Our study aimed to investigate the clinical characteristics of PD patients stratified by OH status before and after levodopa challenge to explore the hypothesis that OH might serve as a clinical marker for the body-first subtype of PD. Supine and standing blood pressure were measured in a large cross-sectional cohort of PD patients at the OFF status before and after levodopa challenge test (LCT). Based on OH status, patients were divided into three groups: spontaneous OH (SOH), only levodopa-induced OH (LOH) and non-OH (NOH). Clinical characteristics and associated factors were compared among the groups. A total of 928 patients with a mean age of 62.4 years and average disease duration of 7.9 years were included. There were 224 (24.1%) patients with SOH, 321 (34.6%) with LOH, and 383 (41.3%) with NOH. Compared to NOH, both SOH and LOH were associated with older age, motor fluctuations, and probable rapid eye movement sleep behavior disorder (pRBD). In addition, OH was more associated with cardiovascular and digestive dysfunction, disease severity and worse quality of life. Results of the current study suggest that PD patients developed OH which is more likely to comorbid with RBD, severe autonomic dysfunction and motor fluctuations, consistent with the body-first subtype of PD.
{"title":"Orthostatic Hypotension: a clinical marker for the body-first subtype of patients with Parkinson’s Disease","authors":"Shanshan Mei, Xue Wang, Wei Mao, Yue Liu, Zichen Tian, Chao Han, Piu Chan","doi":"10.1038/s41531-024-00787-y","DOIUrl":"https://doi.org/10.1038/s41531-024-00787-y","url":null,"abstract":"<p>Our study aimed to investigate the clinical characteristics of PD patients stratified by OH status before and after levodopa challenge to explore the hypothesis that OH might serve as a clinical marker for the body-first subtype of PD. Supine and standing blood pressure were measured in a large cross-sectional cohort of PD patients at the OFF status before and after levodopa challenge test (LCT). Based on OH status, patients were divided into three groups: spontaneous OH (SOH), only levodopa-induced OH (LOH) and non-OH (NOH). Clinical characteristics and associated factors were compared among the groups. A total of 928 patients with a mean age of 62.4 years and average disease duration of 7.9 years were included. There were 224 (24.1%) patients with SOH, 321 (34.6%) with LOH, and 383 (41.3%) with NOH. Compared to NOH, both SOH and LOH were associated with older age, motor fluctuations, and probable rapid eye movement sleep behavior disorder (pRBD). In addition, OH was more associated with cardiovascular and digestive dysfunction, disease severity and worse quality of life. Results of the current study suggest that PD patients developed OH which is more likely to comorbid with RBD, severe autonomic dysfunction and motor fluctuations, consistent with the body-first subtype of PD.</p>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"9 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142166279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-10DOI: 10.1038/s41531-024-00788-x
Josep Argerich, Leonardo D. Garma, Marc López-Cano, Paula Álvarez-Montoya, Laura Gómez-Acero, Víctor Fernández-Dueñas, Ana B. Muñoz-Manchado, Ester Aso, Adam Boxer, Pol Andres-Benito, Per Svenningsson, Francisco Ciruela
The orphan G protein-coupled receptor 37 (GPR37), widely associated with Parkinson’s disease (PD), undergoes proteolytic processing under physiological conditions. The N-terminus domain is proteolyzed by a disintegrin and metalloproteinase 10 (ADAM-10), which generates various membrane receptor forms and ectodomain shedding (ecto-GPR37) in the extracellular environment. We investigated the processing and density of GPR37 in several neurodegenerative conditions, including Lewy body disease (LBD), multiple system atrophy (MSA), corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), and Alzheimer’s disease (AD). The presence of ecto-GPR37 peptides in the cerebrospinal fluid (CSF) of PD, MSA, CBD and PSP patients was assessed through an in-house nanoluciferase-based immunoassay. This study identified increased receptor processing in early-stage LBD within the PFC and striatum, key brain areas in neurodegeneration. In MSA only the 52 kDa form of GPR37 appeared in the striatum. This form was also significantly elevated in the striatum of AD necropsies. On the contrary, GPR37 processing remained unchanged in the brains of CBD and PSP patients. Furthermore, while CSF ecto-GPR37 increased in PD patients, its levels remained unchanged in MSA, CBD, and PSP subjects. Importantly, patients with PD with rapid progression of the disease did not have elevated ecto-GPR37 in the CSF, while those with slow progression showed a significant increase, suggesting a possible prognostic use of ecto-GPR37 in PD. This research underscores the distinctive processing and density patterns of GPR37 in neurodegenerative diseases, providing crucial insights into its potential role as an indicator of PD progression rates.
{"title":"GPR37 processing in neurodegeneration: a potential marker for Parkinson’s Disease progression rate","authors":"Josep Argerich, Leonardo D. Garma, Marc López-Cano, Paula Álvarez-Montoya, Laura Gómez-Acero, Víctor Fernández-Dueñas, Ana B. Muñoz-Manchado, Ester Aso, Adam Boxer, Pol Andres-Benito, Per Svenningsson, Francisco Ciruela","doi":"10.1038/s41531-024-00788-x","DOIUrl":"https://doi.org/10.1038/s41531-024-00788-x","url":null,"abstract":"<p>The orphan G protein-coupled receptor 37 (GPR37), widely associated with Parkinson’s disease (PD), undergoes proteolytic processing under physiological conditions. The N-terminus domain is proteolyzed by a disintegrin and metalloproteinase 10 (ADAM-10), which generates various membrane receptor forms and ectodomain shedding (ecto-GPR37) in the extracellular environment. We investigated the processing and density of GPR37 in several neurodegenerative conditions, including Lewy body disease (LBD), multiple system atrophy (MSA), corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), and Alzheimer’s disease (AD). The presence of ecto-GPR37 peptides in the cerebrospinal fluid (CSF) of PD, MSA, CBD and PSP patients was assessed through an in-house nanoluciferase-based immunoassay. This study identified increased receptor processing in early-stage LBD within the PFC and striatum, key brain areas in neurodegeneration. In MSA only the 52 kDa form of GPR37 appeared in the striatum. This form was also significantly elevated in the striatum of AD necropsies. On the contrary, GPR37 processing remained unchanged in the brains of CBD and PSP patients. Furthermore, while CSF ecto-GPR37 increased in PD patients, its levels remained unchanged in MSA, CBD, and PSP subjects. Importantly, patients with PD with rapid progression of the disease did not have elevated ecto-GPR37 in the CSF, while those with slow progression showed a significant increase, suggesting a possible prognostic use of ecto-GPR37 in PD. This research underscores the distinctive processing and density patterns of GPR37 in neurodegenerative diseases, providing crucial insights into its potential role as an indicator of PD progression rates.</p>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"151 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142166244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-10DOI: 10.1038/s41531-024-00786-z
Xiaoxiao Du, Hongguang Zhao, Yinghua Li, Yuyin Dai, Lulu Gao, Yi Li, Kangli Fan, Zhihui Sun, Ying Zhang
Positron emission tomography/computed tomography (PET/CT) is a molecular imaging method commonly used to diagnose and differentiate Parkinson’s disease (PD). This study aimed to evaluate the performance of PET/CT with 11C-2β-Carbomethoxy-3β-(4-fluorophenyl) tropane (11C-CFT) and 18F-fluorodeoxyglucose (18F-FDG) tracers in the differential diagnosis between PD, multiple system atrophy parkinsonian type (MSA-P), progressive supranuclear palsy (PSP) and vascular parkinsonism (VP) using the data of 220 patients with clinical PD-like symptoms. Of the 220 enrolled patients, 166 (PD, n = 80; MSA-P, n = 54; PSP, n = 15; VP, n = 17) completed the motor, cognitive and PET/CT assessment and were included in this study. 11C-CFT and 18F-FDG PET/CT images were analyzed using the SNBPI toolbox and CortexID Suite software. The uptake values of 11C-CFT and 18F-FDG PET/CT were compared among the groups after controlling for covariates using generalized linear models. Receiver operating characteristic (ROC) curves were generated to estimate the diagnostic values. Patients with PSP showed the most significant reduction on 11C-CFT PET/CT, while patients with PD and MSA-P showed similar reductions, and patients with VP did not show any significant reduction in 11C-CFT uptake. The areas under the curve (AUCs) for 11C-CFT PET/CT for distinguishing PD from VP, PSP, and MSA-P were 0.902, 0.830, and 0.580, respectively, and 0.728 for distinguishing advanced-stage PD from PSP. On 18F-FDG PET/CT, the AUCs for distinguishing PD from PSP and MSA-P were 0.968 and 0.963, respectively. These results suggest that 11C-CFT and 18F-FDG PET/CT complement each other in improving the accuracy in differential diagnosis of PD.
{"title":"The value of PET/CT in the diagnosis and differential diagnosis of Parkinson’s disease: a dual-tracer study","authors":"Xiaoxiao Du, Hongguang Zhao, Yinghua Li, Yuyin Dai, Lulu Gao, Yi Li, Kangli Fan, Zhihui Sun, Ying Zhang","doi":"10.1038/s41531-024-00786-z","DOIUrl":"https://doi.org/10.1038/s41531-024-00786-z","url":null,"abstract":"<p>Positron emission tomography/computed tomography (PET/CT) is a molecular imaging method commonly used to diagnose and differentiate Parkinson’s disease (PD). This study aimed to evaluate the performance of PET/CT with <sup>11</sup>C-2β-Carbomethoxy-3β-(4-fluorophenyl) tropane (<sup>11</sup>C-CFT) and <sup>18</sup>F-fluorodeoxyglucose (<sup>18</sup>F-FDG) tracers in the differential diagnosis between PD, multiple system atrophy parkinsonian type (MSA-P), progressive supranuclear palsy (PSP) and vascular parkinsonism (VP) using the data of 220 patients with clinical PD-like symptoms. Of the 220 enrolled patients, 166 (PD, <i>n</i> = 80; MSA-P, <i>n</i> = 54; PSP, <i>n</i> = 15; VP, <i>n</i> = 17) completed the motor, cognitive and PET/CT assessment and were included in this study. <sup>11</sup>C-CFT and <sup>18</sup>F-FDG PET/CT images were analyzed using the SNBPI toolbox and CortexID Suite software. The uptake values of <sup>11</sup>C-CFT and <sup>18</sup>F-FDG PET/CT were compared among the groups after controlling for covariates using generalized linear models. Receiver operating characteristic (ROC) curves were generated to estimate the diagnostic values. Patients with PSP showed the most significant reduction on <sup>11</sup>C-CFT PET/CT, while patients with PD and MSA-P showed similar reductions, and patients with VP did not show any significant reduction in <sup>11</sup>C-CFT uptake. The areas under the curve (AUCs) for <sup>11</sup>C-CFT PET/CT for distinguishing PD from VP, PSP, and MSA-P were 0.902, 0.830, and 0.580, respectively, and 0.728 for distinguishing advanced-stage PD from PSP. On <sup>18</sup>F-FDG PET/CT, the AUCs for distinguishing PD from PSP and MSA-P were 0.968 and 0.963, respectively. These results suggest that <sup>11</sup>C-CFT and <sup>18</sup>F-FDG PET/CT complement each other in improving the accuracy in differential diagnosis of PD.</p>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"10 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142160612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-09DOI: 10.1038/s41531-024-00781-4
Sarah Chevalier, Mélina Decourt, Maureen Francheteau, François Nicol, Anaïs Balbous, Pierre-Olivier Fernagut, Marianne Benoit-Marand
Parkinson’s disease is characterized by the degeneration of substantia nigra pars compacta (SNc) dopaminergic neurons, leading to motor and cognitive symptoms. Numerous cellular and molecular adaptations following neurodegeneration or dopamine replacement therapy (DRT) have been described in motor networks but little is known regarding associative basal ganglia loops. This study investigated the contributions of nigrostriatal degeneration and pramipexole (PPX) on neuronal activity in the orbitofrontal cortex (OFC), frontostriatal plasticity, and markers of synaptic plasticity. Bilateral nigrostriatal degeneration was induced by viral-mediated expression of human mutated alpha-synuclein in the SNc. Juxtacellular recordings were performed in anesthetized rats to evaluate neuronal activity in the OFC. Recordings in the dorsomedial striatum (DMS) were performed, and spike probability in response to OFC stimulation was measured before and after high-frequency stimulation (HFS). Post-mortem analysis included stereological assessment of nigral neurodegeneration, BDNF and TrkB protein levels. Nigrostriatal neurodegeneration led to altered firing patterns of OFC neurons that were restored by PPX. HFS of the OFC led to an increased spike probability in the DMS, while dopaminergic loss had the opposite effect. PPX led to a decreased spike probability following HFS in control rats and failed to counteract the effect of dopaminergic neurodegeneration. These alterations were associated with decreased levels of BDNF and TrkB in the DMS. This study demonstrates that nigral dopaminergic loss and PPX both contribute to alter frontostriatal transmission, precluding adequate information processing in associative basal ganglia loops as a gateway for the development of non-motor symptoms or non-motor side effects of DRT.
{"title":"Alpha-synuclein-induced nigrostriatal degeneration and pramipexole treatment disrupt frontostriatal plasticity","authors":"Sarah Chevalier, Mélina Decourt, Maureen Francheteau, François Nicol, Anaïs Balbous, Pierre-Olivier Fernagut, Marianne Benoit-Marand","doi":"10.1038/s41531-024-00781-4","DOIUrl":"https://doi.org/10.1038/s41531-024-00781-4","url":null,"abstract":"<p>Parkinson’s disease is characterized by the degeneration of <i>substantia nigra pars compacta</i> (SN<i>c</i>) dopaminergic neurons, leading to motor and cognitive symptoms. Numerous cellular and molecular adaptations following neurodegeneration or dopamine replacement therapy (DRT) have been described in motor networks but little is known regarding associative basal ganglia loops. This study investigated the contributions of nigrostriatal degeneration and pramipexole (PPX) on neuronal activity in the orbitofrontal cortex (OFC), frontostriatal plasticity, and markers of synaptic plasticity. Bilateral nigrostriatal degeneration was induced by viral-mediated expression of human mutated alpha-synuclein in the SNc. Juxtacellular recordings were performed in anesthetized rats to evaluate neuronal activity in the OFC. Recordings in the dorsomedial striatum (DMS) were performed, and spike probability in response to OFC stimulation was measured before and after high-frequency stimulation (HFS). Post-mortem analysis included stereological assessment of nigral neurodegeneration, BDNF and TrkB protein levels. Nigrostriatal neurodegeneration led to altered firing patterns of OFC neurons that were restored by PPX. HFS of the OFC led to an increased spike probability in the DMS, while dopaminergic loss had the opposite effect. PPX led to a decreased spike probability following HFS in control rats and failed to counteract the effect of dopaminergic neurodegeneration. These alterations were associated with decreased levels of BDNF and TrkB in the DMS. This study demonstrates that nigral dopaminergic loss and PPX both contribute to alter frontostriatal transmission, precluding adequate information processing in associative basal ganglia loops as a gateway for the development of non-motor symptoms or non-motor side effects of DRT.</p>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"48 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142158952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The relationship between reduced serum uric acid (UA) levels and Parkinson’s disease (PD), particularly purine metabolic pathways, is not fully understood. Our study compared serum and cerebrospinal fluid (CSF) levels of inosine, hypoxanthine, xanthine, and UA in PD patients and healthy controls. We analyzed 132 samples (serum, 45 PD, and 29 age- and sex-matched healthy controls; CSF, 39 PD, and 19 age- and sex-matched healthy controls) using liquid chromatography-tandem mass spectrometry. Results showed significantly lower serum and CSF UA levels in PD patients than in controls (p < 0.0001; effect size r = 0.5007 in serum, p = 0.0046; r = 0.3720 in CSF). Decreased serum hypoxanthine levels were observed (p = 0.0002; r = 0.4338) in PD patients compared to controls with decreased CSF inosine and hypoxanthine levels (p < 0.0001, r = 0.5396: p = 0.0276, r = 0.2893). A general linear model analysis indicated that the reduced UA levels were mainly due to external factors such as sex and weight in serum and age and weight in CSF unrelated to the purine metabolic pathway. Our findings highlight that decreased UA levels in PD are influenced by factors beyond purine metabolism, including external factors such as sex, weight, and age, emphasizing the need for further research into the underlying mechanisms and potential therapeutic approaches.
{"title":"Uric acid and alterations of purine recycling disorders in Parkinson’s disease: a cross-sectional study","authors":"Sayuri Shima, Yasuaki Mizutani, Junichiro Yoshimoto, Yasuhiro Maeda, Reiko Ohdake, Ryunosuke Nagao, Toshiki Maeda, Atsuhiro Higashi, Akihiro Ueda, Mizuki Ito, Tatsuro Mutoh, Hirohisa Watanabe","doi":"10.1038/s41531-024-00785-0","DOIUrl":"https://doi.org/10.1038/s41531-024-00785-0","url":null,"abstract":"<p>The relationship between reduced serum uric acid (UA) levels and Parkinson’s disease (PD), particularly purine metabolic pathways, is not fully understood. Our study compared serum and cerebrospinal fluid (CSF) levels of inosine, hypoxanthine, xanthine, and UA in PD patients and healthy controls. We analyzed 132 samples (serum, 45 PD, and 29 age- and sex-matched healthy controls; CSF, 39 PD, and 19 age- and sex-matched healthy controls) using liquid chromatography-tandem mass spectrometry. Results showed significantly lower serum and CSF UA levels in PD patients than in controls (<i>p</i> < 0.0001; effect size <i>r</i> = 0.5007 in serum, <i>p</i> = 0.0046; <i>r</i> = 0.3720 in CSF). Decreased serum hypoxanthine levels were observed (<i>p</i> = 0.0002; <i>r</i> = 0.4338) in PD patients compared to controls with decreased CSF inosine and hypoxanthine levels (<i>p</i> < 0.0001, <i>r</i> = 0.5396: <i>p</i> = 0.0276, <i>r</i> = 0.2893). A general linear model analysis indicated that the reduced UA levels were mainly due to external factors such as sex and weight in serum and age and weight in CSF unrelated to the purine metabolic pathway. Our findings highlight that decreased UA levels in PD are influenced by factors beyond purine metabolism, including external factors such as sex, weight, and age, emphasizing the need for further research into the underlying mechanisms and potential therapeutic approaches.</p>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"40 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142160613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
There is considerable uncertainty regarding the associations between various risk factors and Parkinson’s Disease (PD). This study systematically screened and validated a wide range of potential PD risk factors from 502,364 participants in the UK Biobank. Baseline data for 1851 factors across 11 categories were analyzed through a phenome-wide association study (PheWAS). Polygenic risk scores (PRS) for PD were used to diagnose Parkinson’s Disease and identify factors associated with PD diagnosis through PheWAS. Two-sample Mendelian randomization (MR) analysis was employed to assess causal relationships. PheWAS results revealed 267 risk factors significantly associated with PD-PRS among the 1851 factors, and of these, 27 factors showed causal evidence from MR analysis. Compelling evidence suggests that fluid intelligence score, age at first sexual intercourse, cereal intake, dried fruit intake, and average total household income before tax have emerged as newly identified risk factors for PD. Conversely, maternal smoking around birth, playing computer games, salt added to food, and time spent watching television have been identified as novel protective factors against PD. The integration of phenotypic and genomic data may help to identify risk factors and prevention targets for PD.
{"title":"Identifying potential causal effects of Parkinson’s disease: A polygenic risk score-based phenome-wide association and mendelian randomization study in UK Biobank","authors":"Changhe Shi, Dongrui Ma, Mengjie Li, Zhiyun Wang, Chenwei Hao, Yuanyuan Liang, Yanmei Feng, Zhengwei Hu, Xiaoyan Hao, Mengnan Guo, Shuangjie Li, Chunyan Zuo, Yuemeng Sun, Mibo Tang, Chengyuan Mao, Chan Zhang, Yuming Xu, Shilei Sun","doi":"10.1038/s41531-024-00780-5","DOIUrl":"https://doi.org/10.1038/s41531-024-00780-5","url":null,"abstract":"<p>There is considerable uncertainty regarding the associations between various risk factors and Parkinson’s Disease (PD). This study systematically screened and validated a wide range of potential PD risk factors from 502,364 participants in the UK Biobank. Baseline data for 1851 factors across 11 categories were analyzed through a phenome-wide association study (PheWAS). Polygenic risk scores (PRS) for PD were used to diagnose Parkinson’s Disease and identify factors associated with PD diagnosis through PheWAS. Two-sample Mendelian randomization (MR) analysis was employed to assess causal relationships. PheWAS results revealed 267 risk factors significantly associated with PD-PRS among the 1851 factors, and of these, 27 factors showed causal evidence from MR analysis. Compelling evidence suggests that fluid intelligence score, age at first sexual intercourse, cereal intake, dried fruit intake, and average total household income before tax have emerged as newly identified risk factors for PD. Conversely, maternal smoking around birth, playing computer games, salt added to food, and time spent watching television have been identified as novel protective factors against PD. The integration of phenotypic and genomic data may help to identify risk factors and prevention targets for PD.</p>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"7 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142142612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-06DOI: 10.1038/s41531-024-00784-1
Kyung Ah Woo, Han-Joon Kim, Chan Young Lee, Jung Hwan Shin, Choonghyun Sun, Hogune Im, Hongyul An, Jiwoo Lim, Su-Yeon Choi, Youngil Koh, Beomseok Jeon
Clonal hematopoiesis of indeterminate potential (CHIP), a premalignant expansion of mutated hematopoietic stem cells, is linked to immune alterations. Given the role of neuroinflammation and immune dysfunction in Parkinson’s disease (PD), we hypothesized a connection between CHIP and PD. We analyzed peripheral blood DNA from 341 PD, 92 isolated REM sleep behavior disorder (iRBD) patients, and 5003 controls using targeted sequencing of 24 genes associated with hematologic neoplasms. PD cases were classified by clinical progression mode: fast, slow, and typical. Using multivariable logistic regression models, CHIP prevalence was assessed against controls with a 1.0% variant allele fraction threshold. CHIP with TET2 mutations was more prevalent in PD than controls (aOR 1.75, 95% CI 1.11–2.77, p = 0.017), particularly in the fast motor progression subgroup (aOR 3.19, p = 0.004). No distinct associations were observed with iRBD. PD is linked to increased odds of CHIP with TET2 mutations, suggesting immune dysregulation in PD pathophysiology.
{"title":"Parkinson’s disease is associated with clonal hematopoiesis with TET2 mutation","authors":"Kyung Ah Woo, Han-Joon Kim, Chan Young Lee, Jung Hwan Shin, Choonghyun Sun, Hogune Im, Hongyul An, Jiwoo Lim, Su-Yeon Choi, Youngil Koh, Beomseok Jeon","doi":"10.1038/s41531-024-00784-1","DOIUrl":"https://doi.org/10.1038/s41531-024-00784-1","url":null,"abstract":"<p>Clonal hematopoiesis of indeterminate potential (CHIP), a premalignant expansion of mutated hematopoietic stem cells, is linked to immune alterations. Given the role of neuroinflammation and immune dysfunction in Parkinson’s disease (PD), we hypothesized a connection between CHIP and PD. We analyzed peripheral blood DNA from 341 PD, 92 isolated REM sleep behavior disorder (iRBD) patients, and 5003 controls using targeted sequencing of 24 genes associated with hematologic neoplasms. PD cases were classified by clinical progression mode: fast, slow, and typical. Using multivariable logistic regression models, CHIP prevalence was assessed against controls with a 1.0% variant allele fraction threshold. CHIP with <i>TET2</i> mutations was more prevalent in PD than controls (aOR 1.75, 95% CI 1.11–2.77, <i>p</i> = 0.017), particularly in the fast motor progression subgroup (aOR 3.19, <i>p</i> = 0.004). No distinct associations were observed with iRBD. PD is linked to increased odds of CHIP with <i>TET2</i> mutations, suggesting immune dysregulation in PD pathophysiology.</p>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"1 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142142712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-06DOI: 10.1038/s41531-024-00783-2
Elisabetta Sarasso, Andrea Gardoni, Lucia Zenere, Daniele Emedoli, Roberta Balestrino, Andrea Grassi, Silvia Basaia, Chiara Tripodi, Elisa Canu, Massimo Malcangi, Elisa Pelosin, Maria Antonietta Volontè, Davide Corbetta, Massimo Filippi, Federica Agosta
Bradykinesia is defined as a “complex” of motor alterations including decreased movement amplitude and/or speed and tendency to reduce them with movement repetition (sequence effect). This study aimed at investigating the neural and kinematic correlates of bradykinesia during hand-tapping in people with Parkinson’s disease (pwPD) relative to healthy controls. Twenty-five pwPD and 25 age- and sex-matched healthy controls underwent brain functional MRI (fMRI) during a hand-tapping task: subjects alternatively opened and closed their right hand as fully and quickly as possible. Hand-tapping kinematic parameters were objectively measured during the fMRI task using an optical fibre glove. During the fMRI task, pwPD showed reduced hand-tapping amplitude (hypokinesia) and a greater sequence effect. PwPD relative to healthy controls showed a reduced activity of fronto-parietal areas, middle cingulum/supplementary motor area (SMA), parahippocampus, pallidum/thalamus and motor cerebellar areas. Moreover, pwPD showed an increased activity of brain cognitive areas such as superior temporal gyrus, posterior cingulum, and cerebellum crus I. The decreased activity of cerebellum IV–V–VI, vermis IV–V, inferior frontal gyrus, and cingulum/SMA correlated with hypokinesia and with the sequence effect. Interestingly, a reduced activity of areas involved in motor planning and timing correlated both with hypokinesia and with the sequence effect in pwPD. This study has the major strength of collecting objective motor parameters and brain activity simultaneously, providing a unique opportunity to investigate the neural correlates of the “bradykinesia complex”.
{"title":"Neural correlates of bradykinesia in Parkinson’s disease: a kinematic and functional MRI study","authors":"Elisabetta Sarasso, Andrea Gardoni, Lucia Zenere, Daniele Emedoli, Roberta Balestrino, Andrea Grassi, Silvia Basaia, Chiara Tripodi, Elisa Canu, Massimo Malcangi, Elisa Pelosin, Maria Antonietta Volontè, Davide Corbetta, Massimo Filippi, Federica Agosta","doi":"10.1038/s41531-024-00783-2","DOIUrl":"https://doi.org/10.1038/s41531-024-00783-2","url":null,"abstract":"<p>Bradykinesia is defined as a “<i>complex</i>” of motor alterations including decreased movement amplitude and/or speed and tendency to reduce them with movement repetition (sequence effect). This study aimed at investigating the neural and kinematic correlates of bradykinesia during hand-tapping in people with Parkinson’s disease (pwPD) relative to healthy controls. Twenty-five pwPD and 25 age- and sex-matched healthy controls underwent brain functional MRI (fMRI) during a hand-tapping task: subjects alternatively opened and closed their right hand as fully and quickly as possible. Hand-tapping kinematic parameters were objectively measured during the fMRI task using an optical fibre glove. During the fMRI task, pwPD showed reduced hand-tapping amplitude (hypokinesia) and a greater sequence effect. PwPD relative to healthy controls showed a reduced activity of fronto-parietal areas, middle cingulum/supplementary motor area (SMA), parahippocampus, pallidum/thalamus and motor cerebellar areas. Moreover, pwPD showed an increased activity of brain cognitive areas such as superior temporal gyrus, posterior cingulum, and cerebellum crus I. The decreased activity of cerebellum IV–V–VI, vermis IV–V, inferior frontal gyrus, and cingulum/SMA correlated with hypokinesia and with the sequence effect. Interestingly, a reduced activity of areas involved in motor planning and timing correlated both with hypokinesia and with the sequence effect in pwPD. This study has the major strength of collecting objective motor parameters and brain activity simultaneously, providing a unique opportunity to investigate the neural correlates of the “bradykinesia complex”.</p>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"31 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142142615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-02DOI: 10.1038/s41531-024-00777-0
Natalia López-González del Rey, Nagore Hernández-Pinedo, Megan Carrillo, María del Cerro, Noelia Esteban-García, Inés Trigo-Damas, Mariana H. G. Monje, José L. Lanciego, Carmen Cavada, José A. Obeso, Javier Blesa
The differential vulnerability of dopaminergic neurons of the substantia nigra pars compacta (SNc) is a critical and unresolved question in Parkinson´s disease. Studies in mice show diverse susceptibility of subpopulations of nigral dopaminergic neurons to various toxic agents. In the primate midbrain, the molecular phenotypes of dopaminergic neurons and their differential vulnerability are poorly characterized. We performed a detailed histological study to determine the anatomical distribution of different molecular phenotypes within identified midbrain neurons and their selective vulnerability in control and MPTP-treated monkeys. In the ventral tier of the SNc (nigrosome), neurons rich in Aldh1a1 and Girk2 are intermingled, whereas calbindin is the marker that best identifies the most resilient neurons located in the dorsal tier and ventral tegmental area, recapitulating the well-defined dorsoventral axis of susceptibility to degeneration of dopaminergic neurons. In particular, a loss of Aldh1a1+ neurons in the ventral SNc was observed in parallel to the progressive development of parkinsonism. Aldh1a1+ neurons were the main population of vulnerable dopaminergic nigrostriatal-projecting neurons, while Aldh1a1- neurons giving rise to nigropallidal projections remained relatively preserved. Moreover, bundles of entwined Aldh1a1+ dendrites with long trajectories extending towards the substantia nigra pars reticulata emerged from clusters of Aldh1a1+ neurons and colocalized with dense cannabinoid receptor 1 afferent fibers likely representing part of the striatonigral projection that is affected in human disorders, including Parkinson´s disease. In conclusion, vulnerable nigrostriatal-projecting neurons can be identified by using Aldh1a1 and Girk2. Further studies are needed to define the afferent/efferent projection patterns of these most vulnerable neurons.
{"title":"Calbindin and Girk2/Aldh1a1 define resilient vs vulnerable dopaminergic neurons in a primate Parkinson’s disease model","authors":"Natalia López-González del Rey, Nagore Hernández-Pinedo, Megan Carrillo, María del Cerro, Noelia Esteban-García, Inés Trigo-Damas, Mariana H. G. Monje, José L. Lanciego, Carmen Cavada, José A. Obeso, Javier Blesa","doi":"10.1038/s41531-024-00777-0","DOIUrl":"https://doi.org/10.1038/s41531-024-00777-0","url":null,"abstract":"<p>The differential vulnerability of dopaminergic neurons of the <i>substantia nigra pars compacta</i> (SNc) is a critical and unresolved question in Parkinson´s disease. Studies in mice show diverse susceptibility of subpopulations of nigral dopaminergic neurons to various toxic agents. In the primate midbrain, the molecular phenotypes of dopaminergic neurons and their differential vulnerability are poorly characterized. We performed a detailed histological study to determine the anatomical distribution of different molecular phenotypes within identified midbrain neurons and their selective vulnerability in control and MPTP-treated monkeys. In the ventral tier of the SNc (<i>nigrosome</i>), neurons rich in Aldh1a1 and Girk2 are intermingled, whereas calbindin is the marker that best identifies the most resilient neurons located in the dorsal tier and ventral tegmental area, recapitulating the well-defined dorsoventral axis of susceptibility to degeneration of dopaminergic neurons. In particular, a loss of Aldh1a1+ neurons in the ventral SNc was observed in parallel to the progressive development of parkinsonism. Aldh1a1+ neurons were the main population of vulnerable dopaminergic nigrostriatal-projecting neurons, while Aldh1a1- neurons giving rise to nigropallidal projections remained relatively preserved. Moreover, bundles of entwined Aldh1a1+ dendrites with long trajectories extending towards the <i>substantia nigra pars reticulata</i> emerged from clusters of Aldh1a1+ neurons and colocalized with dense cannabinoid receptor 1 afferent fibers likely representing part of the striatonigral projection that is affected in human disorders, including Parkinson´s disease. In conclusion, vulnerable nigrostriatal-projecting neurons can be identified by using Aldh1a1 and Girk2. Further studies are needed to define the afferent/efferent projection patterns of these most vulnerable neurons.</p>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"15 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-28DOI: 10.1038/s41531-024-00782-3
Tao Wang, Jiaquan Geng, Xi Zeng, Ruijiang Han, Young Eun Huh, Jiajie Peng
Previous observational studies suggested that sarcopenia is associated with Parkinson disease (PD), but it is unclear whether this association is causal. The objective of this study was to examine causal associations between sarcopenia-related traits and the risk or progression of PD using a Mendelian randomization (MR) approach. Two-sample bidirectional MR analyses were conducted to evaluate causal relationships. Genome-wide association study (GWAS) summary statistics for sarcopenia-related traits, including right handgrip strength (n = 461,089), left handgrip strength (n = 461,026), and appendicular lean mass (n = 450,243), were retrieved from the IEU OpenGWAS database. GWAS data for the risk of PD were derived from the FinnGen database (4235 cases; 373,042 controls). Summary-level data for progression of PD, including progression to Hoehn and Yahr stage 3, progression to dementia, and development of levodopa-induced dyskinesia, were obtained from a recent GWAS publication on progression of PD in 4093 patients from 12 longitudinal cohorts. Significant causal associations identified in MR analysis were verified through a polygenic score (PGS)-based approach and pathway enrichment analysis using genotype data from the Parkinson’s Progression Markers Initiative. MR results supported a significant causal influence of right handgrip strength (odds ratio [OR] = 0.152, 95% confidence interval [CI] = 0.055–0.423, adjusted P = 0.0036) and appendicular lean mass (OR = 0.597, 95% CI = 0.440–0.810, adjusted P = 0.0111) on development of levodopa-induced dyskinesia. In Cox proportional hazard analysis, higher PGSs for right handgrip strength (hazard ratio [HR] = 0.225, 95% CI = 0.095–0.530, adjusted P = 0.0019) and left handgrip strength (HR = 0.303, 95% CI = 0.121–0.59, adjusted P = 0.0323) were significantly associated with a lower risk of developing levodopa-induced dyskinesia, after adjusting for covariates. Pathway enrichment analysis revealed that genome-wide significant single-nucleotide polymorphisms for right handgrip strength were substantially enriched in biological pathways involved in the control of synaptic plasticity. This study provides genetic evidence of the protective role of handgrip strength or appendicular lean mass on the development of levodopa-induced dyskinesia in PD. Sarcopenia-related traits can be promising prognostic markers for levodopa-induced dyskinesia and potential therapeutic targets for preventing levodopa-induced dyskinesia in patients with PD.
{"title":"Exploring causal effects of sarcopenia on risk and progression of Parkinson disease by Mendelian randomization","authors":"Tao Wang, Jiaquan Geng, Xi Zeng, Ruijiang Han, Young Eun Huh, Jiajie Peng","doi":"10.1038/s41531-024-00782-3","DOIUrl":"https://doi.org/10.1038/s41531-024-00782-3","url":null,"abstract":"<p>Previous observational studies suggested that sarcopenia is associated with Parkinson disease (PD), but it is unclear whether this association is causal. The objective of this study was to examine causal associations between sarcopenia-related traits and the risk or progression of PD using a Mendelian randomization (MR) approach. Two-sample bidirectional MR analyses were conducted to evaluate causal relationships. Genome-wide association study (GWAS) summary statistics for sarcopenia-related traits, including right handgrip strength (<i>n</i> = 461,089), left handgrip strength (<i>n</i> = 461,026), and appendicular lean mass (<i>n</i> = 450,243), were retrieved from the IEU OpenGWAS database. GWAS data for the risk of PD were derived from the FinnGen database (4235 cases; 373,042 controls). Summary-level data for progression of PD, including progression to Hoehn and Yahr stage 3, progression to dementia, and development of levodopa-induced dyskinesia, were obtained from a recent GWAS publication on progression of PD in 4093 patients from 12 longitudinal cohorts. Significant causal associations identified in MR analysis were verified through a polygenic score (PGS)-based approach and pathway enrichment analysis using genotype data from the Parkinson’s Progression Markers Initiative. MR results supported a significant causal influence of right handgrip strength (odds ratio [OR] = 0.152, 95% confidence interval [CI] = 0.055–0.423, adjusted <i>P</i> = 0.0036) and appendicular lean mass (OR = 0.597, 95% CI = 0.440–0.810, adjusted <i>P</i> = 0.0111) on development of levodopa-induced dyskinesia. In Cox proportional hazard analysis, higher PGSs for right handgrip strength (hazard ratio [HR] = 0.225, 95% CI = 0.095–0.530, adjusted <i>P</i> = 0.0019) and left handgrip strength (HR = 0.303, 95% CI = 0.121–0.59, adjusted <i>P</i> = 0.0323) were significantly associated with a lower risk of developing levodopa-induced dyskinesia, after adjusting for covariates. Pathway enrichment analysis revealed that genome-wide significant single-nucleotide polymorphisms for right handgrip strength were substantially enriched in biological pathways involved in the control of synaptic plasticity. This study provides genetic evidence of the protective role of handgrip strength or appendicular lean mass on the development of levodopa-induced dyskinesia in PD. Sarcopenia-related traits can be promising prognostic markers for levodopa-induced dyskinesia and potential therapeutic targets for preventing levodopa-induced dyskinesia in patients with PD.</p>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"6 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142085624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}