomoshi Tsuchiya, Tomohiro Obata, Ryoichiro Doi, Yasumasa Hashimoto, Mitsutoshi Ishii, Hiromi Sakai, Naoto Matsuo, Daisuke Taniguchi, Takashi Suematsu, Murray Lawn, Keitaro Matsumoto, Takuro Miyazaki, Takeshi Nagayasu

Lung transplantation is the last option for the treatment of end stage chronic lung disorders. Because the shortage of donor lung organs represents the main hurdle, lung regeneration has been considered to overcome this hurdle. Recellularization of decellularized organ scaffold is a promising option for organ regeneration. Although detergents are ordinarily used for decellularization, other approaches are possible. Here we used high alkaline (pH12) sodium hydroxide (NaOH)-PBS solution without detergents for lung decellularization and compared the efficacy on DNA elimination and ECM preservation with detergent based decellularization solutions CHAPS and SDS. Immunohistochemical image analysis showed that cell components were removed by NaOH solution as well as other detergents. A Collagen and GAG assay showed that the collagen reduction of the NaOH group was comparable to that of the CHAPS and SDS groups. However, DNA reduction was more significant in the NaOH group than in other groups (p < 0.0001). The recellularization of HUVEC revealed cell attachment was not inferior to that of the SDS group. Ex vivo functional analysis showed 100% oxygen ventilation increased oxygen partial pressure as artificial hemoglobin vesicle-PBS solution passed through regenerated lungs in the SDS or NaOH group. It was concluded that the NaOH-PBS based decellularization solution was comparable to ordinal decellularizaton solutions and competitive in cost effectiveness and residues in the decellularized scaffold negligible, thus providing another potential option to detergent for future clinical usage.

肺移植是治疗终末期慢性肺疾病的最后选择。由于供体肺器官的短缺是主要障碍,肺再生被认为是克服这一障碍的方法。脱细胞器官支架的再细胞化是一种很有前途的器官再生方法。虽然去污剂通常用于脱细胞,但其他方法也是可能的。本研究采用高碱性(pH12)氢氧化钠(NaOH)-PBS无洗涤剂溶液进行肺脱细胞,并与以洗涤剂为基础的脱细胞溶液CHAPS和SDS对DNA去除和ECM保存的效果进行比较。免疫组织化学图像分析显示,细胞成分被NaOH溶液和其他洗涤剂去除。胶原蛋白和GAG分析显示,NaOH组的胶原蛋白减少量与CHAPS和SDS组相当。然而,NaOH组的DNA减少比其他组更显著(p < 0.0001)。HUVEC的再细胞化结果显示,其细胞附着力不逊于SDS组。体外功能分析显示,SDS组或NaOH组人工血红蛋白囊泡- pbs溶液通过再生肺时,100%氧通气使氧分压升高。结论是,基于NaOH-PBS的脱细胞溶液与普通脱细胞溶液相当,在成本效益和脱细胞支架残留物方面具有竞争力,从而为未来的临床使用提供了另一种潜在的洗涤剂选择。
{"title":"Sodium hydroxide based non-detergent decellularizing solution for rat lung.","authors":"Hideyori Sengyoku,&nbsp;Tomoshi Tsuchiya,&nbsp;Tomohiro Obata,&nbsp;Ryoichiro Doi,&nbsp;Yasumasa Hashimoto,&nbsp;Mitsutoshi Ishii,&nbsp;Hiromi Sakai,&nbsp;Naoto Matsuo,&nbsp;Daisuke Taniguchi,&nbsp;Takashi Suematsu,&nbsp;Murray Lawn,&nbsp;Keitaro Matsumoto,&nbsp;Takuro Miyazaki,&nbsp;Takeshi Nagayasu","doi":"10.1080/15476278.2018.1462432","DOIUrl":"https://doi.org/10.1080/15476278.2018.1462432","url":null,"abstract":"<p><p>Lung transplantation is the last option for the treatment of end stage chronic lung disorders. Because the shortage of donor lung organs represents the main hurdle, lung regeneration has been considered to overcome this hurdle. Recellularization of decellularized organ scaffold is a promising option for organ regeneration. Although detergents are ordinarily used for decellularization, other approaches are possible. Here we used high alkaline (pH12) sodium hydroxide (NaOH)-PBS solution without detergents for lung decellularization and compared the efficacy on DNA elimination and ECM preservation with detergent based decellularization solutions CHAPS and SDS. Immunohistochemical image analysis showed that cell components were removed by NaOH solution as well as other detergents. A Collagen and GAG assay showed that the collagen reduction of the NaOH group was comparable to that of the CHAPS and SDS groups. However, DNA reduction was more significant in the NaOH group than in other groups (p < 0.0001). The recellularization of HUVEC revealed cell attachment was not inferior to that of the SDS group. Ex vivo functional analysis showed 100% oxygen ventilation increased oxygen partial pressure as artificial hemoglobin vesicle-PBS solution passed through regenerated lungs in the SDS or NaOH group. It was concluded that the NaOH-PBS based decellularization solution was comparable to ordinal decellularizaton solutions and competitive in cost effectiveness and residues in the decellularized scaffold negligible, thus providing another potential option to detergent for future clinical usage.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2018.1462432","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36211225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 24
Rebuilding a better home for transplanted islets. 为移植的胰岛重建一个更好的家园。
IF 2.3 4区 生物学 Q2 Medicine Pub Date : 2018-01-01 Epub Date: 2018-09-25 DOI: 10.1080/15476278.2018.1517509
Daniel M Tremmel, Jon S Odorico

Diabetes can be treated with β cell replacement therapy, where a patient is transplanted with cadaveric human islets to restore glycemic control. Despite this being an effective treatment, the process of isolating islets from the pancreas requires collagenase digestion which disrupts the islet extracellular matrix (ECM) and activates anoikis-mediated apoptosis. To improve islet survival in culture and after transplantation, the islet microenvironment may be enhanced with the addition of ECM components which are lost during isolation. Furthermore, novel β cell replacement strategies, such as stem cell-derived beta cell (SCβC) treatments or alternative transplant sites and devices, could benefit from a better understanding of how β cells interact with ECM. In this mini-review, we discuss the current understanding of the pancreas and islet ECM composition and review decellularization approaches to generate a native pancreatic ECM scaffold for use in both islet and SCβC culture and transplantation.

糖尿病可以用β细胞替代疗法治疗,将患者的尸体胰岛移植以恢复血糖控制。尽管这是一种有效的治疗方法,但从胰腺中分离胰岛的过程需要胶原酶消化,这会破坏胰岛细胞外基质(ECM)并激活anoiki介导的细胞凋亡。为了提高胰岛在培养和移植后的存活率,可以通过添加在分离过程中丢失的ECM成分来改善胰岛微环境。此外,新的β细胞替代策略,如干细胞衍生β细胞(SCβC)治疗或替代移植部位和设备,可以从更好地了解β细胞如何与ECM相互作用中受益。在这篇小型综述中,我们讨论了目前对胰腺和胰岛ECM组成的理解,并综述了脱细胞方法,以产生用于胰岛和SCβC培养和移植的天然胰腺ECM支架。
{"title":"Rebuilding a better home for transplanted islets.","authors":"Daniel M Tremmel,&nbsp;Jon S Odorico","doi":"10.1080/15476278.2018.1517509","DOIUrl":"https://doi.org/10.1080/15476278.2018.1517509","url":null,"abstract":"<p><p>Diabetes can be treated with β cell replacement therapy, where a patient is transplanted with cadaveric human islets to restore glycemic control. Despite this being an effective treatment, the process of isolating islets from the pancreas requires collagenase digestion which disrupts the islet extracellular matrix (ECM) and activates anoikis-mediated apoptosis. To improve islet survival in culture and after transplantation, the islet microenvironment may be enhanced with the addition of ECM components which are lost during isolation. Furthermore, novel β cell replacement strategies, such as stem cell-derived beta cell (SCβC) treatments or alternative transplant sites and devices, could benefit from a better understanding of how β cells interact with ECM. In this mini-review, we discuss the current understanding of the pancreas and islet ECM composition and review decellularization approaches to generate a native pancreatic ECM scaffold for use in both islet and SCβC culture and transplantation.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2018.1517509","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36523726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Bioinspired liver scaffold design criteria. 仿生肝支架设计标准。
IF 2.3 4区 生物学 Q2 Medicine Pub Date : 2018-01-01 Epub Date: 2018-08-29 DOI: 10.1080/15476278.2018.1505137
Giorgio Mattei, Chiara Magliaro, Andrea Pirone, Arti Ahluwalia

Maintaining hepatic functional characteristics in-vitro is considered one of the main challenges in engineering liver tissue. As hepatocytes cultured ex-vivo are deprived of their native extracellular matrix (ECM) milieu, developing scaffolds that mimic the biomechanical and physicochemical properties of the native ECM is thought to be a promising approach for successful tissue engineering and regenerative medicine applications. On the basis that the decellularized liver matrix represents the ideal design template for engineering bioinspired hepatic scaffolds, to derive quantitative descriptors of liver ECM architecture, we characterised decellularised liver matrices in terms of their biochemical, viscoelastic and structural features along with porosity, permeability and wettability. Together, these data provide a unique set of quantitative design criteria which can be used to generate guidelines for fabricating biomaterial scaffolds for liver tissue engineering. As proof-of-concept, we investigated hepatic cell response to substrate viscoelasticity. On collagen hydrogels mimicking decellularised liver mechanics, cells showed superior morphology, higher viability and albumin secretion than on stiffer and less viscous substrates. Although scaffold properties are generally inspired by those of native tissues, our results indicate significant differences between the mechano-structural characteristics of untreated and decellularised hepatic tissue. Therefore, we suggest that design rules - such as mechanical properties and swelling behaviour - for engineering biomimetic scaffolds be re-examined through further studies on substrates matching the features of decellularized liver matrices.

在体外维持肝功能特征被认为是肝组织工程的主要挑战之一。由于离体培养的肝细胞被剥夺了其天然细胞外基质(ECM)环境,开发模拟天然ECM生物力学和物理化学特性的支架被认为是成功应用组织工程和再生医学的一种很有前途的方法。基于脱细胞肝基质代表了工程化仿生肝支架的理想设计模板,为了推导肝ECM结构的定量描述符,我们对脱细胞肝基体的生物化学、粘弹性和结构特征以及孔隙率、渗透性和润湿性进行了表征。总之,这些数据提供了一套独特的定量设计标准,可用于制定用于肝组织工程的生物材料支架的制造指南。作为概念的证明,我们研究了肝细胞对底物粘弹性的反应。在模拟脱细胞肝脏力学的胶原水凝胶上,细胞比在更硬、粘性更小的基质上表现出更好的形态、更高的活力和白蛋白分泌。尽管支架的特性通常受到天然组织的启发,但我们的研究结果表明,未处理和脱细胞肝组织的机械结构特征之间存在显著差异。因此,我们建议通过对与脱细胞肝基质特征相匹配的基质的进一步研究,重新检验工程仿生支架的设计规则,如机械性能和溶胀行为。
{"title":"Bioinspired liver scaffold design criteria.","authors":"Giorgio Mattei,&nbsp;Chiara Magliaro,&nbsp;Andrea Pirone,&nbsp;Arti Ahluwalia","doi":"10.1080/15476278.2018.1505137","DOIUrl":"10.1080/15476278.2018.1505137","url":null,"abstract":"<p><p>Maintaining hepatic functional characteristics in-vitro is considered one of the main challenges in engineering liver tissue. As hepatocytes cultured ex-vivo are deprived of their native extracellular matrix (ECM) milieu, developing scaffolds that mimic the biomechanical and physicochemical properties of the native ECM is thought to be a promising approach for successful tissue engineering and regenerative medicine applications. On the basis that the decellularized liver matrix represents the ideal design template for engineering bioinspired hepatic scaffolds, to derive quantitative descriptors of liver ECM architecture, we characterised decellularised liver matrices in terms of their biochemical, viscoelastic and structural features along with porosity, permeability and wettability. Together, these data provide a unique set of quantitative design criteria which can be used to generate guidelines for fabricating biomaterial scaffolds for liver tissue engineering. As proof-of-concept, we investigated hepatic cell response to substrate viscoelasticity. On collagen hydrogels mimicking decellularised liver mechanics, cells showed superior morphology, higher viability and albumin secretion than on stiffer and less viscous substrates. Although scaffold properties are generally inspired by those of native tissues, our results indicate significant differences between the mechano-structural characteristics of untreated and decellularised hepatic tissue. Therefore, we suggest that design rules - such as mechanical properties and swelling behaviour - for engineering biomimetic scaffolds be re-examined through further studies on substrates matching the features of decellularized liver matrices.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2018.1505137","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36441030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
期刊
Organogenesis
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1