Pub Date : 2024-08-15DOI: 10.1038/s41531-024-00770-7
Amaia Muñoz-Lopetegi, Simone Baiardi, Mircea Balasa, Angela Mammana, Gerard Mayà, Marcello Rossi, Mónica Serradell, Corrado Zenesini, Alice Ticca, Joan Santamaria, Sofia Dellavalle, Carles Gaig, Alex Iranzo, Piero Parchi
We investigated the biomarker profile of neurodegeneration, Alzheimer’s and Lewy body pathology in the CSF of 148 polysomnography-confirmed patients with isolated REM sleep behavior disorder (IRBD), a condition that precedes Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). We assessed misfolded α-synuclein (AS) by RT-QuIC assay, amyloid-beta peptides (Aβ42 and Aβ40), phosphorylated tau (p-tau), and total tau (t-tau) by CLEIA and neurofilament light chain (NfL) by ELISA. We detected AS in 75.3% of patients, pathologically decreased Aβ42/Aβ40 ratio in 22.5%, increased p-tau in 15.5%, increased t-tau in 14.9%, and elevated NfL in 14.7%. After a mean follow-up of 2.48 ± 2.75 years, 47 (38.1%) patients developed PD (n = 24) or DLB (n = 23). At CSF collection, AS positivity [HR 4.05 (1.26–12.99), p = 0.019], mild cognitive impairment [3.86 (1.96–7.61), p < 0.001], and abnormal DAT-SPECT [2.31 (1.09–4.91), p < 0.030] were independent predictors of conversion to PD and DLB. Among the other CSF markers, only elevated p-tau/Aβ42 was predictive of conversion, although only to DLB and not as an independent variable. In IRBD, CSF AS assessment by RT-QuIC provides an added value in defining the risk of short-term conversion to PD and DLB independent of clinical and instrumental investigations. Positive Alzheimer's disease (AD) pathology markers and elevated NfL occur in a subgroup of patients, but p-tau/Aβ42 is the only marker that predicts short-term conversion to DLB. Longer follow-up is needed to assess if AD biomarkers predict the later development of PD and DLB in IRBD.
{"title":"CSF markers of neurodegeneration Alzheimer’s and Lewy body pathology in isolated REM sleep behavior disorder","authors":"Amaia Muñoz-Lopetegi, Simone Baiardi, Mircea Balasa, Angela Mammana, Gerard Mayà, Marcello Rossi, Mónica Serradell, Corrado Zenesini, Alice Ticca, Joan Santamaria, Sofia Dellavalle, Carles Gaig, Alex Iranzo, Piero Parchi","doi":"10.1038/s41531-024-00770-7","DOIUrl":"https://doi.org/10.1038/s41531-024-00770-7","url":null,"abstract":"<p>We investigated the biomarker profile of neurodegeneration, Alzheimer’s and Lewy body pathology in the CSF of 148 polysomnography-confirmed patients with isolated REM sleep behavior disorder (IRBD), a condition that precedes Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). We assessed misfolded α-synuclein (AS) by RT-QuIC assay, amyloid-beta peptides (Aβ<sub>42</sub> and Aβ<sub>40</sub>), phosphorylated tau (p-tau), and total tau (t-tau) by CLEIA and neurofilament light chain (NfL) by ELISA. We detected AS in 75.3% of patients, pathologically decreased Aβ<sub>42</sub>/Aβ<sub>40</sub> ratio in 22.5%, increased p-tau in 15.5%, increased t-tau in 14.9%, and elevated NfL in 14.7%. After a mean follow-up of 2.48 ± 2.75 years, 47 (38.1%) patients developed PD (<i>n</i> = 24) or DLB (<i>n</i> = 23). At CSF collection, AS positivity [HR 4.05 (1.26–12.99), <i>p</i> = 0.019], mild cognitive impairment [3.86 (1.96–7.61), <i>p</i> < 0.001], and abnormal DAT-SPECT [2.31 (1.09–4.91), <i>p</i> < 0.030] were independent predictors of conversion to PD and DLB. Among the other CSF markers, only elevated p-tau/Aβ<sub>42</sub> was predictive of conversion, although only to DLB and not as an independent variable. In IRBD, CSF AS assessment by RT-QuIC provides an added value in defining the risk of short-term conversion to PD and DLB independent of clinical and instrumental investigations. Positive Alzheimer's disease (AD) pathology markers and elevated NfL occur in a subgroup of patients, but p-tau/Aβ<sub>42</sub> is the only marker that predicts short-term conversion to DLB. Longer follow-up is needed to assess if AD biomarkers predict the later development of PD and DLB in IRBD.</p>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"32 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-15DOI: 10.1038/s41531-024-00752-9
Astros Th. Skuladottir, Vinicius Tragante, Gardar Sveinbjornsson, Hannes Helgason, Arni Sturluson, Anna Bjornsdottir, Palmi Jonsson, Vala Palmadottir, Olafur A. Sveinsson, Brynjar O. Jensson, Sigurjon A. Gudjonsson, Erna V. Ivarsdottir, Rosa S. Gisladottir, Arni F. Gunnarsson, G. Bragi Walters, Gudrun A. Jonsdottir, Thorgeir E. Thorgeirsson, Gyda Bjornsdottir, Hilma Holm, Daniel F. Gudbjartsson, Patrick Sulem, Hreinn Stefansson, Kari Stefansson
Parkinson’s disease (PD) is a debilitating neurodegenerative disorder and its rising global incidence highlights the need for the identification of modifiable risk factors. In a gene-based burden test of rare variants (8647 PD cases and 777,693 controls) we discovered a novel association between loss-of-function variants in ITSN1 and PD. This association was further supported with burden data from the Neurodegenerative Disease Knowledge Portal and the Accelerating Medicines Partnership Parkinson’s Disease Knowledge Platform. Our findings show that Rho GTPases and disruptions in synaptic vesicle transport may be involved in the pathogenesis of PD, pointing to the possibility of novel therapeutic approaches.
{"title":"Loss-of-function variants in ITSN1 confer high risk of Parkinson’s disease","authors":"Astros Th. Skuladottir, Vinicius Tragante, Gardar Sveinbjornsson, Hannes Helgason, Arni Sturluson, Anna Bjornsdottir, Palmi Jonsson, Vala Palmadottir, Olafur A. Sveinsson, Brynjar O. Jensson, Sigurjon A. Gudjonsson, Erna V. Ivarsdottir, Rosa S. Gisladottir, Arni F. Gunnarsson, G. Bragi Walters, Gudrun A. Jonsdottir, Thorgeir E. Thorgeirsson, Gyda Bjornsdottir, Hilma Holm, Daniel F. Gudbjartsson, Patrick Sulem, Hreinn Stefansson, Kari Stefansson","doi":"10.1038/s41531-024-00752-9","DOIUrl":"https://doi.org/10.1038/s41531-024-00752-9","url":null,"abstract":"<p>Parkinson’s disease (PD) is a debilitating neurodegenerative disorder and its rising global incidence highlights the need for the identification of modifiable risk factors. In a gene-based burden test of rare variants (8647 PD cases and 777,693 controls) we discovered a novel association between loss-of-function variants in <i>ITSN1</i> and PD. This association was further supported with burden data from the Neurodegenerative Disease Knowledge Portal and the Accelerating Medicines Partnership Parkinson’s Disease Knowledge Platform. Our findings show that Rho GTPases and disruptions in synaptic vesicle transport may be involved in the pathogenesis of PD, pointing to the possibility of novel therapeutic approaches.</p>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"13 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-15DOI: 10.1038/s41531-024-00766-3
Chaewon Shin, Seong-Ik Kim, Sung-Hye Park, Jong-Min Kim, Jee-Young Lee, Sun Ju Chung, Jae Woo Kim, Tae-Beom Ahn, Kye Won Park, Jung Hwan Shin, Chan Young Lee, Hyuk-Joon Lee, Seong-Ho Kong, Yun-Suhk Suh, Han-Joon Kim, Han-Kwang Yang, Beomseok Jeon
The only characteristic of alpha-synuclein (AS) accumulation in the gastrointestinal (GI) tract of Parkinson’s disease (PD) found in pathological studies is the “rostrocaudal gradient,” which describes the more frequent presence of AS accumulation in the upper GI tract than in the lower GI tract. This study aimed to determine the diagnostic accuracy and identify predictors of AS accumulation in the GI tract of PD patients. The frequency of AS accumulation in the GI tract was compared between PD patients (N = 97) who underwent radical GI surgery for cancer and individually matched controls (N = 94). We evaluated AS accumulation in the neural structures using phosphorylated AS immunohistochemistry. A multivariable logistic regression analysis was conducted to determine the predictors of AS accumulation in the GI tract of PD patients. The frequency of AS accumulation was significantly higher in PD patients (75.3%) than in controls (8.5%, p-value < 0.001). The sensitivity and specificity of the full-layer evaluation were 75.3% and 91.5%, respectively. When the evaluation was confined to the mucosal/submucosal layer, the sensitivity and specificity were 46.9% and 94.7%, respectively. The rostrocaudal gradient of AS accumulation was found in PD patients. The duration from symptom onset to surgery was significantly longer in PD patients with AS accumulation (4.9 ± 4.9 years) than in PD patients without AS accumulation (1.8 ± 4.1 years, p-value = 0.005). Both disease duration and rostrocaudal gradient independently predicted the presence of AS accumulation in the GI tract of PD patients. Our study suggests PD-related AS accumulation in the GI tract follows a temporally increasing but spatially static progression pattern.
{"title":"Diagnostic accuracy and predictors of alpha-synuclein accumulation in the gastrointestinal tract of Parkinson’s disease","authors":"Chaewon Shin, Seong-Ik Kim, Sung-Hye Park, Jong-Min Kim, Jee-Young Lee, Sun Ju Chung, Jae Woo Kim, Tae-Beom Ahn, Kye Won Park, Jung Hwan Shin, Chan Young Lee, Hyuk-Joon Lee, Seong-Ho Kong, Yun-Suhk Suh, Han-Joon Kim, Han-Kwang Yang, Beomseok Jeon","doi":"10.1038/s41531-024-00766-3","DOIUrl":"https://doi.org/10.1038/s41531-024-00766-3","url":null,"abstract":"<p>The only characteristic of alpha-synuclein (AS) accumulation in the gastrointestinal (GI) tract of Parkinson’s disease (PD) found in pathological studies is the “rostrocaudal gradient,” which describes the more frequent presence of AS accumulation in the upper GI tract than in the lower GI tract. This study aimed to determine the diagnostic accuracy and identify predictors of AS accumulation in the GI tract of PD patients. The frequency of AS accumulation in the GI tract was compared between PD patients (<i>N</i> = 97) who underwent radical GI surgery for cancer and individually matched controls (<i>N</i> = 94). We evaluated AS accumulation in the neural structures using phosphorylated AS immunohistochemistry. A multivariable logistic regression analysis was conducted to determine the predictors of AS accumulation in the GI tract of PD patients. The frequency of AS accumulation was significantly higher in PD patients (75.3%) than in controls (8.5%, <i>p</i>-value < 0.001). The sensitivity and specificity of the full-layer evaluation were 75.3% and 91.5%, respectively. When the evaluation was confined to the mucosal/submucosal layer, the sensitivity and specificity were 46.9% and 94.7%, respectively. The rostrocaudal gradient of AS accumulation was found in PD patients. The duration from symptom onset to surgery was significantly longer in PD patients with AS accumulation (4.9 ± 4.9 years) than in PD patients without AS accumulation (1.8 ± 4.1 years, <i>p</i>-value = 0.005). Both disease duration and rostrocaudal gradient independently predicted the presence of AS accumulation in the GI tract of PD patients. Our study suggests PD-related AS accumulation in the GI tract follows a temporally increasing but spatially static progression pattern.</p>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"379 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-15DOI: 10.1038/s41531-024-00775-2
Peiling Huang, Ziman Zhu, Wenshan Li, Rong Zhang, Yijia Chi, Weijun Gong
High incidence, severe consequences, unclear mechanism, and poor treatment effect happened in Parkinson’s disease-related dysphagia. Repetitive transcranial magnetic stimulation is an effective treatment for dysphagia in Parkinson’s disease. However, the therapeutic effect and underlying mechanism of repetitive transcranial magnetic stimulation for dysphagia in Parkinson’s disease are still unknown. Neuroinflammation has been proven to be associated with dysphagia in Parkinson’s disease, and NLRP3 inflammasome activation and pyroptosis are common neuroinflammatory processes. Therefore, we compared swallowing quality, NLRP3 inflammasome activation, and caspase-1 dependent pyroptosis among NS control, repetitive transcranial magnetic stimulation control, sham repetitive transcranial magnetic stimulation control, and L-Dopa control mice by tongue muscle tone detection, immunohistochemistry, immunofluorescence, western blotting, co-immunoprecipitation, and quantitative PCR. The results showed that NLRP3 inflammasome activation and caspase-1-dependent pyroptosis were involved in dysphagia in MPTP-induced Parkinson’s disease mice model. Repetitive transcranial magnetic stimulation and L-dopa inhibited the above two pathways to alleviate dopaminergic neuronal damage and improve the quality of dysphagia. Repetitive transcranial magnetic stimulation (1 Hz, 1 time/3 days, 6 weeks) had the same effect on dysphagia as L-Dopa treatment (25 mg/kg/day, 6 weeks). Finally, we conclude that repetitive transcranial magnetic stimulation will be the preferred option for the treatment of dysphagia in Parkinson’s disease in certain conditions such as motor complications secondary to L-Dopa and L-Dopa non-response dysphagia.
{"title":"rTMS improves dysphagia by inhibiting NLRP3 inflammasome activation and caspase-1 dependent pyroptosis in PD mice","authors":"Peiling Huang, Ziman Zhu, Wenshan Li, Rong Zhang, Yijia Chi, Weijun Gong","doi":"10.1038/s41531-024-00775-2","DOIUrl":"https://doi.org/10.1038/s41531-024-00775-2","url":null,"abstract":"<p>High incidence, severe consequences, unclear mechanism, and poor treatment effect happened in Parkinson’s disease-related dysphagia. Repetitive transcranial magnetic stimulation is an effective treatment for dysphagia in Parkinson’s disease. However, the therapeutic effect and underlying mechanism of repetitive transcranial magnetic stimulation for dysphagia in Parkinson’s disease are still unknown. Neuroinflammation has been proven to be associated with dysphagia in Parkinson’s disease, and NLRP3 inflammasome activation and pyroptosis are common neuroinflammatory processes. Therefore, we compared swallowing quality, NLRP3 inflammasome activation, and caspase-1 dependent pyroptosis among NS control, repetitive transcranial magnetic stimulation control, sham repetitive transcranial magnetic stimulation control, and L-Dopa control mice by tongue muscle tone detection, immunohistochemistry, immunofluorescence, western blotting, co-immunoprecipitation, and quantitative PCR. The results showed that NLRP3 inflammasome activation and caspase-1-dependent pyroptosis were involved in dysphagia in MPTP-induced Parkinson’s disease mice model. Repetitive transcranial magnetic stimulation and L-dopa inhibited the above two pathways to alleviate dopaminergic neuronal damage and improve the quality of dysphagia. Repetitive transcranial magnetic stimulation (1 Hz, 1 time/3 days, 6 weeks) had the same effect on dysphagia as L-Dopa treatment (25 mg/kg/day, 6 weeks). Finally, we conclude that repetitive transcranial magnetic stimulation will be the preferred option for the treatment of dysphagia in Parkinson’s disease in certain conditions such as motor complications secondary to L-Dopa and L-Dopa non-response dysphagia.</p>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"2014 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-14DOI: 10.1038/s41531-024-00774-3
Elizabeth G Ellis, Garance M Meyer, Valtteri Kaasinen, Daniel T Corp, Nicola Pavese, Martin M Reich, Juho Joutsa
Movement disorders, such as Parkinson's disease, essential tremor, and dystonia, are characterized by their predominant motor symptoms, yet diseases causing abnormal movement also encompass several other symptoms, including non-motor symptoms. Here we review recent advances from studies of brain lesions, neuroimaging, and neuromodulation that provide converging evidence on symptom-specific brain networks in movement disorders. Although movement disorders have traditionally been conceptualized as disorders of the basal ganglia, cumulative data from brain lesions causing parkinsonism, tremor and dystonia have now demonstrated that this view is incomplete. Several recent studies have shown that lesions causing a given movement disorder occur in heterogeneous brain locations, but disrupt common brain networks, which appear to be specific to each motor phenotype. In addition, findings from structural and functional neuroimaging in movement disorders have demonstrated that brain abnormalities extend far beyond the brain networks associated with the motor symptoms. In fact, neuroimaging findings in each movement disorder are strongly influenced by the constellation of patients' symptoms that also seem to map to specific networks rather than individual anatomical structures or single neurotransmitters. Finally, observations from deep brain stimulation have demonstrated that clinical changes, including both symptom improvement and side effects, are dependent on the modulation of large-scale networks instead of purely local effects of the neuromodulation. Combined, this multimodal evidence suggests that symptoms in movement disorders arise from distinct brain networks, encouraging multimodal imaging studies to better characterize the underlying symptom-specific mechanisms and individually tailor treatment approaches.
{"title":"Multimodal neuroimaging to characterize symptom-specific networks in movement disorders.","authors":"Elizabeth G Ellis, Garance M Meyer, Valtteri Kaasinen, Daniel T Corp, Nicola Pavese, Martin M Reich, Juho Joutsa","doi":"10.1038/s41531-024-00774-3","DOIUrl":"10.1038/s41531-024-00774-3","url":null,"abstract":"<p><p>Movement disorders, such as Parkinson's disease, essential tremor, and dystonia, are characterized by their predominant motor symptoms, yet diseases causing abnormal movement also encompass several other symptoms, including non-motor symptoms. Here we review recent advances from studies of brain lesions, neuroimaging, and neuromodulation that provide converging evidence on symptom-specific brain networks in movement disorders. Although movement disorders have traditionally been conceptualized as disorders of the basal ganglia, cumulative data from brain lesions causing parkinsonism, tremor and dystonia have now demonstrated that this view is incomplete. Several recent studies have shown that lesions causing a given movement disorder occur in heterogeneous brain locations, but disrupt common brain networks, which appear to be specific to each motor phenotype. In addition, findings from structural and functional neuroimaging in movement disorders have demonstrated that brain abnormalities extend far beyond the brain networks associated with the motor symptoms. In fact, neuroimaging findings in each movement disorder are strongly influenced by the constellation of patients' symptoms that also seem to map to specific networks rather than individual anatomical structures or single neurotransmitters. Finally, observations from deep brain stimulation have demonstrated that clinical changes, including both symptom improvement and side effects, are dependent on the modulation of large-scale networks instead of purely local effects of the neuromodulation. Combined, this multimodal evidence suggests that symptoms in movement disorders arise from distinct brain networks, encouraging multimodal imaging studies to better characterize the underlying symptom-specific mechanisms and individually tailor treatment approaches.</p>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"10 1","pages":"154"},"PeriodicalIF":6.7,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11324766/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141982930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-14DOI: 10.1038/s41531-024-00767-2
Alexander Grotemeyer, Tobias Petschner, Robert Peach, Dirk Hoehl, Torsten Knauer, Uwe Thomas, Heinz Endres, Robert Blum, Michael Sendtner, Jens Volkmann, Chi Wang Ip
Deep brain stimulation (DBS) has emerged as a revolutionary technique for accessing and modulating brain circuits. DBS is used to treat dysfunctional neuronal circuits in neurological and psychiatric disorders. Despite over two decades of clinical application, the fundamental mechanisms underlying DBS are still not well understood. One reason is the complexity of in vivo electrical manipulation of the central nervous system, particularly in rodent models. DBS-devices for freely moving rodents are typically custom-designed and not commercially available, thus making it difficult to perform experimental DBS according to common standards. Addressing these challenges, we have developed a novel wireless microstimulation system for deep brain stimulation (wDBS) tailored for rodents. We demonstrate the efficacy of this device for the restoration of behavioral impairments in hemiparkinsonian mice through unilateral wDBS of the subthalamic nucleus. Moreover, we introduce a standardized and innovative pipeline, integrating machine learning techniques to analyze Parkinson’s disease-like and DBS-induced gait changes.
{"title":"Standardized wireless deep brain stimulation system for mice","authors":"Alexander Grotemeyer, Tobias Petschner, Robert Peach, Dirk Hoehl, Torsten Knauer, Uwe Thomas, Heinz Endres, Robert Blum, Michael Sendtner, Jens Volkmann, Chi Wang Ip","doi":"10.1038/s41531-024-00767-2","DOIUrl":"https://doi.org/10.1038/s41531-024-00767-2","url":null,"abstract":"<p>Deep brain stimulation (DBS) has emerged as a revolutionary technique for accessing and modulating brain circuits. DBS is used to treat dysfunctional neuronal circuits in neurological and psychiatric disorders. Despite over two decades of clinical application, the fundamental mechanisms underlying DBS are still not well understood. One reason is the complexity of in vivo electrical manipulation of the central nervous system, particularly in rodent models. DBS-devices for freely moving rodents are typically custom-designed and not commercially available, thus making it difficult to perform experimental DBS according to common standards. Addressing these challenges, we have developed a novel wireless microstimulation system for deep brain stimulation (wDBS) tailored for rodents. We demonstrate the efficacy of this device for the restoration of behavioral impairments in hemiparkinsonian mice through unilateral wDBS of the subthalamic nucleus. Moreover, we introduce a standardized and innovative pipeline, integrating machine learning techniques to analyze Parkinson’s disease-like and DBS-induced gait changes.</p>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"11 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141980973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-11DOI: 10.1038/s41531-024-00758-3
Conor Owens-Walton, Talia M. Nir, Sarah Al-Bachari, Sonia Ambrogi, Tim J. Anderson, Ítalo Karmann Aventurato, Fernando Cendes, Yao-Liang Chen, Valentina Ciullo, Phil Cook, John C. Dalrymple-Alford, Michiel F. Dirkx, Jason Druzgal, Hedley C. A. Emsley, Rachel Guimarães, Hamied A. Haroon, Rick C. Helmich, Michele T. Hu, Martin E. Johansson, Ho Bin Kim, Johannes C. Klein, Max Laansma, Katherine E. Lawrence, Christine Lochner, Clare Mackay, Corey T. McMillan, Tracy R. Melzer, Leila Nabulsi, Ben Newman, Peter Opriessnig, Laura M. Parkes, Clelia Pellicano, Fabrizio Piras, Federica Piras, Lukas Pirpamer, Toni L. Pitcher, Kathleen L. Poston, Annerine Roos, Lucas Scárdua Silva, Reinhold Schmidt, Petra Schwingenschuh, Marian Shahid-Besanti, Gianfranco Spalletta, Dan J. Stein, Sophia I. Thomopoulos, Duygu Tosun, Chih-Chien Tsai, Odile A. van den Heuvel, Eva van Heese, Daniela Vecchio, Julio E. Villalón-Reina, Chris Vriend, Jiun-Jie Wang, Yih-Ru Wu, Clarissa Lin Yasuda, Paul M. Thompson, Neda Jahanshad, Ysbrand van der Werf
The progression of Parkinson’s disease (PD) is associated with microstructural alterations in neural pathways, contributing to both motor and cognitive decline. However, conflicting findings have emerged due to the use of heterogeneous methods in small studies. Here we performed a large diffusion MRI study in PD, integrating data from 17 cohorts worldwide, to identify stage-specific profiles of white matter differences. Diffusion-weighted MRI data from 1654 participants diagnosed with PD (age: 20–89 years; 33% female) and 885 controls (age: 19–84 years; 47% female) were analyzed using the ENIGMA-DTI protocol to evaluate white matter microstructure. Skeletonized maps of fractional anisotropy (FA) and mean diffusivity (MD) were compared across Hoehn and Yahr (HY) disease groups and controls to reveal the profile of white matter alterations at different stages. We found an enhanced, more widespread pattern of microstructural alterations with each stage of PD, with eventually lower FA and higher MD in almost all regions of interest: Cohen’s d effect sizes reached d = −1.01 for FA differences in the fornix at PD HY Stage 4/5. The early PD signature in HY stage 1 included higher FA and lower MD across the entire white matter skeleton, in a direction opposite to that typical of other neurodegenerative diseases. FA and MD were associated with motor and non-motor clinical dysfunction. While overridden by degenerative changes in the later stages of PD, early PD is associated with paradoxically higher FA and lower MD in PD, consistent with early compensatory changes associated with the disorder.
帕金森病(PD)的进展与神经通路的微结构改变有关,导致运动能力和认知能力下降。然而,由于小型研究中使用的方法不尽相同,因此出现了相互矛盾的研究结果。在此,我们对帕金森病进行了一项大型弥散核磁共振成像研究,整合了来自全球 17 个队列的数据,以确定白质差异的特定阶段特征。我们使用 ENIGMA-DTI 方案分析了 1654 名确诊为帕金森病的患者(年龄:20-89 岁;33% 为女性)和 885 名对照组患者(年龄:19-84 岁;47% 为女性)的弥散加权 MRI 数据,以评估白质微观结构。我们比较了霍恩和叶尔(HY)疾病组和对照组的分数各向异性(FA)和平均扩散率(MD)骨架图,以揭示不同阶段白质改变的概况。我们发现,在帕金森病的每个阶段,微结构改变的模式都会增强,范围更广,几乎所有相关区域的 FA 最终都会降低,而 MD 则会升高:在 PD HY 4/5 期,穹窿区 FA 差异的 Cohen's d效应大小达到了 d =-1.01。HY1期的早期帕金森病特征包括整个白质骨架的FA和MD均较高和较低,其方向与其他典型的神经退行性疾病相反。FA和MD与运动和非运动临床功能障碍有关。虽然帕金森氏症晚期的退行性变化压倒了帕金森氏症,但帕金森氏症早期却与帕金森氏症较高的FA和较低的MD相关,这与帕金森氏症的早期代偿性变化一致。
{"title":"A worldwide study of white matter microstructural alterations in people living with Parkinson’s disease","authors":"Conor Owens-Walton, Talia M. Nir, Sarah Al-Bachari, Sonia Ambrogi, Tim J. Anderson, Ítalo Karmann Aventurato, Fernando Cendes, Yao-Liang Chen, Valentina Ciullo, Phil Cook, John C. Dalrymple-Alford, Michiel F. Dirkx, Jason Druzgal, Hedley C. A. Emsley, Rachel Guimarães, Hamied A. Haroon, Rick C. Helmich, Michele T. Hu, Martin E. Johansson, Ho Bin Kim, Johannes C. Klein, Max Laansma, Katherine E. Lawrence, Christine Lochner, Clare Mackay, Corey T. McMillan, Tracy R. Melzer, Leila Nabulsi, Ben Newman, Peter Opriessnig, Laura M. Parkes, Clelia Pellicano, Fabrizio Piras, Federica Piras, Lukas Pirpamer, Toni L. Pitcher, Kathleen L. Poston, Annerine Roos, Lucas Scárdua Silva, Reinhold Schmidt, Petra Schwingenschuh, Marian Shahid-Besanti, Gianfranco Spalletta, Dan J. Stein, Sophia I. Thomopoulos, Duygu Tosun, Chih-Chien Tsai, Odile A. van den Heuvel, Eva van Heese, Daniela Vecchio, Julio E. Villalón-Reina, Chris Vriend, Jiun-Jie Wang, Yih-Ru Wu, Clarissa Lin Yasuda, Paul M. Thompson, Neda Jahanshad, Ysbrand van der Werf","doi":"10.1038/s41531-024-00758-3","DOIUrl":"https://doi.org/10.1038/s41531-024-00758-3","url":null,"abstract":"<p>The progression of Parkinson’s disease (PD) is associated with microstructural alterations in neural pathways, contributing to both motor and cognitive decline. However, conflicting findings have emerged due to the use of heterogeneous methods in small studies. Here we performed a large diffusion MRI study in PD, integrating data from 17 cohorts worldwide, to identify stage-specific profiles of white matter differences. Diffusion-weighted MRI data from 1654 participants diagnosed with PD (age: 20–89 years; 33% female) and 885 controls (age: 19–84 years; 47% female) were analyzed using the ENIGMA-DTI protocol to evaluate white matter microstructure. Skeletonized maps of fractional anisotropy (FA) and mean diffusivity (MD) were compared across Hoehn and Yahr (HY) disease groups and controls to reveal the profile of white matter alterations at different stages. We found an enhanced, more widespread pattern of microstructural alterations with each stage of PD, with eventually lower FA and higher MD in almost all regions of interest: Cohen’s d effect sizes reached <i>d</i> = −1.01 for FA differences in the fornix at PD HY Stage 4/5. The early PD signature in HY stage 1 included higher FA and lower MD across the entire white matter skeleton, in a direction opposite to that typical of other neurodegenerative diseases. FA and MD were associated with motor and non-motor clinical dysfunction. While overridden by degenerative changes in the later stages of PD, early PD is associated with paradoxically higher FA and lower MD in PD, consistent with early compensatory changes associated with the disorder.</p>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"72 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141915209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-09DOI: 10.1038/s41531-024-00734-x
Thaïna Rosinvil, Ronald B. Postuma, Shady Rahayel, Amélie Bellavance, Véronique Daneault, Jacques Montplaisir, Jean-Marc Lina, Julie Carrier, Jean-François Gagnon
Clinical and neuroanatomical correlates of daytime sleepiness in Parkinson’s disease (PD) remain inconsistent in the literature. Two studies were conducted here. The first evaluated the interrelation between non-motor and motor symptoms, using a principal component analysis, associated with daytime sleepiness in PD. The second identified the neuroanatomical substrates associated with daytime sleepiness in PD using magnetic resonance imaging (MRI). In the first study, 77 participants with PD completed an extensive clinical, cognitive testing and a polysomnographic recording. In the second study, 29 PD participants also underwent MRI acquisition of T1-weighted images. Vertex-based cortical and subcortical surface analysis, deformation-based morphometry, and voxel-based morphometry were performed to assess the association between daytime sleepiness severity and structural brain changes in participants. In both studies, the severity of daytime sleepiness and the presence of excessive daytime sleepiness (EDS; total score >10) were measured using the Epworth Sleepiness Scale. We found that individuals with EDS had a higher score on a component including higher dosage of dopamine receptor agonists, motor symptoms severity, shorter sleep latency, and greater sleep efficiency. Moreover, increased daytime sleepiness severity was associated with a larger surface area in the right insula, contracted surfaces in the right putamen and right lateral amygdala, and a larger surface in the right posterior amygdala. Hence, daytime sleepiness in PD was associated with dopaminergic receptor agonists dosage, motor impairment, and objective sleep measures. Moreover, neuroanatomical changes in cortical and subcortical regions related to vigilance, motor, and emotional states were associated with more severe daytime sleepiness.
{"title":"Clinical symptoms and neuroanatomical substrates of daytime sleepiness in Parkinson’s disease","authors":"Thaïna Rosinvil, Ronald B. Postuma, Shady Rahayel, Amélie Bellavance, Véronique Daneault, Jacques Montplaisir, Jean-Marc Lina, Julie Carrier, Jean-François Gagnon","doi":"10.1038/s41531-024-00734-x","DOIUrl":"https://doi.org/10.1038/s41531-024-00734-x","url":null,"abstract":"<p>Clinical and neuroanatomical correlates of daytime sleepiness in Parkinson’s disease (PD) remain inconsistent in the literature. Two studies were conducted here. The first evaluated the interrelation between non-motor and motor symptoms, using a principal component analysis, associated with daytime sleepiness in PD. The second identified the neuroanatomical substrates associated with daytime sleepiness in PD using magnetic resonance imaging (MRI). In the first study, 77 participants with PD completed an extensive clinical, cognitive testing and a polysomnographic recording. In the second study, 29 PD participants also underwent MRI acquisition of T1-weighted images. Vertex-based cortical and subcortical surface analysis, deformation-based morphometry, and voxel-based morphometry were performed to assess the association between daytime sleepiness severity and structural brain changes in participants. In both studies, the severity of daytime sleepiness and the presence of excessive daytime sleepiness (EDS; total score >10) were measured using the Epworth Sleepiness Scale. We found that individuals with EDS had a higher score on a component including higher dosage of dopamine receptor agonists, motor symptoms severity, shorter sleep latency, and greater sleep efficiency. Moreover, increased daytime sleepiness severity was associated with a larger surface area in the right insula, contracted surfaces in the right putamen and right lateral amygdala, and a larger surface in the right posterior amygdala. Hence, daytime sleepiness in PD was associated with dopaminergic receptor agonists dosage, motor impairment, and objective sleep measures. Moreover, neuroanatomical changes in cortical and subcortical regions related to vigilance, motor, and emotional states were associated with more severe daytime sleepiness.</p>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"127 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141909110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-09DOI: 10.1038/s41531-024-00762-7
Sunderland K. Baker, Erin M. Radcliffe, Daniel R. Kramer, Steven Ojemann, Michelle Case, Caleb Zarns, Abbey Holt-Becker, Robert S. Raike, Alexander J. Baumgartner, Drew S. Kern, John A. Thompson
Oscillatory activity within the beta frequency range (13–30 Hz) serves as a Parkinson’s disease biomarker for tailoring deep brain stimulation (DBS) treatments. Currently, identifying clinically relevant beta signals, specifically frequencies of peak amplitudes within the beta spectral band, is a subjective process. To inform potential strategies for objective clinical decision making, we assessed algorithms for identifying beta peaks and devised a standardized approach for both research and clinical applications. Employing a novel monopolar referencing strategy, we utilized a brain sensing device to measure beta peak power across distinct contacts along each DBS electrode implanted in the subthalamic nucleus. We then evaluated the accuracy of ten beta peak detection algorithms against a benchmark established by expert consensus. The most accurate algorithms, all sharing similar underlying algebraic dynamic peak amplitude thresholding approaches, matched the expert consensus in performance and reliably predicted the clinical stimulation parameters during follow-up visits. These findings highlight the potential of algorithmic solutions to overcome the subjective bias in beta peak identification, presenting viable options for standardizing this process. Such advancements could lead to significant improvements in the efficiency and accuracy of patient-specific DBS therapy parameterization.
{"title":"Comparison of beta peak detection algorithms for data-driven deep brain stimulation programming strategies in Parkinson’s disease","authors":"Sunderland K. Baker, Erin M. Radcliffe, Daniel R. Kramer, Steven Ojemann, Michelle Case, Caleb Zarns, Abbey Holt-Becker, Robert S. Raike, Alexander J. Baumgartner, Drew S. Kern, John A. Thompson","doi":"10.1038/s41531-024-00762-7","DOIUrl":"https://doi.org/10.1038/s41531-024-00762-7","url":null,"abstract":"<p>Oscillatory activity within the beta frequency range (13–30 Hz) serves as a Parkinson’s disease biomarker for tailoring deep brain stimulation (DBS) treatments. Currently, identifying clinically relevant beta signals, specifically frequencies of peak amplitudes within the beta spectral band, is a subjective process. To inform potential strategies for objective clinical decision making, we assessed algorithms for identifying beta peaks and devised a standardized approach for both research and clinical applications. Employing a novel monopolar referencing strategy, we utilized a brain sensing device to measure beta peak power across distinct contacts along each DBS electrode implanted in the subthalamic nucleus. We then evaluated the accuracy of ten beta peak detection algorithms against a benchmark established by expert consensus. The most accurate algorithms, all sharing similar underlying algebraic dynamic peak amplitude thresholding approaches, matched the expert consensus in performance and reliably predicted the clinical stimulation parameters during follow-up visits. These findings highlight the potential of algorithmic solutions to overcome the subjective bias in beta peak identification, presenting viable options for standardizing this process. Such advancements could lead to significant improvements in the efficiency and accuracy of patient-specific DBS therapy parameterization.</p>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"12 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141909114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-08DOI: 10.1038/s41531-024-00769-0
Jacqueline Saenz, Elnaz Khezerlou, Meha Aggarwal, Amina Shaikh, Naga Ganti, Freja Herborg, Ping-Yue Pan
Missense mutations of PARK20/SYNJ1 (synaptojanin1/Synj1) were found in complex forms of familial Parkinsonism. However, the Synj1-regulated molecular and cellular changes associated with dopaminergic dysfunction remain unknown. We now report a fast depletion of evoked dopamine and impaired maintenance of the axonal dopamine transporter (DAT) in the Synj1 haploinsufficient (Synj1+/-) neurons. While Synj1 has been traditionally known to facilitate the endocytosis of synaptic vesicles, we provide in vitro and in vivo evidence demonstrating that Synj1 haploinsufficiency results in an increase of total DAT but a reduction of the surface DAT. Synj1+/- neurons exhibit maladaptive DAT trafficking, which could contribute to the altered DA release. We showed that the loss of surface DAT is associated with the impaired 5'-phosphatase activity and the hyperactive PI(4,5)P2-PKCβ pathway downstream of Synj1 deficiency. Thus, our findings provided important mechanistic insight for Synj1-regulated DAT trafficking integral to dysfunctional DA signaling, which might be relevant to early Parkinsonism.
PARK20/SYNJ1 (synaptojanin1/Synj1)的错义突变在复杂形式的家族性帕金森病中被发现。然而,与多巴胺能功能障碍相关的Synj1调控的分子和细胞变化仍然未知。我们现在报告了在 Synj1 单倍体不足(Synj1+/-)的神经元中,诱发多巴胺的快速消耗和轴突多巴胺转运体(DAT)的维持受损。传统上,Synj1 被认为能促进突触小泡的内吞,而我们提供的体外和体内证据表明,Synj1 单倍性缺失会导致总的 DAT 增加,但表面的 DAT 减少。Synj1+/-神经元表现出不适应的DAT贩运,这可能是导致DA释放改变的原因之一。我们的研究表明,表面DAT的缺失与Synj1缺失下游的5'-磷酸酶活性受损和PI(4,5)P2-PKCβ通路亢进有关。因此,我们的研究结果为Synj1调控的DAT转运与DA信号传导失调提供了重要的机理启示,这可能与早期帕金森病有关。
{"title":"Parkinson's disease gene, Synaptojanin1, dysregulates the surface maintenance of the dopamine transporter.","authors":"Jacqueline Saenz, Elnaz Khezerlou, Meha Aggarwal, Amina Shaikh, Naga Ganti, Freja Herborg, Ping-Yue Pan","doi":"10.1038/s41531-024-00769-0","DOIUrl":"10.1038/s41531-024-00769-0","url":null,"abstract":"<p><p>Missense mutations of PARK20/SYNJ1 (synaptojanin1/Synj1) were found in complex forms of familial Parkinsonism. However, the Synj1-regulated molecular and cellular changes associated with dopaminergic dysfunction remain unknown. We now report a fast depletion of evoked dopamine and impaired maintenance of the axonal dopamine transporter (DAT) in the Synj1 haploinsufficient (Synj1+/-) neurons. While Synj1 has been traditionally known to facilitate the endocytosis of synaptic vesicles, we provide in vitro and in vivo evidence demonstrating that Synj1 haploinsufficiency results in an increase of total DAT but a reduction of the surface DAT. Synj1+/- neurons exhibit maladaptive DAT trafficking, which could contribute to the altered DA release. We showed that the loss of surface DAT is associated with the impaired 5'-phosphatase activity and the hyperactive PI(4,5)P<sub>2</sub>-PKCβ pathway downstream of Synj1 deficiency. Thus, our findings provided important mechanistic insight for Synj1-regulated DAT trafficking integral to dysfunctional DA signaling, which might be relevant to early Parkinsonism.</p>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"10 1","pages":"148"},"PeriodicalIF":6.7,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310474/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141907330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}