Tracheal reconstruction after extensive resection remains a challenge in thoracic surgery. Aortic allograft has been proposed to be a potential tracheal substitute. However, clinically, its application is limited for the shortage of autologous aortic segment. Whether xenogeneic aortic biosheets can be used as tracheal substitutes remains unknown. In the present study, we investigated the possibility in dog model. The results show that all dogs were survived without airway symptoms at 6 months after tracheal reconstruction with gently decellularized bovine carotid arteries. In the interior of engrafted areas, grafted patch integrated tightly with the residual native tracheal tissues and tracheal defects in the lumen were repaired smoothly without obvious inflammation, granulation, anastomotic leakage, or stenosis. In addition, histological and scanning electron microscopy examination showed that grafted patches were covered with ciliated columnar epithelium similar to epithelium in native trachea, which indicated successfully re-epithelialization of decellularized bovine carotid arteries in dogs. These findings provide preclinical investigation of xenogeneic aortic biosheets in serving as tracheal substitute in a dog model, which proposes that decellularized biosheets of bovine carotid may be a potential material for bioartificial tracheal graft.
Alopecia has several causes, but its relationship with ischemia/hypoxia has not yet been investigated in detail. In this study, we studied the changes of hair follicles induced by ischemia and potential effects of normobaric hyperoxygenation (NBO) on the hair cycle and growth. We found that skin ischemia reduced hair growth rate, hair shaft size, and its pigmentation in the anagen phase of mice, which may reflect an aspect of pathophysiology of hair loss (alopecia) and depigmentation (gray/white hairs). Hyperoxygenation increased hair growth rate in organ culture of both human and murine hair follicles. Systemic NBO promoted hair growth in early anagen and mid-anagen, and delayed catagen onset in mice. However, telogen-to-anagen transition was not affected by NBO as far as non-ischemic skin is concerned. The results of this study indicated that the hair follicle is very sensitive to oxygen tension and oxygen tension affects the regulation of hair growth and cycle in vitro and in vivo. It was suggested that systemic NBO can be safely applied for a long period and can be a noninvasive therapeutic approach to alter hair growth and cycle by manipulating the microenvironment of hair follicles.
Acellular liver scaffolds (ALS) have arisen as potential candidates for transplantation. Until now, all reports involving ALS transplantation failed in surgical method descriptions and do not offer support to scientists to reproduce the procedures used in experimental microsurgery to make the results comparable to literature. To overcome the lack of detail information, we described surgical steps details to perform heterotopic and partial orthotopic surgical models to promote ALS transplantation. After preservation and vessel cannulation steps, the liver grafts were decellularized. In addition, ex vivo blood perfusion tests were performed to obtain a successful anticoagulation treatment prior in vivo transplantation. Then, methods of partial liver resection, combination of hand-suture and cuff techniques to complete end-to-end anastomosis between the scaffold and the recipient animal were performed. These procedures which take 30-60 min and were efficient to allow acellular liver scaffold viability and recellularization of different types of cell post-surgery. In conclusion, our methods are practical and simple promising approach that provides the opportunity to investigate ways to achieve sufficient liver function post-transplantation in vivo.
The morphogenesis of the mammalian secondary plate is a series of highly dynamic developmental process, including the palate shelves vertical outgrowth, elevation to the horizontal plane and complete fusion in the midline. Extracellular matrix (ECM) proteins not only form the basic infrastructure for palatal mesenchymal cells to adhere via integrins but also interact with cells to regulate their functions such as proliferation and differentiation. ECM remodeling is essential for palatal outgrowth, expansion, elevation, and fusion. Multiple signaling pathways important for palatogenesis such as FGF, TGF β, BMP, and SHH remodels ECM dynamics. Dysregulation of ECM such as HA synthesis or ECM breakdown enzymes MMPs or ADAMTS causes cleft palate in mouse models. A better understanding of ECM remodeling will contribute to revealing the pathogenesis of cleft palate.
The increasing demand for organs for transplantation necessitates the development of substitutes to meet the structural and physiological functions. Tissue decellularization and recellularization aids in retaining the three-dimensional integrity, biochemical composition, tissue ultra-structure, and mechanical behavior, which makes them functionally suitable for organ transplantation. Herein, we attempted to rebuild functional liver grafts in small animal model (Wistar rat) with a potential of translation. A soft approach was adopted using 0.1% SDS (Sodium Dodecyl Sulfate) for decellularization and primary hepatocytes were used as a potential cell source for recellularization. The decellularization process was evaluated and confirmed using histology, DNA content, ultra-structure analysis. The resultant scaffold was re-seeded with the rat hepatocytes and their biocompatibility was assessed by its metabolic functions and gene expression. The structural components of the Extracellular matrix (ECM) (Laminins, Collagen type I, Reticulins) were conserved and the liver cell-specific proteins like CK-18, alpha-fetoprotein, albumin were expressed in the recellularized scaffold. The functionality and metabolic activity of the repopulated scaffold were evident from the albumin and urea production. Expression of Cytokeratin-19 (CK-19), Glucose 6-Phosphatase (G6P), Albumin, Gamma Glutamyl Transferase (GGT) genes has distinctly confirmed the translational signals after the repopulation process. Our study clearly elucidates that the native extracellular matrix of rat liver can be utilized as a scaffold for effective recellularization for whole organ regeneration.
Human amniotic membrane (HAM) is a biomaterial with biological properties beneficial to tissue repair, serving as a substrate for cell cultivation. Irradiation is used for tissue sterilization, but can damage the HAM structure. The objective of this paper was to construct a skin substitute, composed of human keratinocytes cultured on glycerolated HAMs, and to evaluate the influence radiation on subsequent cell culture growth. Four batches of HAMs were glycerolated, and half of them were radio-sterilzed with 25 kGy. Non-irradiated glycerolated HAM (ni-HAM) and irradiated glycerolated HAM (i-HAM) samples were then de-epithelized and analyzed using optical microscopy (Picrossirius staining), immunofluorescence and electron microscopy. Subsequently, keratinocytes were cultured on ni- and i-HAMs, and either immersed or positioned at the air-liquid interface. The basement membranes of the ni-HAM group remained intact following de-epithelialization, whereas the i-HAM group displayed no evidence or remnant presence of these membranes. Concerning the keratinocyte cultures, the ni-HAM substrate promoted the growth of multi-layered and differentiated epithelia. Keratinocytes cultured on i-HAM formed epithelium composed of three layers of stratification and discrete cell differentiation. The glycerolated HAM was compatible with cultured epithelia, demonstrating its potential as a skin substitute. Irradiation at 25 kGy caused structural damage to the amnion.