首页 > 最新文献

Nonferrous Metals最新文献

英文 中文
Sorption concentration of ruthenium from sulfuric solutions 钌在硫酸溶液中的吸附浓度
IF 1.5 Q3 Materials Science Pub Date : 2019-06-28 DOI: 10.17580/NFM.2019.01.02
I. Zotova, S. Fokina, A. Boduen, G. Petrov
{"title":"Sorption concentration of ruthenium from sulfuric solutions","authors":"I. Zotova, S. Fokina, A. Boduen, G. Petrov","doi":"10.17580/NFM.2019.01.02","DOIUrl":"https://doi.org/10.17580/NFM.2019.01.02","url":null,"abstract":"","PeriodicalId":19653,"journal":{"name":"Nonferrous Metals","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2019-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43914457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Systems and aids of mathematical modeling of the alumina refinery methods: problems and solutions 氧化铝精炼厂方法数学建模系统与辅助工具:问题与解决方案
IF 1.5 Q3 Materials Science Pub Date : 2019-06-28 DOI: 10.17580/NFM.2019.01.07
V. Golubev, D. Chistiakov, V. Brichkin, T. Litvinova
{"title":"Systems and aids of mathematical modeling of the alumina refinery methods: problems and solutions","authors":"V. Golubev, D. Chistiakov, V. Brichkin, T. Litvinova","doi":"10.17580/NFM.2019.01.07","DOIUrl":"https://doi.org/10.17580/NFM.2019.01.07","url":null,"abstract":"","PeriodicalId":19653,"journal":{"name":"Nonferrous Metals","volume":"18 8","pages":""},"PeriodicalIF":1.5,"publicationDate":"2019-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41307298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Effect of Ca and Zn alloying on the structure and properties of Al – 2.5%Mg alloy Ca和Zn合金化对Al - 2.5%Mg合金组织和性能的影响
IF 1.5 Q3 Materials Science Pub Date : 2019-06-28 DOI: 10.17580/NFM.2019.01.04
E. A. Naumova, M. Petrzhik, P. Shurkin, A. A. Sokorev
{"title":"Effect of Ca and Zn alloying on the structure and properties of Al – 2.5%Mg alloy","authors":"E. A. Naumova, M. Petrzhik, P. Shurkin, A. A. Sokorev","doi":"10.17580/NFM.2019.01.04","DOIUrl":"https://doi.org/10.17580/NFM.2019.01.04","url":null,"abstract":"","PeriodicalId":19653,"journal":{"name":"Nonferrous Metals","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2019-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47802923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Mathematical modelling of thermal and physical-chemical processes during sintering 烧结过程中热物理化学过程的数学模型
IF 1.5 Q3 Materials Science Pub Date : 2018-12-28 DOI: 10.17580/NFM.2018.02.09
S. V. Pancnehko, V. Bobkov, A. Fedulov, M. Chernovalova
{"title":"Mathematical modelling of thermal and physical-chemical processes during sintering","authors":"S. V. Pancnehko, V. Bobkov, A. Fedulov, M. Chernovalova","doi":"10.17580/NFM.2018.02.09","DOIUrl":"https://doi.org/10.17580/NFM.2018.02.09","url":null,"abstract":"","PeriodicalId":19653,"journal":{"name":"Nonferrous Metals","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2018-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42323147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Investigation of the structure and properties of eutectic alloys of the Al – Ca – Ni system containing REM 含REM的Al–Ca–Ni系共晶合金的结构和性能研究
IF 1.5 Q3 Materials Science Pub Date : 2018-12-28 DOI: 10.17580/NFM.2018.02.05
E. A. Naumova, T. Akopyan, N. Letyagin, M. Vasina
This study investigated the eutectic alloys based on aluminum containing small amount of rare earth metals (REM): 2La; 6Ca 3Ni – 2Pr. The compositions of the alloys were selected on the basis of previous studies of ternary Al – Ca – Ni and Al – Ni – Ce systems, taking into account the similarity of the structure of the Al – REM binary systems. Melting was carried out in an induc- tion furnace by RELTEC. Alloys were prepared on the basis of aluminum A99. Annealing of the samples at 550 о C for three hours was carried out in SNOL 8.2/1100 and SNOL 58/350 muffle electric furnaces. Calculation of Al – Ca – Ni – Ce systems at 6% Ca by means of Thermo-Calc (databases TTAL5, TCAL4), showed that primary crystals of the Al 3 Ni phase should be formed in the alloys of the selected composi- tions, however these crystals were not present. Using optical and scanning electron microscopy, the structure of alloys in the as-cast and heat-treated states was studied. It is established that in the process of non-equilibrium crystallization, the boundary of the phase region of existence of the aluminum solid solution significantly expands. Using micro- X -ray spectral analysis (MRSA), it was determined that during the equilibrium crystallization conditions in the Al – Ca – Ni – Ce system, rather than the binary Al 3 Ni the ternary Al 9 Ni 2 Ca phase is formed. The possibility of applying hot rolling to Al – Ca – Ni based alloys addi- tionally alloyed with Ce, La and Pr has been established, and the mechanical properties of hot-rolled samples have been obtained. Hot rolling was carried out at 500 o C. Rolling was carried out in five passes, the total degree of deformation in all cases was about 70%. Samples of the Al – 6Ca – 3Ni – 2Ce alloy were additionally rolled at a temperature of 550 о C. On the basis of a comparison of the mechanical properties and the microstructure of rolled products, it is assumed that the best mechanical properties are possessed by the samples of those alloys in which intermetallics have the smallest dimensions and are most evenly distributed in an aluminum solid solution. In particular, this demonstrates the Al – 6Ca – 3Ni – 2La alloy rolled at 500 o C and the Al – 6Ca – 3Ni – 2Ce alloy rolled at 550 o C. Zr) and estimating their mechanical properties. It is shown that metal powders are notable for good compactability on both single-action compacting and isostatic forming. Cold iso- static forming under pressure of 200 MPa permits to obtain briquettes with relative density of 65–68%. Sintering the briquettes at a temperature of 1873 K provides blank formation with porosity of 16 and 8% for Ti – 30.1Nb – 17.4Ta, Ti – 33.2Nb – 8.6Zr (wt.%) alloys, respectively. Sintering in vacuum of 1.33 Pa leads to formation of a gas-filled layer with heightened microhardness to a depth of 8 mm. Sintering in vacuum of 1.33·10 –2 Pa allows to avoid this phenomenon. Hot isostatic pressing of the sintered blanks at a temperature of 1193 K and pressure of 150 M
研究了铝基低共晶合金中含有少量稀土金属(REM):2La;6Ca 3Ni–2Pr。合金的成分是在先前对Al–Ca–Ni和Al–Ni–Ce三元体系的研究基础上选择的,同时考虑到Al–REM二元体系结构的相似性。熔化是由RELTEC在工业炉中进行的。合金是在A99铝的基础上制备的。样品在SNOL 8.2/1100和SNOL 58/350马弗电炉中在550℃下退火3小时。通过Thermo Calc(数据库TTAL5、TCAL4)对6%Ca下的Al–Ca–Ni–Ce体系的计算表明,在选定成分的合金中应形成Al 3 Ni相的初级晶体,但这些晶体并不存在。利用光学显微镜和扫描电子显微镜研究了合金在铸态和热处理状态下的组织。研究表明,在非平衡结晶过程中,铝固溶体存在相区的边界显著扩展。利用显微X射线光谱分析(MRSA)确定,在Al–Ca–Ni–Ce体系的平衡结晶条件下,形成的不是二元Al 3 Ni,而是三元Al 9 Ni 2 Ca相。建立了将热轧应用于添加Ce、La和Pr的Al–Ca–Ni基合金的可能性,并获得了热轧样品的力学性能。热轧在500℃下进行。轧制分五道次进行,所有情况下的总变形程度约为70%。在550℃的温度下对Al–6Ca–3Ni–2Ce合金样品进行了额外的轧制。在比较轧制产品的机械性能和微观结构的基础上,假设金属间化合物在铝固溶体中具有最小尺寸和最均匀分布的那些合金的样品具有最佳的机械性能。特别是,这证明了在500°C下轧制的Al–6Ca–3Ni–2La合金和在550°C下滚动的Al–6Ca–3Ti–2Ce合金(Zr),并估计了它们的机械性能。结果表明,金属粉末在单作用压实和等静压成形中都具有良好的压实性能。在200兆帕的压力下进行冷等静压成型可以获得相对密度为65–68%的压块。对于Ti–30.1Nb–17.4Ta、Ti–33.2Nb–8.6Zr(wt.%)合金,在1873K的温度下烧结压块可提供孔隙率分别为16%和8%的坯料。在1.33 Pa的真空中烧结会形成一层显微硬度高达8 mm的充气层。在1.33·10–2 Pa的真空下烧结可以避免这种现象。在1193K的温度和150MPa的压力下对烧结坯件进行热等静压,保证获得实际上无孔的材料(1%的孔)。确定Ti–30.1Nb–17.4Ta、Ti–33.2Nb–8.6Zr(wt.%)在烧结后的屈服应力和杨氏模量分别为:(cid:11)0.2=444±7MPa,E=57±5GPa和(cid:11)0.2=570±29MPa,E=62±5GPa。HIP后:(cid:11)0.2=791±16 MPa,E=87±4 GPa和(cid:11)0.2/750±50 MPa,E=81±1 GPa。
{"title":"Investigation of the structure and properties of eutectic alloys of the Al – Ca – Ni system containing REM","authors":"E. A. Naumova, T. Akopyan, N. Letyagin, M. Vasina","doi":"10.17580/NFM.2018.02.05","DOIUrl":"https://doi.org/10.17580/NFM.2018.02.05","url":null,"abstract":"This study investigated the eutectic alloys based on aluminum containing small amount of rare earth metals (REM): 2La; 6Ca 3Ni – 2Pr. The compositions of the alloys were selected on the basis of previous studies of ternary Al – Ca – Ni and Al – Ni – Ce systems, taking into account the similarity of the structure of the Al – REM binary systems. Melting was carried out in an induc- tion furnace by RELTEC. Alloys were prepared on the basis of aluminum A99. Annealing of the samples at 550 о C for three hours was carried out in SNOL 8.2/1100 and SNOL 58/350 muffle electric furnaces. Calculation of Al – Ca – Ni – Ce systems at 6% Ca by means of Thermo-Calc (databases TTAL5, TCAL4), showed that primary crystals of the Al 3 Ni phase should be formed in the alloys of the selected composi- tions, however these crystals were not present. Using optical and scanning electron microscopy, the structure of alloys in the as-cast and heat-treated states was studied. It is established that in the process of non-equilibrium crystallization, the boundary of the phase region of existence of the aluminum solid solution significantly expands. Using micro- X -ray spectral analysis (MRSA), it was determined that during the equilibrium crystallization conditions in the Al – Ca – Ni – Ce system, rather than the binary Al 3 Ni the ternary Al 9 Ni 2 Ca phase is formed. The possibility of applying hot rolling to Al – Ca – Ni based alloys addi- tionally alloyed with Ce, La and Pr has been established, and the mechanical properties of hot-rolled samples have been obtained. Hot rolling was carried out at 500 o C. Rolling was carried out in five passes, the total degree of deformation in all cases was about 70%. Samples of the Al – 6Ca – 3Ni – 2Ce alloy were additionally rolled at a temperature of 550 о C. On the basis of a comparison of the mechanical properties and the microstructure of rolled products, it is assumed that the best mechanical properties are possessed by the samples of those alloys in which intermetallics have the smallest dimensions and are most evenly distributed in an aluminum solid solution. In particular, this demonstrates the Al – 6Ca – 3Ni – 2La alloy rolled at 500 o C and the Al – 6Ca – 3Ni – 2Ce alloy rolled at 550 o C. Zr) and estimating their mechanical properties. It is shown that metal powders are notable for good compactability on both single-action compacting and isostatic forming. Cold iso- static forming under pressure of 200 MPa permits to obtain briquettes with relative density of 65–68%. Sintering the briquettes at a temperature of 1873 K provides blank formation with porosity of 16 and 8% for Ti – 30.1Nb – 17.4Ta, Ti – 33.2Nb – 8.6Zr (wt.%) alloys, respectively. Sintering in vacuum of 1.33 Pa leads to formation of a gas-filled layer with heightened microhardness to a depth of 8 mm. Sintering in vacuum of 1.33·10 –2 Pa allows to avoid this phenomenon. Hot isostatic pressing of the sintered blanks at a temperature of 1193 K and pressure of 150 M","PeriodicalId":19653,"journal":{"name":"Nonferrous Metals","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2018-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47604513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Investigation of the inherent magnetic field influence on corrosion resistance of Nd – Fe – B permanent magnets 固有磁场对Nd–Fe–B永磁体耐腐蚀性影响的研究
IF 1.5 Q3 Materials Science Pub Date : 2018-12-28 DOI: 10.17580/nfm.2018.02.04
V. Tarasov, E. Gorelikov, A. Kutepov, O. Khokhlova
{"title":"Investigation of the inherent magnetic field influence on corrosion resistance of Nd – Fe – B permanent magnets","authors":"V. Tarasov, E. Gorelikov, A. Kutepov, O. Khokhlova","doi":"10.17580/nfm.2018.02.04","DOIUrl":"https://doi.org/10.17580/nfm.2018.02.04","url":null,"abstract":"","PeriodicalId":19653,"journal":{"name":"Nonferrous Metals","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2018-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46303968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of the phase composition and the structure of aluminum alloys with increased content of impurities 杂质含量增加的铝合金的相组成和结构分析
IF 1.5 Q3 Materials Science Pub Date : 2018-12-28 DOI: 10.17580/NFM.2018.02.07
Y. Mansurov, J. Rakhmonov
The development of fundamental knowledge that allows making proper correlation among the chemical composition, structure and properties of non-ferrous alloys is a priority task for the metallurgy of nonferrous metals and alloys, as this knowledge makes the main contribution to the development of this subject and is a powerful tool for expanding the areas of their application. A variant of the establishment of regularities in metal science is the study of phase equilibria, transformations in the temperature range and compositions of metallic systems. In the scientific literature there is a lot of information on the results of studies of twoand three-component alloys in order to construct equilibrium phase diagrams. However, the non-equilibrium crystallization of alloys, and thus, the non-equilibrium phase diagrams are of greater practical interest from the point of view of industrial production. Taking into account that the compositions of industrial alloys, as a rule, are multi-component, it can be stated that there is no reliable information on multi-component systems in the literature. Industry is interested in the possibility of using alloys with low cost, however, with high performance properties, which is possible in the case of using chemical elements of technical purity, industrial waste or scrap for their preparation. First of all, it concerns aluminum alloys, as the volume of their consumption is the highest among alloys of non-ferrous metals. In addition, the number of applications made of these alloys is continuously growing. The purpose of this paper is to perform a comparative analysis of the non-equilibrium phase diagrams of aluminum-based alloys with an increased content of impurities in comparison with their equilibrium counterparts known from the published scientific literature. In the process of work, equilibrium and non-equilibrium phase diagrams of aluminum with basic alloying elements and the most frequent harmful impurities are constructed.
开发能够在有色金属合金的化学成分、结构和性能之间进行适当关联的基础知识是有色金属和合金冶金的优先任务,因为这些知识对这一学科的发展做出了主要贡献,是扩大其应用领域的有力工具。建立金属科学规律的一个变体是研究金属系统的相平衡、温度范围内的转变和组成。在科学文献中,有很多关于二元和三元合金研究结果的信息,以便构建平衡相图。然而,从工业生产的角度来看,合金的非平衡结晶以及非平衡相图具有更大的实际意义。考虑到工业合金的成分通常是多组分的,可以说文献中没有关于多组分系统的可靠信息。工业界对使用低成本、高性能合金的可能性感兴趣,然而,在使用技术纯度的化学元素、工业废物或废料进行制备的情况下,这是可能的。首先,它涉及铝合金,因为在有色金属合金中,铝合金的消费量最高。此外,由这些合金制成的应用的数量正在持续增长。本文的目的是对杂质含量增加的铝基合金的非平衡相图与已发表的科学文献中已知的平衡相图进行比较分析。在工作过程中,构造了铝与基本合金元素和最常见有害杂质的平衡和非平衡相图。
{"title":"Analysis of the phase composition and the structure of aluminum alloys with increased content of impurities","authors":"Y. Mansurov, J. Rakhmonov","doi":"10.17580/NFM.2018.02.07","DOIUrl":"https://doi.org/10.17580/NFM.2018.02.07","url":null,"abstract":"The development of fundamental knowledge that allows making proper correlation among the chemical composition, structure and properties of non-ferrous alloys is a priority task for the metallurgy of nonferrous metals and alloys, as this knowledge makes the main contribution to the development of this subject and is a powerful tool for expanding the areas of their application. A variant of the establishment of regularities in metal science is the study of phase equilibria, transformations in the temperature range and compositions of metallic systems. In the scientific literature there is a lot of information on the results of studies of twoand three-component alloys in order to construct equilibrium phase diagrams. However, the non-equilibrium crystallization of alloys, and thus, the non-equilibrium phase diagrams are of greater practical interest from the point of view of industrial production. Taking into account that the compositions of industrial alloys, as a rule, are multi-component, it can be stated that there is no reliable information on multi-component systems in the literature. Industry is interested in the possibility of using alloys with low cost, however, with high performance properties, which is possible in the case of using chemical elements of technical purity, industrial waste or scrap for their preparation. First of all, it concerns aluminum alloys, as the volume of their consumption is the highest among alloys of non-ferrous metals. In addition, the number of applications made of these alloys is continuously growing. The purpose of this paper is to perform a comparative analysis of the non-equilibrium phase diagrams of aluminum-based alloys with an increased content of impurities in comparison with their equilibrium counterparts known from the published scientific literature. In the process of work, equilibrium and non-equilibrium phase diagrams of aluminum with basic alloying elements and the most frequent harmful impurities are constructed.","PeriodicalId":19653,"journal":{"name":"Nonferrous Metals","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2018-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47015849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Influence of the shape of hydrogen-containing inclusions on the intergranular corrosion process of the Al – Si alloy system 含氢夹杂物形状对Al - Si合金晶间腐蚀过程的影响
IF 1.5 Q3 Materials Science Pub Date : 2018-12-28 DOI: 10.17580/NFM.2018.02.03
E. G. Partyko, M. I. Gubanova, D. V. Tolkachyova, V. Deev
{"title":"Influence of the shape of hydrogen-containing inclusions on the intergranular corrosion process of the Al – Si alloy system","authors":"E. G. Partyko, M. I. Gubanova, D. V. Tolkachyova, V. Deev","doi":"10.17580/NFM.2018.02.03","DOIUrl":"https://doi.org/10.17580/NFM.2018.02.03","url":null,"abstract":"","PeriodicalId":19653,"journal":{"name":"Nonferrous Metals","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2018-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45888629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
The tuyere in a protective shell to convert the nickel and copper mattes 保护壳中用于转换镍和铜垫的风口
IF 1.5 Q3 Materials Science Pub Date : 2018-12-28 DOI: 10.17580/NFM.2018.02.01
Y. Korol, S. Naboychenko
{"title":"The tuyere in a protective shell to convert the nickel and copper mattes","authors":"Y. Korol, S. Naboychenko","doi":"10.17580/NFM.2018.02.01","DOIUrl":"https://doi.org/10.17580/NFM.2018.02.01","url":null,"abstract":"","PeriodicalId":19653,"journal":{"name":"Nonferrous Metals","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2018-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49561949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Powder technology for manufacturing compact blanks of Ti – Nb – Ta, Ti – Nb – Zr alloys 制造Ti–Nb–Ta、Ti–Nb-Zr合金致密坯料的粉末技术
IF 1.5 Q3 Materials Science Pub Date : 2018-12-28 DOI: 10.17580/NFM.2018.02.06
A. Kasimtsev, Tula Russia Metsintez Llc, S. Yudin, S. Volodko, A. Alpatov
Non-ferrous Metals. 2018. No. 2. pp. 29–36 16. Aksenov A. A., Mansurov Yu. N., Ivanov D. O., Reva V. P., Kadyrova D. S., Shuvatkin R. K., Kim E. D. Mechanical Alloying of Secondary Raw Material for Foam Aluminum Production. Metallurgist. 2017. Vol. 61, Iss. 5–6. pp 475–484. 17. Thermo-Calc Software. Available at:www.thermocalc. com (accessed: 23.11.2018). 18. Khansen M., Anderko K. The structures of binary alloys. Vol. 1. Translated from English. Moscow : Metallurgizdat, 1962. 608 p. 19. Mondolfo L. F. Aluminum Alloys: Structure and Properties. Butterworths. London/Boston : Butterworth & Co Publishers Ltd., 1976. 971 p. 20. Moore D. M., Morris L. R. Superplastic aluminium alloy products and method of preparation. Patent UK, No. 1580281. 1978. 21. Moore D. M., Morris L. R. A new superplastic aluminum sheet alloy. Materials Science and Engineering. 1980. Vol. 43, No. 1. pp. 85–92. 22. Ilenko V. M. Superplasticity of eutectic alloys on the basis of aluminum-calcium system and development of materials for superplastic forming: Dissertation ... of Candidate of Engineering Sciences. Moscow : MISiS, 1985. 264 p. 23. Swaminathan K., Padmanabhan K. A. Tensile flow and fracture behaviour of a superplastic Al–Ca–Zn alloy. J. Mater. Sci. 1990. Vol. 25, No. 11. pp. 4579–4586. 24. Perez-Prado M. T., Cristina M. C., Ruano O. A., Gonza G. Microstructural evolution of annealed Al–5%Ca–5% Zn sheet alloy. J. Mater. Sci. 1997. Vol. 32. pp. 1313–1318. 25. Kono N., Tsuchida Y., Muromachi S., Watanabe H. Study of the AlCaZn ternary phase diagram. Light Metals. 1985. Vol. 35. pp. 574–580. 26. Belov N. A., Naumova E. A., Akopyan T. K. Eutectic alloys based on aluminum: new alloying systems. Moscow : “Ore and Metals” Publishing House, 2016. 256 p. 27. Rudnev V. S., Yarovaya T. P., Nedozorov P. M., Mansurov Y. N. Wear-resistant oxide coatings on aluminum alloy formed in borate and silicate aqueous electrolytes by plasma electrolytic oxidation. Protection of Metals and Physical Chemistry of Surfaces. 2017. Vol. 53, Iss. 3. pp. 466–474. 28. Rudnev V. S., Nedozorov P. M., Yarovaya T. P., Mansurov Yu. N. Local plasma and electrochemical oxygenating on the example of AMg5 (АМг5) alloy. Tsvetnye Metally. 2017. No. 1. pp. 59–64. DOI: 10.17580/tsm.2017.01.10 NFM
有色金属。2018年第2名。第29-3616页。Aksenov A.A.,Mansurov Yu。N.、Ivanov D.O.、Reva V.P.、Kadyrova D.S.、Shuvatkin R.K.、Kim E.D.泡沫铝生产用二次原料的机械合金化。冶金学家。2017年,第61卷,Iss。第475–484页,第5–6页。17.Thermo Calc软件。网址:www.therocalc.com(访问时间:2018年11月23日)。Khansen M.,Anderko K.二元合金的结构。第1卷。翻译自英语。莫斯科:冶金工业,1962年。608,第19页。Mondolfo L.F.铝合金:结构与性能。巴特沃斯。伦敦/波士顿:巴特沃斯出版社有限公司,1976年。971,第20页。Moore D.M.,Morris L.R.超塑铝合金产品和制备方法。英国专利号1580281。1978年。Moore D.M.,Morris L.R.一种新型超塑铝片合金。材料科学与工程。1980年,第43卷,第1期。第85-92页。22.Ilenko V.M.基于铝钙体系的共晶合金的超塑性和超塑成形材料的发展:论文。。。工程科学候选人。莫斯科:MISiS,1985年。264第23页。Swaminathan K.,Padmanabhan K.A.超塑Al–Ca–Zn合金的拉伸流动和断裂行为。J.Mater。科学。1990年,第25卷,第11期。第4579-4586页。24.Perez Prado M.T.,Cristina M.C.,Ruano O.A.,Gonza G.退火Al–5%Ca–5%Zn板合金的微观结构演变。J.Mater。科学。1997年,第32卷。第1313-1318页。25.Kono N.,Tsuchida Y.,Muromachi S.,Watanabe H.AlCaZn三元相图的研究。轻金属。1985年,第35卷。第574-580页。26.Belov N.A.,Naumova E.A.,Akopyan T.K.基于铝的共晶合金:新的合金体系。莫斯科:《矿石与金属》出版社,2016年。256第27页。Rudnev V.S.、Yarovaya T.P.、Nedozorov P.M.、Mansurov Y.N.通过等离子体电解氧化在硼酸盐和硅酸盐水电解质中形成的铝合金耐磨氧化物涂层。金属保护和表面物理化学。2017年第53卷。3,第466–474页。28.Rudnev V.S.、Nedozorov P.M.、Yarovaya T.P.、Mansurov Yu。N.AMg5(АМΓ5)合金的局部等离子体和电化学充氧。Tsvetnye Metalli。2017年第1名。第59–64页。DOI:10.17580/tsm.2017.01.10 NFM
{"title":"Powder technology for manufacturing compact blanks of Ti – Nb – Ta, Ti – Nb – Zr alloys","authors":"A. Kasimtsev, Tula Russia Metsintez Llc, S. Yudin, S. Volodko, A. Alpatov","doi":"10.17580/NFM.2018.02.06","DOIUrl":"https://doi.org/10.17580/NFM.2018.02.06","url":null,"abstract":"Non-ferrous Metals. 2018. No. 2. pp. 29–36 16. Aksenov A. A., Mansurov Yu. N., Ivanov D. O., Reva V. P., Kadyrova D. S., Shuvatkin R. K., Kim E. D. Mechanical Alloying of Secondary Raw Material for Foam Aluminum Production. Metallurgist. 2017. Vol. 61, Iss. 5–6. pp 475–484. 17. Thermo-Calc Software. Available at:www.thermocalc. com (accessed: 23.11.2018). 18. Khansen M., Anderko K. The structures of binary alloys. Vol. 1. Translated from English. Moscow : Metallurgizdat, 1962. 608 p. 19. Mondolfo L. F. Aluminum Alloys: Structure and Properties. Butterworths. London/Boston : Butterworth & Co Publishers Ltd., 1976. 971 p. 20. Moore D. M., Morris L. R. Superplastic aluminium alloy products and method of preparation. Patent UK, No. 1580281. 1978. 21. Moore D. M., Morris L. R. A new superplastic aluminum sheet alloy. Materials Science and Engineering. 1980. Vol. 43, No. 1. pp. 85–92. 22. Ilenko V. M. Superplasticity of eutectic alloys on the basis of aluminum-calcium system and development of materials for superplastic forming: Dissertation ... of Candidate of Engineering Sciences. Moscow : MISiS, 1985. 264 p. 23. Swaminathan K., Padmanabhan K. A. Tensile flow and fracture behaviour of a superplastic Al–Ca–Zn alloy. J. Mater. Sci. 1990. Vol. 25, No. 11. pp. 4579–4586. 24. Perez-Prado M. T., Cristina M. C., Ruano O. A., Gonza G. Microstructural evolution of annealed Al–5%Ca–5% Zn sheet alloy. J. Mater. Sci. 1997. Vol. 32. pp. 1313–1318. 25. Kono N., Tsuchida Y., Muromachi S., Watanabe H. Study of the AlCaZn ternary phase diagram. Light Metals. 1985. Vol. 35. pp. 574–580. 26. Belov N. A., Naumova E. A., Akopyan T. K. Eutectic alloys based on aluminum: new alloying systems. Moscow : “Ore and Metals” Publishing House, 2016. 256 p. 27. Rudnev V. S., Yarovaya T. P., Nedozorov P. M., Mansurov Y. N. Wear-resistant oxide coatings on aluminum alloy formed in borate and silicate aqueous electrolytes by plasma electrolytic oxidation. Protection of Metals and Physical Chemistry of Surfaces. 2017. Vol. 53, Iss. 3. pp. 466–474. 28. Rudnev V. S., Nedozorov P. M., Yarovaya T. P., Mansurov Yu. N. Local plasma and electrochemical oxygenating on the example of AMg5 (АМг5) alloy. Tsvetnye Metally. 2017. No. 1. pp. 59–64. DOI: 10.17580/tsm.2017.01.10 NFM","PeriodicalId":19653,"journal":{"name":"Nonferrous Metals","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2018-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48707276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Nonferrous Metals
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1