Pub Date : 2021-12-01DOI: 10.1016/j.newar.2021.101631
Vladimir Lipunov , Valeria Grinshpun , Daniil Vlasenko
The numerous compact sources associated with neutron stars and white dwarfs discovered in recent decades are analyzed in terms of the Gravimagnetic Rotator model (GMR paradigm–Lipunov, 1987a, 1992). We offer the instrument for understanding of various observed features and evolutionary relationships of neutron stars and white dwarfs. We depict in a single diagram all objects from radio pulsars and dwarf novae to ultra luminous X-ray sources and a radio pulsating white dwarf. This diagram directly demonstrates the genetic link between different types of compact sources thereby making it possible to confirm and illustrate clearly the established evolutionary connections–such as that between bulge X-ray sources and millisecond pulsars. This approach allows us to understand the evolutionary status of Ultra Luminous X-ray sources. In addition, we propose an additional evolutionary branch of the formation of Magnetars. When our work was completed, an article by Kirsten et al.2021, was published, which reports the localization of FRB 20,200,120 in one of the globular clusters of the galaxy M81. This shows that the accretion-induced collapse scenario of the white dwarf (Lipunov and Postnov, 1985), considered in detail in this work, is a possible genealogical branch of Magnetar production.
{"title":"Evolutionary relations between different types of magnetized compact objects","authors":"Vladimir Lipunov , Valeria Grinshpun , Daniil Vlasenko","doi":"10.1016/j.newar.2021.101631","DOIUrl":"https://doi.org/10.1016/j.newar.2021.101631","url":null,"abstract":"<div><p>The numerous compact sources associated with neutron stars and white dwarfs discovered in recent decades are analyzed in terms of the Gravimagnetic Rotator model (GMR paradigm–<span>Lipunov, 1987a</span>, <span>1992</span>). We offer the instrument for understanding of various observed features and evolutionary relationships of neutron stars and white dwarfs. We depict in a single diagram all objects from radio pulsars and dwarf novae to ultra luminous X-ray sources and a radio pulsating white dwarf. This diagram directly demonstrates the genetic link between different types of compact sources thereby making it possible to confirm and illustrate clearly the established evolutionary connections–such as that between bulge X-ray sources and millisecond pulsars. This approach allows us to understand the evolutionary status of Ultra Luminous X-ray sources. In addition, we propose an additional evolutionary branch of the formation of Magnetars. When our work was completed, an article by <span>Kirsten et al.2021</span>, was published, which reports the localization of FRB 20,200,120 in one of the globular clusters of the galaxy M81. This shows that the accretion-induced collapse scenario of the white dwarf (<span>Lipunov and Postnov, 1985</span>), considered in detail in this work, is a possible genealogical branch of Magnetar production.</p></div>","PeriodicalId":19718,"journal":{"name":"New Astronomy Reviews","volume":"93 ","pages":"Article 101631"},"PeriodicalIF":6.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72276447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-01DOI: 10.1016/j.newar.2021.101616
Marc Türler , Vincent Tatischeff , Volker Beckmann , Eugene Churazov
ESA’s INTEGRAL space mission has achieved unique results for solar and terrestrial physics, although spacecraft operations nominally excluded the possibility to point at the Sun or the Earth. The Earth avoidance was, however, exceptionally relaxed for special occultation observations of the Cosmic X-ray Background (CXB), which on some occasions allowed the detection of strong X-ray auroral emission. In addition, the most intense solar flares can be bright enough to be detectable from outside the field of view of the main instruments. This article presents for the first time the auroral observations by INTEGRAL and reviews earlier studies of the most intense solar flares. We end by briefly summarising the studies of the Earth’s radiation belts, which can be considered as another topic of serendipitous science with INTEGRAL.
{"title":"INTEGRAL serendipitous observations of solar and terrestrial X-rays and gamma rays","authors":"Marc Türler , Vincent Tatischeff , Volker Beckmann , Eugene Churazov","doi":"10.1016/j.newar.2021.101616","DOIUrl":"https://doi.org/10.1016/j.newar.2021.101616","url":null,"abstract":"<div><p>ESA’s <em>INTEGRAL</em><span><span> space mission has achieved unique results for solar and terrestrial physics, although spacecraft operations nominally excluded the possibility to point at the Sun or the Earth. The Earth avoidance was, however, exceptionally relaxed for special occultation observations of the Cosmic X-ray Background (CXB), which on some occasions allowed the detection of strong X-ray auroral emission. In addition, the most intense </span>solar flares<span> can be bright enough to be detectable from outside the field of view of the main instruments. This article presents for the first time the auroral observations by </span></span><em>INTEGRAL</em> and reviews earlier studies of the most intense solar flares. We end by briefly summarising the studies of the Earth’s radiation belts, which can be considered as another topic of serendipitous science with <em>INTEGRAL</em>.</p></div>","PeriodicalId":19718,"journal":{"name":"New Astronomy Reviews","volume":"93 ","pages":"Article 101616"},"PeriodicalIF":6.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.newar.2021.101616","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72276902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-01DOI: 10.1016/j.newar.2021.101633
Edward PJ van den Heuvel, G. Belanger, L. Hanlon, E. Kuulkers
{"title":"FIFTEEN-PLUS YEARS OF INTEGRAL SCIENCE","authors":"Edward PJ van den Heuvel, G. Belanger, L. Hanlon, E. Kuulkers","doi":"10.1016/j.newar.2021.101633","DOIUrl":"https://doi.org/10.1016/j.newar.2021.101633","url":null,"abstract":"","PeriodicalId":19718,"journal":{"name":"New Astronomy Reviews","volume":"11 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88711880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-23DOI: 10.1016/J.NEWAR.2021.101629
E. Kuulkers, C. Ferrigno, P. Kretschmar, J. Alfonso-Garzón, Marius Baab, A. Bazzano, G. Belanger, Ian Benson, A. J. Bird, E. Bozzo, S. Brandt, Elliott Coe, I. Caballero, F. Cangemi, J. Chenevez, B. Cenko, Nebil Cinar, A. Coleiro, S. D. Padova, R. Diehl, C. Dietze, A. Domingo, M. Drapes, Eleonora D'uva, M. Ehle, J. Ebrero, Mithrajith Edirimanne, N. Eismont, T. Finn, M. Fiocchi, E. Tomas, G. Gaudenzi, T. Godard, A. Goldwurm, D. Gotz, C. Gouiffès, S. Grebenev, J. Greiner, A. Gros, L. Hanlon, W. Hermsen, C. Hernández, M. Hernanz, Jutta M. Huebner, E. Jourdain, G. Rosa, C. Labanti, P. Laurent, Alexander Lehanka, N. Lund, J. Madison, J. Malzac, Jim Martin, J. Mas-Hesse, B. Mcbreen, A. Mcdonald, J. Mcenery, S. Mereghetti, L. Natalucci, J. Ness, C. A. Oxborrow, J. Palmer, S. Peschke, F. Petrucciani, N. Pfeil, M. Reichenbaecher, J. Rodi, Jérôme Rodriguez, J. Roques, E. Donate, D. Salt, C. Sanchez-Fernandez, A. Sauvageon, V. Savchenko, S. Sazonov, Stefano Scaglioni, N. Schartel, T. Siegert, R. Southworth, R. Sunyae
{"title":"INTEGRAL reloaded: Spacecraft, instruments and ground system","authors":"E. Kuulkers, C. Ferrigno, P. Kretschmar, J. Alfonso-Garzón, Marius Baab, A. Bazzano, G. Belanger, Ian Benson, A. J. Bird, E. Bozzo, S. Brandt, Elliott Coe, I. Caballero, F. Cangemi, J. Chenevez, B. Cenko, Nebil Cinar, A. Coleiro, S. D. Padova, R. Diehl, C. Dietze, A. Domingo, M. Drapes, Eleonora D'uva, M. Ehle, J. Ebrero, Mithrajith Edirimanne, N. Eismont, T. Finn, M. Fiocchi, E. Tomas, G. Gaudenzi, T. Godard, A. Goldwurm, D. Gotz, C. Gouiffès, S. Grebenev, J. Greiner, A. Gros, L. Hanlon, W. Hermsen, C. Hernández, M. Hernanz, Jutta M. Huebner, E. Jourdain, G. Rosa, C. Labanti, P. Laurent, Alexander Lehanka, N. Lund, J. Madison, J. Malzac, Jim Martin, J. Mas-Hesse, B. Mcbreen, A. Mcdonald, J. Mcenery, S. Mereghetti, L. Natalucci, J. Ness, C. A. Oxborrow, J. Palmer, S. Peschke, F. Petrucciani, N. Pfeil, M. Reichenbaecher, J. Rodi, Jérôme Rodriguez, J. Roques, E. Donate, D. Salt, C. Sanchez-Fernandez, A. Sauvageon, V. Savchenko, S. Sazonov, Stefano Scaglioni, N. Schartel, T. Siegert, R. Southworth, R. Sunyae","doi":"10.1016/J.NEWAR.2021.101629","DOIUrl":"https://doi.org/10.1016/J.NEWAR.2021.101629","url":null,"abstract":"","PeriodicalId":19718,"journal":{"name":"New Astronomy Reviews","volume":"18 1","pages":"101629"},"PeriodicalIF":6.0,"publicationDate":"2021-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90440512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-04DOI: 10.1016/j.newar.2021.101631
Vladimir Lipunov, V. Grinshpun, Daniil Vlasenko
{"title":"Evolutionary relations between different types of Magnetized Compact Objects","authors":"Vladimir Lipunov, V. Grinshpun, Daniil Vlasenko","doi":"10.1016/j.newar.2021.101631","DOIUrl":"https://doi.org/10.1016/j.newar.2021.101631","url":null,"abstract":"","PeriodicalId":19718,"journal":{"name":"New Astronomy Reviews","volume":"123 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2021-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73677621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-01DOI: 10.1016/j.newar.2021.101610
Serguei Komissarov , Oliver Porth
When astrophysical jets were discovered one hundred years ago, the field of numerical simulations did not yet exit. Since the arrival of programmable computers though, numerical simulations have increasingly become an indispensable tool for dealing with “tough nut” problems which involve complex dynamic and non-linear phenomena. Astrophysical jets are an ideal example of such a tough nut, where multi-scale plasma physics, radiative and non-thermal processes, turbulence and relativity combine to present a formidable challenge to researchers.
Highlighting major achievements obtained through numerical simulations concerning the validity and nature of the Blandford–Znajek mechanism, the launching, collimation, acceleration and stability of jets, their interaction with the surrounding plasma, jet-galaxy feedback mechanisms etc., we trace how the field developed from its first tentative steps into the age of “maturity”. We also give a brief and personal outlook on how the field may evolve in the foreseeable future.
{"title":"Numerical simulations of jets","authors":"Serguei Komissarov , Oliver Porth","doi":"10.1016/j.newar.2021.101610","DOIUrl":"https://doi.org/10.1016/j.newar.2021.101610","url":null,"abstract":"<div><p>When astrophysical jets were discovered one hundred years ago, the field of numerical simulations did not yet exit. Since the arrival of programmable computers though, numerical simulations have increasingly become an indispensable tool for dealing with “tough nut” problems which involve complex dynamic and non-linear phenomena. Astrophysical jets are an ideal example of such a tough nut, where multi-scale plasma physics, radiative and non-thermal processes, turbulence and relativity combine to present a formidable challenge to researchers.</p><p>Highlighting major achievements obtained through numerical simulations concerning the validity and nature of the Blandford–Znajek mechanism, the launching, collimation, acceleration and stability of jets, their interaction with the surrounding plasma, jet-galaxy feedback mechanisms etc., we trace how the field developed from its first tentative steps into the age of “maturity”. We also give a brief and personal outlook on how the field may evolve in the foreseeable future.</p></div>","PeriodicalId":19718,"journal":{"name":"New Astronomy Reviews","volume":"92 ","pages":"Article 101610"},"PeriodicalIF":6.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.newar.2021.101610","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91705254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-01DOI: 10.1016/j.newar.2020.101596
David Avnir
The major revolution in modern astronomy recognizing the universe as teeming with exoplanets, the discovery of liquid water in solar moons, and the continuing focus on Mars exploration, all accelerate the re-evaluation of potential biomarkers for extraterrestrial life. Based on life on planet Earth which relies heavily on chiral molecules and especially on homochiral families, the detection of molecules with these structural properties appears in all road-maps as prime indicators of extraterrestrial life. This review analyzes the strengths, bounds and potential weaknesses of relying on chirality and on homochirality as biomarkers, along with recommendations of how to practically use it. Some of the main issues presented, discussed and answered include: what is the extent to which chirality can be expected to be a universal feature of life; is detection of chirality enough or do we need also to detect homochirality; how justified is it to view life on Earth as purely homochiral; what are the weaknesses of the need to invent an arbitrary label of handedness (needed to define homochirality) and what are the pitfalls that emerge from these weaknesses; what stands behind a detected specific value of enantiomeric excess and what affects its values as we consider old, extinct life, just emerging embryonic life, or extant but rare life; how can one quantify the degree of homochirality; and, what are relevant experimental approached for detecting chirality on-ground and from distance? Finally, a summary with a concise list of recommendations is provided, along with a brief outlook.
{"title":"Critical review of chirality indicators of extraterrestrial life","authors":"David Avnir","doi":"10.1016/j.newar.2020.101596","DOIUrl":"10.1016/j.newar.2020.101596","url":null,"abstract":"<div><p>The major revolution in modern astronomy recognizing the universe as teeming with exoplanets, the discovery of liquid water in solar moons, and the continuing focus on Mars exploration, all accelerate the re-evaluation of potential biomarkers for extraterrestrial life. Based on life on planet Earth which relies heavily on chiral molecules and especially on homochiral families, the detection of molecules with these structural properties appears in all road-maps as prime indicators of extraterrestrial life. This review analyzes the strengths, bounds and potential weaknesses of relying on chirality and on homochirality as biomarkers, along with recommendations of how to practically use it. Some of the main issues presented, discussed and answered include: what is the extent to which chirality can be expected to be a universal feature of life; is detection of chirality enough or do we need also to detect homochirality; how justified is it to view life on Earth as purely homochiral; what are the weaknesses of the need to invent an arbitrary label of handedness (needed to define homochirality) and what are the pitfalls that emerge from these weaknesses; what stands behind a detected specific value of enantiomeric excess and what affects its values as we consider old, extinct life, just emerging embryonic life, or extant but rare life; how can one quantify the degree of homochirality; and, what are relevant experimental approached for detecting chirality on-ground and from distance? Finally, a summary with a concise list of recommendations is provided, along with a brief outlook.</p></div>","PeriodicalId":19718,"journal":{"name":"New Astronomy Reviews","volume":"92 ","pages":"Article 101596"},"PeriodicalIF":6.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.newar.2020.101596","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77212355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-01DOI: 10.1016/j.newar.2020.101606
J. Isern , M. Hernanz , E. Bravo , S. Grebenev , P. Jean , M. Renaud , T. Siegert , J. Vink
Novae and supernovae play a key role in many fields of Astrophysics and Cosmology. Despite their importance, an accurate description of which objects explode and why and how they explode is still lacking. One of the main characteristics of such explosions is that they are the main suppliers of newly synthesized chemical elements in the Galaxy. Since some of these isotopes are radioactive, it is possible to use the corresponding gamma-rays as a diagnostic tool of the explosion thanks to their independence on the thermal state of the debris. The drawback is the poor sensitivity of detectors in the MeV energy domain. As a consequence, the radioactive lines have only been detected in one core collapse supernova (SN 1987A), one Type Ia supernova (SN 2014J), and one supernova remnant (Cas A). Nevertheless these observations have provided and are providing important information about the explosion mechanisms. Unfortunately, novae are still eluding detection. These results emphasize the necessity to place as soon as possible a new instrument in orbit with enough sensitivity to noticeably enlarge the sample of detected events.
{"title":"Synthesis of radioactive elements in novae and supernovae and their use as a diagnostic tool","authors":"J. Isern , M. Hernanz , E. Bravo , S. Grebenev , P. Jean , M. Renaud , T. Siegert , J. Vink","doi":"10.1016/j.newar.2020.101606","DOIUrl":"10.1016/j.newar.2020.101606","url":null,"abstract":"<div><p><span>Novae and </span>supernovae<span><span> play a key role in many fields of Astrophysics and Cosmology. Despite their importance, an accurate description of which objects explode and why and how they explode is still lacking. One of the main characteristics of such explosions is that they are the main suppliers of newly synthesized chemical elements in the Galaxy. Since some of these isotopes are radioactive, it is possible to use the corresponding gamma-rays as a diagnostic tool of the explosion thanks to their independence on the thermal state of the debris. The drawback is the poor sensitivity of detectors in the MeV energy domain. As a consequence, the radioactive lines have only been detected in one core collapse supernova (SN 1987A), one </span>Type Ia supernova<span> (SN 2014J), and one supernova remnant (Cas A). Nevertheless these observations have provided and are providing important information about the explosion mechanisms. Unfortunately, novae are still eluding detection. These results emphasize the necessity to place as soon as possible a new instrument in orbit with enough sensitivity to noticeably enlarge the sample of detected events.</span></span></p></div>","PeriodicalId":19718,"journal":{"name":"New Astronomy Reviews","volume":"92 ","pages":"Article 101606"},"PeriodicalIF":6.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.newar.2020.101606","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78982582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-01DOI: 10.1016/j.newar.2020.101608
Roland Diehl , Martin G.H. Krause , Karsten Kretschmer , Michael Lang , Moritz M.M. Pleintinger , Thomas Siegert , Wei Wang , Laurent Bouchet , Pierrick Martin
<div><p>The measurement and astrophysical interpretation of characteristic <span><math><mi>γ</mi></math></span>-ray lines from nucleosynthesis was one of the prominent science goals of the INTEGRAL mission and in particular its spectrometer SPI. Emission from <span><math><msup><mrow></mrow><mrow><mn>26</mn><mspace></mspace></mrow></msup></math></span>Al and from <span><math><msup><mrow></mrow><mrow><mn>60</mn><mspace></mspace></mrow></msup></math></span><span>Fe decay lines, due to their My decay times, originates from accumulated ejecta of nucleosynthesis sources, and appears diffuse in nature. </span><span><math><msup><mrow></mrow><mrow><mn>26</mn><mspace></mspace></mrow></msup></math></span>Al and <span><math><msup><mrow></mrow><mrow><mn>60</mn><mspace></mspace></mrow></msup></math></span><span><span>Fe are believed to originate mostly from massive star clusters. The </span>radioactive decay </span><span><math><mi>γ</mi></math></span><span>-ray observations open an interesting window to trace the fate and flow of nucleosynthesis ejecta, after they have left the immediate sources and their birth sites, and on their path to mix with ambient interstellar gas. The </span><span><math><msup><mrow></mrow><mrow><mn>26</mn><mspace></mspace></mrow></msup></math></span><span>Al emission image obtained with INTEGRAL confirms earlier findings of clumpiness and an extent along the entire plane of the Galaxy, supporting its origin from massive-star groups. INTEGRAL spectroscopy resolved the line and found Doppler broadenings and systematic shifts with longitude, originating from large-scale galactic rotation. But an excess velocity of 200 km s</span><sup>−1</sup> suggests that <span><math><msup><mrow></mrow><mrow><mn>26</mn><mspace></mspace></mrow></msup></math></span><span><span>Al decays preferentially within large superbubbles that extend in forward directions between </span>spiral arms. The detection of </span><span><math><msup><mrow></mrow><mrow><mn>26</mn><mspace></mspace></mrow></msup></math></span><span>Al line emission from the nearby Orion clusters in the Eridanus superbubble supports this interpretation. Positrons from </span><span><math><mi>β</mi></math></span><sup>+</sup> decays of <span><math><msup><mrow></mrow><mrow><mn>26</mn><mspace></mspace></mrow></msup></math></span><span>Al and other nucleosynthesis ejecta have been found to not explain the morphology of positron annihilation </span><span><math><mi>γ</mi></math></span>-rays at 511 keV that have been measured by INTEGRAL. The <span><math><msup><mrow></mrow><mrow><mn>60</mn><mspace></mspace></mrow></msup></math></span>Fe signal measured by INTEGRAL is diffuse but too weak for an imaging interpretation, an origin from point-like/concentrated sources is excluded. The <span><math><msup><mrow></mrow><mrow><mn>26</mn><mspace></mspace></mrow></msup></math></span>Al /<span><math><msup><mrow></mrow><mrow><mn>60</mn><mspace></mspace></mrow></msup></math></span><span>Fe ratio is constrained to a ra
核合成过程中γ射线特征线的测量和天体物理解释是INTEGRAL任务的重要科学目标之一,特别是它的光谱仪SPI。26Al和60Fe衰变线的辐射,由于其My衰变时间,来自核合成源的累积抛射物,并且在自然界中表现为弥漫性。al和fe被认为主要来自大质量星团。放射性衰变γ射线观测打开了一个有趣的窗口,可以追踪核合成抛射物的命运和流动,在它们离开直接来源和诞生地点之后,在与周围星际气体混合的道路上。由INTEGRAL获得的26Al发射图像证实了早期发现的团块和整个星系平面的范围,支持它起源于大质量恒星群。积分光谱分析了这条线,发现了多普勒变宽和系统的经度偏移,起源于大规模的星系旋转。但是超过200 km s - 1的速度表明26Al优先在螺旋臂之间向前延伸的大型超级气泡中衰变。从邻近的猎户座超级气泡中探测到的26Al线辐射支持了这一解释。来自26Al的β+衰变和其他核合成抛射物的正电子已被发现不能解释由INTEGRAL测量到的511 keV的正电子湮灭γ射线的形态。积分测量的60Fe信号是漫射的,但对于成像解释来说太弱了,排除了点状/集中源的起源。26Al /60Fe的比值限制在0.2-0.4的范围内。除了提高这些结果的精度之外,新星(通过22Na放射性)和银河系中过去的中子星合并(通过r-过程放射性)的弥散核合成贡献为剩余的任务扩展提供了令人兴奋的新前景。
{"title":"Steady-state nucleosynthesis throughout the Galaxy","authors":"Roland Diehl , Martin G.H. Krause , Karsten Kretschmer , Michael Lang , Moritz M.M. Pleintinger , Thomas Siegert , Wei Wang , Laurent Bouchet , Pierrick Martin","doi":"10.1016/j.newar.2020.101608","DOIUrl":"https://doi.org/10.1016/j.newar.2020.101608","url":null,"abstract":"<div><p>The measurement and astrophysical interpretation of characteristic <span><math><mi>γ</mi></math></span>-ray lines from nucleosynthesis was one of the prominent science goals of the INTEGRAL mission and in particular its spectrometer SPI. Emission from <span><math><msup><mrow></mrow><mrow><mn>26</mn><mspace></mspace></mrow></msup></math></span>Al and from <span><math><msup><mrow></mrow><mrow><mn>60</mn><mspace></mspace></mrow></msup></math></span><span>Fe decay lines, due to their My decay times, originates from accumulated ejecta of nucleosynthesis sources, and appears diffuse in nature. </span><span><math><msup><mrow></mrow><mrow><mn>26</mn><mspace></mspace></mrow></msup></math></span>Al and <span><math><msup><mrow></mrow><mrow><mn>60</mn><mspace></mspace></mrow></msup></math></span><span><span>Fe are believed to originate mostly from massive star clusters. The </span>radioactive decay </span><span><math><mi>γ</mi></math></span><span>-ray observations open an interesting window to trace the fate and flow of nucleosynthesis ejecta, after they have left the immediate sources and their birth sites, and on their path to mix with ambient interstellar gas. The </span><span><math><msup><mrow></mrow><mrow><mn>26</mn><mspace></mspace></mrow></msup></math></span><span>Al emission image obtained with INTEGRAL confirms earlier findings of clumpiness and an extent along the entire plane of the Galaxy, supporting its origin from massive-star groups. INTEGRAL spectroscopy resolved the line and found Doppler broadenings and systematic shifts with longitude, originating from large-scale galactic rotation. But an excess velocity of 200 km s</span><sup>−1</sup> suggests that <span><math><msup><mrow></mrow><mrow><mn>26</mn><mspace></mspace></mrow></msup></math></span><span><span>Al decays preferentially within large superbubbles that extend in forward directions between </span>spiral arms. The detection of </span><span><math><msup><mrow></mrow><mrow><mn>26</mn><mspace></mspace></mrow></msup></math></span><span>Al line emission from the nearby Orion clusters in the Eridanus superbubble supports this interpretation. Positrons from </span><span><math><mi>β</mi></math></span><sup>+</sup> decays of <span><math><msup><mrow></mrow><mrow><mn>26</mn><mspace></mspace></mrow></msup></math></span><span>Al and other nucleosynthesis ejecta have been found to not explain the morphology of positron annihilation </span><span><math><mi>γ</mi></math></span>-rays at 511 keV that have been measured by INTEGRAL. The <span><math><msup><mrow></mrow><mrow><mn>60</mn><mspace></mspace></mrow></msup></math></span>Fe signal measured by INTEGRAL is diffuse but too weak for an imaging interpretation, an origin from point-like/concentrated sources is excluded. The <span><math><msup><mrow></mrow><mrow><mn>26</mn><mspace></mspace></mrow></msup></math></span>Al /<span><math><msup><mrow></mrow><mrow><mn>60</mn><mspace></mspace></mrow></msup></math></span><span>Fe ratio is constrained to a ra","PeriodicalId":19718,"journal":{"name":"New Astronomy Reviews","volume":"92 ","pages":"Article 101608"},"PeriodicalIF":6.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.newar.2020.101608","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91743177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}