Delayed or failed bone healing is a significant clinical challenge worldwide. Bone marrow mesenchymal stem cells (BMSCs) offer a promising approach for improving fracture healing. Isomangiferin, a xanthone C-glucoside, is known for its pharmacological activities, but its role in fracture healing remains unclear. In this study, we investigated the effects of isomangiferin on BMSCs under oxidative stress conditions induced by hydrogen peroxide (H2O2). Our results showed that isomangiferin promotes osteogenic differentiation and migration of H2O2-treated BMSCs, reduces apoptosis and reactive oxygen species production, and activates the AMP-activated protein kinase/acetyl-CoA carboxylase (AMPK/ACC) pathway. These findings suggest that isomangiferin may be a potential therapeutic agent for enhancing bone healing by modulating BMSC function.
Sleep is crucial for wellness, and emerging research reveals a profound connection to gut microbiota. This review explores the bidirectional relationship between gut microbiota and sleep, exploring the mechanisms involved and the therapeutic opportunities it presents. The gut-brain axis serves as a conduit for the crosstalk between gut microbiota and the central nervous system, with dysbiosis in the microbiota impairing sleep quality and vice versa. Diet, circadian rhythms, and immune modulation all play a part. Specific gut bacteria, like Lactobacillus and Bifidobacterium, enhance sleep through serotonin and gamma-aminobutyric acid production, exemplifying direct microbiome influence. Conversely, sleep deprivation reduces beneficial bacteria, exacerbating dysbiosis. Probiotics, prebiotics, postbiotics, and fecal transplants show therapeutic potential, backed by animal and human research, yet require further study on safety and long-term effects. Unraveling this intricate link paves the way for tailored sleep therapies, utilizing microbiome manipulation to improve sleep and health. Accelerated research is essential to fully tap into this promising field for sleep disorder management.
Catfish (Clarias magur) is a popular freshwater fish food worldwide. The processing of this fish generates a significant amount of waste, mainly in the form of viscera, which constitutes around 10-12% of the fish's total weight. This study was focused on extracting polyunsaturated fatty acid (PUFA)-rich oil from catfish viscera, aiming to enhance the extraction process and make the production of oil and handling of fish byproducts more cost-effective. The wet reduction method, a solvent-free approach, was used for extraction, with yield optimization done via the Box-Behnken design. The resulting oil was evaluated for its oxidative quality and chemical characteristics. The optimal conditions for the wet rendering process were as follows: viscera to water ratio, 1:0.5 (w/v); temperature, 90℃; and time, 20 min, yielding 12.40 g/100 g of oil. The oil extracted under optimal wet rendering conditions had quality and oxidative stability comparable to solvent extraction and fewer secondary oxidation compounds. This oil had a higher PUFA content, specifically a 4:1 ratio of omega 6 to omega 3. Such oil, derived from catfish viscera, is suitable for the food industry due to its solvent-free extraction method.
Tubular adenomas of the breast are rare benign epithelium-derived tumours, and so few cases have been reported. Most often, the tumours are palpable, well-circumscribed masses in women of childbearing age and are commonly diagnosed as fibroadenomas both clinically and radiographically. We describe the case of a premenopausal patient with tubular adenoma of the breast who presented with small nipple discharge and a palpable breast mass. On imaging, tubular adenomas are practically indistinguishable from fibroadenomas and most commonly present as oval, circumscribed masses that are hypoechoic on ultrasound. On magnetic resonance imaging (MRI), tubular adenomas may present as lobulated or oval masses with a hyperintense signal on T2-weighted imaging and inhomogeneous internal enhancement on dynamic contrast-enhanced MRI. Pathologic findings after resection of the mass confirmed the diagnosis of tubular adenoma.
Scientific fertilization is an important technical means of achieving high and stable peanut yields. Using soil testing and formula fertilization, the "3414" optimal regression design was used and included 14 nitrogen (N), phosphorus (P), and potassium (K) fertilization treatments. Ternary quadratic functions of the fertilizer effect were established according to three-season field experiments and the regression analysis of fertilizer-yield function was performed to explore the optimal fertilizer application mode and ratio for peanuts under mulched drip irrigation (MDI), and a suitable fertilizer application system was established. The ternary quadratic equation relating peanut yield (y) and the fertilizer application rates of N (N), P (P2O5), and K (K2O) was obtained after fitting, i.e., y = 2912.528 + 21.432N + 16.324P + 6.181K - 0.051N2 - 0.109P2 - 0.061K2 + 0.017NP + 0.023NK + 0.086PK, and significance analysis and typicality assessment were performed. The model R 2 was 0.9709, both values are extremely significant (p < 0.01), which indicates that the obtained ternary quadratic fertilizer effect function is typical and could be used for statistical purposes and fertilization recommendations. Three quadratic fertilizer effect functions were obtained. Among them, the equation for K is extremely significant, and the equations of N and P are significant. According to the assumption that the marginal yield is zero and the marginal profit is zero, the fertilizer application rate with the maximum yield, the fertilizer application rate with the best economic benefits, and the corresponding yields were obtained. The optimal fertilizer application rate predicted by the ternary quadratic fertilizer effect function was relatively high, so the three quadratic fertilizer effect functions were used for prediction. Under the test conditions, the recommended fertilizer application rates for peanuts under MDI are 256.6 kg N per ha, 164.2 kg P2O5 per ha, and 213.2 kg K2O per ha, the recommended fertilization ratio is 1:0.64:0.83, and the recommended ratio under formula fertilization is 23:15:19. The study has developed a data-based decision support system for Xinjiang drip-irrigated peanut, which assists farmers and agricultural managers in making more scientific and precise fertilization decisions based on the specific growth requirements of the crops and soil conditions. This evidence-based methodology enhances the precision of agricultural management, which is conducive to increasing crop yields while reducing resource wastage and environmental impact. However, multipoint and multiyear experiments are still needed to ensure that the findings are adaptable to the diverse soil conditions and fluctuating climate patterns that may be encountered in practice.