首页 > 最新文献

Pharmacological Reviews最新文献

英文 中文
Corrigendum to "International Union of Basic and Clinical Pharmacology. CXIX. Fundamental insights and clinical relevance regarding the carnitine palmitoyltransferase family of enzymes" [Pharmacological Reviews 77 (2025) 100051].
IF 21.1 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2025-04-22 DOI: 10.1016/j.pharmr.2025.100057
Rosalía Rodríguez-Rodríguez,Miguel Baena,Sebastián Zagmutt,West Kristian Paraiso,Ana Cristina Reguera,Rut Fadó,Núria Casals
{"title":"Corrigendum to \"International Union of Basic and Clinical Pharmacology. CXIX. Fundamental insights and clinical relevance regarding the carnitine palmitoyltransferase family of enzymes\" [Pharmacological Reviews 77 (2025) 100051].","authors":"Rosalía Rodríguez-Rodríguez,Miguel Baena,Sebastián Zagmutt,West Kristian Paraiso,Ana Cristina Reguera,Rut Fadó,Núria Casals","doi":"10.1016/j.pharmr.2025.100057","DOIUrl":"https://doi.org/10.1016/j.pharmr.2025.100057","url":null,"abstract":"","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"7 1","pages":"100057"},"PeriodicalIF":21.1,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143872101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of Kirchhoff's Laws to pharmacologic and pharmacokinetic analyses.
IF 19.3 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2025-03-21 DOI: 10.1016/j.pharmr.2025.100050
Leslie Z Benet, Jasleen K Sodhi, Markus Ville Tiitto, Yue Xiang

Recently, we introduced a straightforward approach to derive clearance and rate constant equations, without relying on differential equations, utilizing Kirchhoff's Laws, a well known physics methodology used to describe rate-defining processes either in series or parallel. Manuscripts from our laboratory have re-examined published experimental data, demonstrating that the Kirchhoff's Laws methodology can explain data previously considered anomalous, such as the following: (1) all experimental perfused liver clearance data conforming to the equation once thought to represent the unphysiological well stirred model, (2) instances where linear pharmacokinetic systemic bioavailability determinations exceed unity, (3) renal clearance being influenced by drug input processes, (4) statistically significant differences in bioavailability measures between urinary excretion and systemic concentration measurements, and (5) how the long-accepted steady-state clearance approach used in pharmacokinetics for the past half-century leads to unrealistic conclusions about the relationship between liver-to-blood Kpuu and hepatic availability FH. These findings demonstrate the potential for errors in pharmacokinetic evaluations that rely on differential equations. The Kirchhoff's Laws approach is applicable to all pharmacokinetic analyses of quality experimental data, both those that align with present pharmacokinetic theory, and those that do not. Although 3 publications have attempted to rebut our position, they fail to address unexplained experimental data, and we detail here why these analyses are invalid. Our discoveries are ongoing. Additionally, we briefly discuss the application of Kirchoff's Laws to saturable nonlinear kinetics, explaining increased pharmacodynamic response for extended vs immediate release dosage forms, as well as the advantages of successfully formulating high hepatic extraction drugs. SIGNIFICANCE STATEMENT: The Kirchhoff's Laws approach to deriving clearance equations for linear systems in parallel or in series, independent of differential equations, successfully describes anomalous published pharmacokinetic data that have previously been unexplained. We review 9 experimental outcomes in humans that are newly explained using the Kirchhoff's Laws approach, including the extension to deriving nonlinear saturable clearance relationships.

{"title":"Application of Kirchhoff's Laws to pharmacologic and pharmacokinetic analyses.","authors":"Leslie Z Benet, Jasleen K Sodhi, Markus Ville Tiitto, Yue Xiang","doi":"10.1016/j.pharmr.2025.100050","DOIUrl":"https://doi.org/10.1016/j.pharmr.2025.100050","url":null,"abstract":"<p><p>Recently, we introduced a straightforward approach to derive clearance and rate constant equations, without relying on differential equations, utilizing Kirchhoff's Laws, a well known physics methodology used to describe rate-defining processes either in series or parallel. Manuscripts from our laboratory have re-examined published experimental data, demonstrating that the Kirchhoff's Laws methodology can explain data previously considered anomalous, such as the following: (1) all experimental perfused liver clearance data conforming to the equation once thought to represent the unphysiological well stirred model, (2) instances where linear pharmacokinetic systemic bioavailability determinations exceed unity, (3) renal clearance being influenced by drug input processes, (4) statistically significant differences in bioavailability measures between urinary excretion and systemic concentration measurements, and (5) how the long-accepted steady-state clearance approach used in pharmacokinetics for the past half-century leads to unrealistic conclusions about the relationship between liver-to-blood Kp<sub>uu</sub> and hepatic availability F<sub>H</sub>. These findings demonstrate the potential for errors in pharmacokinetic evaluations that rely on differential equations. The Kirchhoff's Laws approach is applicable to all pharmacokinetic analyses of quality experimental data, both those that align with present pharmacokinetic theory, and those that do not. Although 3 publications have attempted to rebut our position, they fail to address unexplained experimental data, and we detail here why these analyses are invalid. Our discoveries are ongoing. Additionally, we briefly discuss the application of Kirchoff's Laws to saturable nonlinear kinetics, explaining increased pharmacodynamic response for extended vs immediate release dosage forms, as well as the advantages of successfully formulating high hepatic extraction drugs. SIGNIFICANCE STATEMENT: The Kirchhoff's Laws approach to deriving clearance equations for linear systems in parallel or in series, independent of differential equations, successfully describes anomalous published pharmacokinetic data that have previously been unexplained. We review 9 experimental outcomes in humans that are newly explained using the Kirchhoff's Laws approach, including the extension to deriving nonlinear saturable clearance relationships.</p>","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"77 3","pages":"100050"},"PeriodicalIF":19.3,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143693087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Activating autophagy to eliminate toxic protein aggregates with small molecules in neurodegenerative diseases. 利用小分子激活自噬,消除神经退行性疾病中的毒性蛋白质聚集。
IF 19.3 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2025-03-14 DOI: 10.1016/j.pharmr.2025.100053
Yuqi Fu, Jin Zhang, Rui Qin, Yueting Ren, Tingting Zhou, Bo Han, Bo Liu

Neurodegenerative diseases (NDs), such as Alzheimer disease, Parkinson disease, Huntington disease, amyotrophic lateral sclerosis, and frontotemporal dementia, are well known to pose formidable challenges for their treatment due to their intricate pathogenesis and substantial variability among patients, including differences in environmental exposures and genetic predispositions. One of the defining characteristics of NDs is widely reported to be the buildup of misfolded proteins. For example, Alzheimer disease is marked by amyloid beta and hyperphosphorylated Tau aggregates, whereas Parkinson disease exhibits α-synuclein aggregates. Amyotrophic lateral sclerosis and frontotemporal dementia exhibit TAR DNA-binding protein 43, superoxide dismutase 1, and fused-in sarcoma protein aggregates, and Huntington disease involves mutant huntingtin and polyglutamine aggregates. These misfolded proteins are the key biomarkers of NDs and also serve as potential therapeutic targets, as they can be addressed through autophagy, a process that removes excess cellular inclusions to maintain homeostasis. Various forms of autophagy, including macroautophagy, chaperone-mediated autophagy, and microautophagy, hold a promise in eliminating toxic proteins implicated in NDs. In this review, we focus on elucidating the regulatory connections between autophagy and toxic proteins in NDs, summarizing the cause of the aggregates, exploring their impact on autophagy mechanisms, and discussing how autophagy can regulate toxic protein aggregation. Moreover, we underscore the activation of autophagy as a potential therapeutic strategy across different NDs and small molecules capable of activating autophagy pathways, such as rapamycin targeting the mTOR pathway to clear α-synuclein and Sertraline targeting the AMPK/mTOR/RPS6KB1 pathway to clear Tau, to further illustrate their potential in NDs' therapeutic intervention. Together, these findings would provide new insights into current research trends and propose small-molecule drugs targeting autophagy as promising potential strategies for the future ND therapies. SIGNIFICANCE STATEMENT: This review provides an in-depth overview of the potential of activating autophagy to eliminate toxic protein aggregates in the treatment of neurodegenerative diseases. It also elucidates the fascinating interrelationships between toxic proteins and the process of autophagy of "chasing and escaping" phenomenon. Moreover, the review further discusses the progress utilizing small molecules to activate autophagy to improve the efficacy of therapies for neurodegenerative diseases by removing toxic protein aggregates.

{"title":"Activating autophagy to eliminate toxic protein aggregates with small molecules in neurodegenerative diseases.","authors":"Yuqi Fu, Jin Zhang, Rui Qin, Yueting Ren, Tingting Zhou, Bo Han, Bo Liu","doi":"10.1016/j.pharmr.2025.100053","DOIUrl":"https://doi.org/10.1016/j.pharmr.2025.100053","url":null,"abstract":"<p><p>Neurodegenerative diseases (NDs), such as Alzheimer disease, Parkinson disease, Huntington disease, amyotrophic lateral sclerosis, and frontotemporal dementia, are well known to pose formidable challenges for their treatment due to their intricate pathogenesis and substantial variability among patients, including differences in environmental exposures and genetic predispositions. One of the defining characteristics of NDs is widely reported to be the buildup of misfolded proteins. For example, Alzheimer disease is marked by amyloid beta and hyperphosphorylated Tau aggregates, whereas Parkinson disease exhibits α-synuclein aggregates. Amyotrophic lateral sclerosis and frontotemporal dementia exhibit TAR DNA-binding protein 43, superoxide dismutase 1, and fused-in sarcoma protein aggregates, and Huntington disease involves mutant huntingtin and polyglutamine aggregates. These misfolded proteins are the key biomarkers of NDs and also serve as potential therapeutic targets, as they can be addressed through autophagy, a process that removes excess cellular inclusions to maintain homeostasis. Various forms of autophagy, including macroautophagy, chaperone-mediated autophagy, and microautophagy, hold a promise in eliminating toxic proteins implicated in NDs. In this review, we focus on elucidating the regulatory connections between autophagy and toxic proteins in NDs, summarizing the cause of the aggregates, exploring their impact on autophagy mechanisms, and discussing how autophagy can regulate toxic protein aggregation. Moreover, we underscore the activation of autophagy as a potential therapeutic strategy across different NDs and small molecules capable of activating autophagy pathways, such as rapamycin targeting the mTOR pathway to clear α-synuclein and Sertraline targeting the AMPK/mTOR/RPS6KB1 pathway to clear Tau, to further illustrate their potential in NDs' therapeutic intervention. Together, these findings would provide new insights into current research trends and propose small-molecule drugs targeting autophagy as promising potential strategies for the future ND therapies. SIGNIFICANCE STATEMENT: This review provides an in-depth overview of the potential of activating autophagy to eliminate toxic protein aggregates in the treatment of neurodegenerative diseases. It also elucidates the fascinating interrelationships between toxic proteins and the process of autophagy of \"chasing and escaping\" phenomenon. Moreover, the review further discusses the progress utilizing small molecules to activate autophagy to improve the efficacy of therapies for neurodegenerative diseases by removing toxic protein aggregates.</p>","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"77 3","pages":"100053"},"PeriodicalIF":19.3,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143788590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to "Toward a paradigm shift: Oral agents and injectable drugs in the future of obesity management" [Pharmacological Reviews 77 (2025) 100008]. 走向范式转变:未来肥胖症治疗中的口服药物和注射药物" [Pharmacological Reviews 77 (2025) 100008]的更正。
IF 19.3 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2025-03-07 DOI: 10.1016/j.pharmr.2025.100047
Amirhossein Sahebkar, Ali H Eid
{"title":"Corrigendum to \"Toward a paradigm shift: Oral agents and injectable drugs in the future of obesity management\" [Pharmacological Reviews 77 (2025) 100008].","authors":"Amirhossein Sahebkar, Ali H Eid","doi":"10.1016/j.pharmr.2025.100047","DOIUrl":"10.1016/j.pharmr.2025.100047","url":null,"abstract":"","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"77 3","pages":"100047"},"PeriodicalIF":19.3,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143582355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reversing the odds: Advanced and emerging therapeutic strategies for male infertility.
IF 19.3 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2025-03-01 Epub Date: 2024-12-31 DOI: 10.1016/j.pharmr.2024.100020
Ali H Eid
{"title":"Reversing the odds: Advanced and emerging therapeutic strategies for male infertility.","authors":"Ali H Eid","doi":"10.1016/j.pharmr.2024.100020","DOIUrl":"https://doi.org/10.1016/j.pharmr.2024.100020","url":null,"abstract":"","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"77 2","pages":"100020"},"PeriodicalIF":19.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143731114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Hippo pathway: Organ size control and beyond.
IF 19.3 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2025-03-01 Epub Date: 2024-12-25 DOI: 10.1016/j.pharmr.2024.100031
Pengfei Guo, Sicheng Wan, Kun-Liang Guan

The Hippo signaling pathway is a highly conserved signaling network for controlling organ size, tissue homeostasis, and regeneration. It integrates a wide range of intracellular and extracellular signals, such as cellular energy status, cell density, hormonal signals, and mechanical cues, to modulate the activity of YAP/TAZ transcriptional coactivators. A key aspect of Hippo pathway regulation involves its spatial organization at the plasma membrane, where upstream regulators localize to specific membrane subdomains to regulate the assembly and activation of the pathway components. This spatial organization is critical for the precise control of Hippo signaling, as it dictates the dynamic interactions between pathway components and their regulators. Recent studies have also uncovered the role of biomolecular condensation in regulating Hippo signaling, adding complexity to its control mechanisms. Dysregulation of the Hippo pathway is implicated in various pathological conditions, particularly cancer, where alterations in YAP/TAZ activity contribute to tumorigenesis and drug resistance. Therapeutic strategies targeting the Hippo pathway have shown promise in both cancer treatment, by inhibiting YAP/TAZ signaling, and regenerative medicine, by enhancing YAP/TAZ activity to promote tissue repair. The development of small molecule inhibitors targeting the YAP-TEAD interaction and other upstream regulators offers new avenues for therapeutic intervention. SIGNIFICANCE STATEMENT: The Hippo signaling pathway is a key regulator of organ size, tissue homeostasis, and regeneration, with its dysregulation linked to diseases such as cancer. Understanding this pathway opens new possibilities for therapeutic approaches in regenerative medicine and oncology, with the potential to translate basic research into improved clinical outcomes.

{"title":"The Hippo pathway: Organ size control and beyond.","authors":"Pengfei Guo, Sicheng Wan, Kun-Liang Guan","doi":"10.1016/j.pharmr.2024.100031","DOIUrl":"https://doi.org/10.1016/j.pharmr.2024.100031","url":null,"abstract":"<p><p>The Hippo signaling pathway is a highly conserved signaling network for controlling organ size, tissue homeostasis, and regeneration. It integrates a wide range of intracellular and extracellular signals, such as cellular energy status, cell density, hormonal signals, and mechanical cues, to modulate the activity of YAP/TAZ transcriptional coactivators. A key aspect of Hippo pathway regulation involves its spatial organization at the plasma membrane, where upstream regulators localize to specific membrane subdomains to regulate the assembly and activation of the pathway components. This spatial organization is critical for the precise control of Hippo signaling, as it dictates the dynamic interactions between pathway components and their regulators. Recent studies have also uncovered the role of biomolecular condensation in regulating Hippo signaling, adding complexity to its control mechanisms. Dysregulation of the Hippo pathway is implicated in various pathological conditions, particularly cancer, where alterations in YAP/TAZ activity contribute to tumorigenesis and drug resistance. Therapeutic strategies targeting the Hippo pathway have shown promise in both cancer treatment, by inhibiting YAP/TAZ signaling, and regenerative medicine, by enhancing YAP/TAZ activity to promote tissue repair. The development of small molecule inhibitors targeting the YAP-TEAD interaction and other upstream regulators offers new avenues for therapeutic intervention. SIGNIFICANCE STATEMENT: The Hippo signaling pathway is a key regulator of organ size, tissue homeostasis, and regeneration, with its dysregulation linked to diseases such as cancer. Understanding this pathway opens new possibilities for therapeutic approaches in regenerative medicine and oncology, with the potential to translate basic research into improved clinical outcomes.</p>","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"77 2","pages":"100031"},"PeriodicalIF":19.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143731134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pharmacological treatment for metabolic dysfunction-associated steatotic liver disease and related disorders: Current and emerging therapeutic options.
IF 19.3 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2025-03-01 Epub Date: 2024-11-22 DOI: 10.1016/j.pharmr.2024.100018
Xiang Zhang, Harry Cheuk-Hay Lau, Jun Yu

Metabolic dysfunction-associated steatotic liver disease (MASLD; formerly known as nonalcoholic fatty liver disease) is a chronic liver disease affecting over a billion individuals worldwide. MASLD can gradually develop into more severe liver pathologies, including metabolic dysfunction-associated steatohepatitis (MASH), cirrhosis, and liver malignancy. Notably, although being a global health problem, there are very limited therapeutic options against MASLD and its related diseases. While a thyroid hormone receptor agonist (resmetirom) is recently approved for MASH treatment, other efforts to control these diseases remain unsatisfactory. Given the projected rise in MASLD and MASH incidence, it is urgent to develop novel and effective therapeutic strategies against these prevalent liver diseases. In this article, the pathogenic mechanisms of MASLD and MASH, including insulin resistance, dysregulated nuclear receptor signaling, and genetic risk factors (eg, patatin-like phospholipase domain-containing 3 and hydroxysteroid 17-β dehydrogenase-13), are introduced. Various therapeutic interventions against MASH are then explored, including approved medication (resmetirom), drugs that are currently in clinical trials (eg, glucagon-like peptide 1 receptor agonist, fibroblast growth factor 21 analog, and PPAR agonist), and those failed in previous trials (eg, obeticholic acid and stearoyl-CoA desaturase 1 antagonist). Moreover, given that the role of gut microbes in MASLD is increasingly acknowledged, alterations in the gut microbiota and microbial mechanisms in MASLD development are elucidated. Therapeutic approaches that target the gut microbiota (eg, dietary intervention and probiotics) against MASLD and related diseases are further explored. With better understanding of the multifaceted pathogenic mechanisms, the development of innovative therapeutics that target the root causes of MASLD and MASH is greatly facilitated. The possibility of alleviating MASH and achieving better patient outcomes is within reach. SIGNIFICANCE STATEMENT: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide, and it can progress to more severe pathologies, including steatohepatitis, cirrhosis, and liver cancer. Better understanding of the pathogenic mechanisms of these diseases has facilitated the development of innovative therapeutic strategies. Moreover, increasing evidence has illustrated the crucial role of gut microbiota in the pathogenesis of MASLD and related diseases. It may be clinically feasible to target gut microbes to alleviate MASLD in the future.

代谢功能障碍相关性脂肪性肝病(MASLD,以前称为非酒精性脂肪肝)是一种慢性肝病,影响着全球十多亿人。代谢性脂肪肝可逐渐发展为更严重的肝脏病变,包括代谢功能障碍相关性脂肪性肝炎(MASH)、肝硬化和肝脏恶性肿瘤。值得注意的是,尽管MASLD是一个全球性的健康问题,但针对MASLD及其相关疾病的治疗方案却非常有限。虽然最近批准了一种甲状腺激素受体激动剂(瑞美替罗)用于治疗 MASH,但控制这些疾病的其他努力仍不尽如人意。鉴于MASLD和MASH的发病率预计会上升,开发新的、有效的治疗策略来防治这些流行性肝病已迫在眉睫。本文介绍了MASLD和MASH的致病机制,包括胰岛素抵抗、核受体信号传导失调和遗传风险因素(如含类拍蛋白磷脂酶结构域的3和羟基类固醇17-β脱氢酶-13)。然后探讨了针对 MASH 的各种治疗干预措施,包括已获批准的药物(瑞美替罗)、目前正在进行临床试验的药物(如胰高血糖素样肽 1 受体激动剂、成纤维细胞生长因子 21 类似物和 PPAR 激动剂),以及在以前的试验中失败的药物(如奥贝胆酸和硬脂酰-CoA 去饱和酶 1 拮抗剂)。此外,鉴于肠道微生物在 MASLD 中的作用日益得到认可,肠道微生物群的改变和微生物在 MASLD 发病中的作用机制也得到了阐明。针对肠道微生物群(如饮食干预和益生菌)防治 MASLD 及相关疾病的治疗方法也在进一步探索之中。随着对多方面致病机制的深入了解,针对 MASLD 和 MASH 根本原因的创新疗法的开发将得到极大的促进。减轻 MASH 病情、改善患者预后指日可待。意义声明:代谢功能障碍相关性脂肪性肝病(MASLD)是全球最常见的慢性肝病,可发展为更严重的病变,包括脂肪性肝炎、肝硬化和肝癌。对这些疾病致病机制的深入了解促进了创新治疗策略的开发。此外,越来越多的证据表明,肠道微生物群在 MASLD 及相关疾病的发病机制中起着至关重要的作用。未来,以肠道微生物为靶点来缓解 MASLD 在临床上可能是可行的。
{"title":"Pharmacological treatment for metabolic dysfunction-associated steatotic liver disease and related disorders: Current and emerging therapeutic options.","authors":"Xiang Zhang, Harry Cheuk-Hay Lau, Jun Yu","doi":"10.1016/j.pharmr.2024.100018","DOIUrl":"https://doi.org/10.1016/j.pharmr.2024.100018","url":null,"abstract":"<p><p>Metabolic dysfunction-associated steatotic liver disease (MASLD; formerly known as nonalcoholic fatty liver disease) is a chronic liver disease affecting over a billion individuals worldwide. MASLD can gradually develop into more severe liver pathologies, including metabolic dysfunction-associated steatohepatitis (MASH), cirrhosis, and liver malignancy. Notably, although being a global health problem, there are very limited therapeutic options against MASLD and its related diseases. While a thyroid hormone receptor agonist (resmetirom) is recently approved for MASH treatment, other efforts to control these diseases remain unsatisfactory. Given the projected rise in MASLD and MASH incidence, it is urgent to develop novel and effective therapeutic strategies against these prevalent liver diseases. In this article, the pathogenic mechanisms of MASLD and MASH, including insulin resistance, dysregulated nuclear receptor signaling, and genetic risk factors (eg, patatin-like phospholipase domain-containing 3 and hydroxysteroid 17-β dehydrogenase-13), are introduced. Various therapeutic interventions against MASH are then explored, including approved medication (resmetirom), drugs that are currently in clinical trials (eg, glucagon-like peptide 1 receptor agonist, fibroblast growth factor 21 analog, and PPAR agonist), and those failed in previous trials (eg, obeticholic acid and stearoyl-CoA desaturase 1 antagonist). Moreover, given that the role of gut microbes in MASLD is increasingly acknowledged, alterations in the gut microbiota and microbial mechanisms in MASLD development are elucidated. Therapeutic approaches that target the gut microbiota (eg, dietary intervention and probiotics) against MASLD and related diseases are further explored. With better understanding of the multifaceted pathogenic mechanisms, the development of innovative therapeutics that target the root causes of MASLD and MASH is greatly facilitated. The possibility of alleviating MASH and achieving better patient outcomes is within reach. SIGNIFICANCE STATEMENT: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide, and it can progress to more severe pathologies, including steatohepatitis, cirrhosis, and liver cancer. Better understanding of the pathogenic mechanisms of these diseases has facilitated the development of innovative therapeutic strategies. Moreover, increasing evidence has illustrated the crucial role of gut microbiota in the pathogenesis of MASLD and related diseases. It may be clinically feasible to target gut microbes to alleviate MASLD in the future.</p>","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"77 2","pages":"100018"},"PeriodicalIF":19.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143731104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From bone sentinel to immune savant: Vitamin D and its receptor's pharmacology.
IF 19.3 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2025-03-01 Epub Date: 2025-01-21 DOI: 10.1016/j.pharmr.2024.100036
Ali H Eid
{"title":"From bone sentinel to immune savant: Vitamin D and its receptor's pharmacology.","authors":"Ali H Eid","doi":"10.1016/j.pharmr.2024.100036","DOIUrl":"https://doi.org/10.1016/j.pharmr.2024.100036","url":null,"abstract":"","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"77 2","pages":"100036"},"PeriodicalIF":19.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143731012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pharmacologic treatments for gastroparesis.
IF 19.3 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2025-03-01 Epub Date: 2024-11-23 DOI: 10.1016/j.pharmr.2024.100019
Michael Camilleri, Kara J Jencks

Gastroparesis is a neurogastrointestinal disorder of motility in which patients experience symptoms of nausea, vomiting, bloating, early satiety, postprandial fullness, upper abdominal discomfort or pain, and delayed gastric emptying of solids based on scintigraphy or stable isotope breath test when mechanical obstruction has been excluded. Symptoms of gastroparesis may result from diverse pathophysiological mechanisms, including antroduodenal hypomotility, pylorospasm, increased gastric accommodation, and visceral hypersensitivity. The most common etiologies of gastroparesis are idiopathic, diabetic, and postsurgical, and less frequent causes are neurodegenerative disorders (Parkinson's disease), myopathies (scleroderma, amyloidosis), medication-induced (glucagon-like peptide-1 agonists and opioid agents), and paraneoplastic syndrome. This review addresses pharmacologic management of gastroparesis including prokinetic and antiemetic agents, pharmacologic agents targeting the pylorus, and effects of neuromodulators. SIGNIFICANCE STATEMENT: Gastroparesis is a neurogastrointestinal motility disorder characterized by delayed gastric emptying without mechanical obstruction with numerous upper gastrointestinal symptoms, including nausea and vomiting. The management of gastroparesis involves nutritional support, medications, and procedures. The only Food and Drug Administration-approved medication for gastroparesis is metoclopramide. This article reviews the pharmacology and efficacy of all classes of antiemetics or prokinetic effects used in gastroparesis. There is still a considerable unmet need for efficacious medications specifically for the treatment of gastroparesis, especially in refractory cases.

{"title":"Pharmacologic treatments for gastroparesis.","authors":"Michael Camilleri, Kara J Jencks","doi":"10.1016/j.pharmr.2024.100019","DOIUrl":"https://doi.org/10.1016/j.pharmr.2024.100019","url":null,"abstract":"<p><p>Gastroparesis is a neurogastrointestinal disorder of motility in which patients experience symptoms of nausea, vomiting, bloating, early satiety, postprandial fullness, upper abdominal discomfort or pain, and delayed gastric emptying of solids based on scintigraphy or stable isotope breath test when mechanical obstruction has been excluded. Symptoms of gastroparesis may result from diverse pathophysiological mechanisms, including antroduodenal hypomotility, pylorospasm, increased gastric accommodation, and visceral hypersensitivity. The most common etiologies of gastroparesis are idiopathic, diabetic, and postsurgical, and less frequent causes are neurodegenerative disorders (Parkinson's disease), myopathies (scleroderma, amyloidosis), medication-induced (glucagon-like peptide-1 agonists and opioid agents), and paraneoplastic syndrome. This review addresses pharmacologic management of gastroparesis including prokinetic and antiemetic agents, pharmacologic agents targeting the pylorus, and effects of neuromodulators. SIGNIFICANCE STATEMENT: Gastroparesis is a neurogastrointestinal motility disorder characterized by delayed gastric emptying without mechanical obstruction with numerous upper gastrointestinal symptoms, including nausea and vomiting. The management of gastroparesis involves nutritional support, medications, and procedures. The only Food and Drug Administration-approved medication for gastroparesis is metoclopramide. This article reviews the pharmacology and efficacy of all classes of antiemetics or prokinetic effects used in gastroparesis. There is still a considerable unmet need for efficacious medications specifically for the treatment of gastroparesis, especially in refractory cases.</p>","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"77 2","pages":"100019"},"PeriodicalIF":19.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143731018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disease-modifying pharmacological treatments of type 1 diabetes: Molecular mechanisms, target checkpoints, and possible combinatorial treatments.
IF 19.3 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2025-03-01 Epub Date: 2025-01-23 DOI: 10.1016/j.pharmr.2025.100044
Liudmila Kosheleva, Daniil Koshelev, Francisco Alejandro Lagunas-Rangel, Shmuel Levit, Alexander Rabinovitch, Helgi B Schiöth

After a century of extensive scientific investigations, there is still no curative or disease-modifying treatment available that can provide long-lasting remission for patients diagnosed with type 1 diabetes (T1D). Although T1D has historically been regarded as a classic autoimmune disorder targeting and destroying pancreatic islet β-cells, significant research has recently demonstrated that β-cells themselves also play a substantial role in the disease's progression, which could explain some of the unfavorable clinical outcomes. We offer a thorough review of scientific and clinical insights pertaining to molecular mechanisms behind pathogenesis and the different therapeutic interventions in T1D covering over 20 possible pharmaceutical intervention treatments. The interventions are categorized as immune therapies, treatments targeting islet endocrine dysfunctions, medications with dual modes of action in immune and islet endocrine cells, and combination treatments with a broader spectrum of activity. We suggest that these collective findings can provide a valuable platform to discover new combinatorial synergies in search of the curative disease-modifying intervention for T1D. SIGNIFICANCE STATEMENT: This research delves into the underlying causes of T1D and identifies critical mechanisms governing β-cell function in both healthy and diseased states. Thus, we identify specific pathways that could be manipulated by existing or new pharmacological interventions. These interventions fall into several categories: (1) immunomodifying therapies individually targeting immune cell processes, (2) interventions targeting β-cells, (3) compounds that act simultaneously on both immune cell and β-cell pathways, and (4) combinations of compounds simultaneously targeting immune and β-cell pathways.

{"title":"Disease-modifying pharmacological treatments of type 1 diabetes: Molecular mechanisms, target checkpoints, and possible combinatorial treatments.","authors":"Liudmila Kosheleva, Daniil Koshelev, Francisco Alejandro Lagunas-Rangel, Shmuel Levit, Alexander Rabinovitch, Helgi B Schiöth","doi":"10.1016/j.pharmr.2025.100044","DOIUrl":"10.1016/j.pharmr.2025.100044","url":null,"abstract":"<p><p>After a century of extensive scientific investigations, there is still no curative or disease-modifying treatment available that can provide long-lasting remission for patients diagnosed with type 1 diabetes (T1D). Although T1D has historically been regarded as a classic autoimmune disorder targeting and destroying pancreatic islet β-cells, significant research has recently demonstrated that β-cells themselves also play a substantial role in the disease's progression, which could explain some of the unfavorable clinical outcomes. We offer a thorough review of scientific and clinical insights pertaining to molecular mechanisms behind pathogenesis and the different therapeutic interventions in T1D covering over 20 possible pharmaceutical intervention treatments. The interventions are categorized as immune therapies, treatments targeting islet endocrine dysfunctions, medications with dual modes of action in immune and islet endocrine cells, and combination treatments with a broader spectrum of activity. We suggest that these collective findings can provide a valuable platform to discover new combinatorial synergies in search of the curative disease-modifying intervention for T1D. SIGNIFICANCE STATEMENT: This research delves into the underlying causes of T1D and identifies critical mechanisms governing β-cell function in both healthy and diseased states. Thus, we identify specific pathways that could be manipulated by existing or new pharmacological interventions. These interventions fall into several categories: (1) immunomodifying therapies individually targeting immune cell processes, (2) interventions targeting β-cells, (3) compounds that act simultaneously on both immune cell and β-cell pathways, and (4) combinations of compounds simultaneously targeting immune and β-cell pathways.</p>","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"77 2","pages":"100044"},"PeriodicalIF":19.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11964952/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143524096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Pharmacological Reviews
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1