首页 > 最新文献

Pharmacological Reviews最新文献

英文 中文
Drugs from the ocean floor.
IF 19.3 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2025-01-01 Epub Date: 2024-12-27 DOI: 10.1016/j.pharmr.2024.100009
Maha Khachab, Amirhossein Sahebkar, Ali H Eid
{"title":"Drugs from the ocean floor.","authors":"Maha Khachab, Amirhossein Sahebkar, Ali H Eid","doi":"10.1016/j.pharmr.2024.100009","DOIUrl":"https://doi.org/10.1016/j.pharmr.2024.100009","url":null,"abstract":"","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"77 1","pages":"100009"},"PeriodicalIF":19.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143425944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
International Union of Basic and Clinical Pharmacology. CXVII: Taste 2 receptors-Structures, functions, activators, and blockers.
IF 19.3 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2025-01-01 Epub Date: 2024-11-22 DOI: 10.1124/pharmrev.123.001140
Maik Behrens

For most vertebrates, bitter perception plays a critical role in the detection of potentially harmful substances in food items. The detection of bitter compounds is facilitated by specialized receptors located in the taste buds of the oral cavity. This work focuses on these receptors, including their sensitivities, structure-function relationships, agonists, and antagonists. The existence of numerous bitter taste receptor variants in the human population and the fact that several of them profoundly affect individual perceptions of bitter tastes are discussed as well. Moreover, the identification of bitter taste receptors in numerous tissues outside the oral cavity and their multiple proposed roles in these tissues are described briefly. Although this work is mainly focused on human bitter taste receptors, it is imperative to compare human bitter taste with bitter taste of other animals to understand which forces might have shaped the evolution of bitter taste receptors and their functions and to distinguish apparently typical human features from rather general ones. For readers who are not very familiar with the gustatory system, short descriptions of taste anatomy, signal transduction, and oral bitter taste receptor expression are included in the beginning of this article. SIGNIFICANCE STATEMENT: Apart from their role as sensors for potentially harmful substances in the oral cavity, the numerous additional roles of bitter taste receptors in tissues outside the gustatory system have recently received much attention. For careful assessment of their functions inside and outside the taste system, a solid knowledge of the specific and general pharmacological features of these receptors and the growing toolbox available for studying them is imperative and provided in this work.

{"title":"International Union of Basic and Clinical Pharmacology. CXVII: Taste 2 receptors-Structures, functions, activators, and blockers.","authors":"Maik Behrens","doi":"10.1124/pharmrev.123.001140","DOIUrl":"10.1124/pharmrev.123.001140","url":null,"abstract":"<p><p>For most vertebrates, bitter perception plays a critical role in the detection of potentially harmful substances in food items. The detection of bitter compounds is facilitated by specialized receptors located in the taste buds of the oral cavity. This work focuses on these receptors, including their sensitivities, structure-function relationships, agonists, and antagonists. The existence of numerous bitter taste receptor variants in the human population and the fact that several of them profoundly affect individual perceptions of bitter tastes are discussed as well. Moreover, the identification of bitter taste receptors in numerous tissues outside the oral cavity and their multiple proposed roles in these tissues are described briefly. Although this work is mainly focused on human bitter taste receptors, it is imperative to compare human bitter taste with bitter taste of other animals to understand which forces might have shaped the evolution of bitter taste receptors and their functions and to distinguish apparently typical human features from rather general ones. For readers who are not very familiar with the gustatory system, short descriptions of taste anatomy, signal transduction, and oral bitter taste receptor expression are included in the beginning of this article. SIGNIFICANCE STATEMENT: Apart from their role as sensors for potentially harmful substances in the oral cavity, the numerous additional roles of bitter taste receptors in tissues outside the gustatory system have recently received much attention. For careful assessment of their functions inside and outside the taste system, a solid knowledge of the specific and general pharmacological features of these receptors and the growing toolbox available for studying them is imperative and provided in this work.</p>","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"77 1","pages":"100001"},"PeriodicalIF":19.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143425948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward a paradigm shift: Oral agents and injectable drugs in the future of obesity management.
IF 19.3 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2025-01-01 Epub Date: 2024-12-27 DOI: 10.1016/j.pharmr.2024.100008
Amirhossein Sahebkar, Ali H Eid
{"title":"Toward a paradigm shift: Oral agents and injectable drugs in the future of obesity management.","authors":"Amirhossein Sahebkar, Ali H Eid","doi":"10.1016/j.pharmr.2024.100008","DOIUrl":"10.1016/j.pharmr.2024.100008","url":null,"abstract":"","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"77 1","pages":"100008"},"PeriodicalIF":19.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143425952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The 75-Year Anniversary of the Department of Physiology and Pharmacology at Karolinska Institutet—Examples of Recent Accomplishments and Future Perspectives 卡罗林斯卡医学院生理学和药理学系 75 周年纪念--近期成就实例与未来展望
IF 21.1 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-01 DOI: 10.1124/pharmrev.124.001433
Eddie Weitzberg, Magnus Ingelman-Sundberg, Jon O. Lundberg, Göran Engberg, Gunnar Schulte, Volker M. Lauschke, Lynette Daws
Karolinska Institutet is a medical university encompassing 21 departments distributed across three departmental or campus groups. Pharmacological research has a long and successful tradition at the institute with a multitude of seminal findings in the areas of neuronal control of vasodilatation, cardiovascular pharmacology, neuropsychopharmacology, receptor pharmacology, and pharmacogenomics that resulted in, among many other recognitions, two Nobel prizes in Physiology and Medicine, one in 1970 to Ulf von Euler for his discovery of the processes involved in storage, release, and inactivation of neurotransmitters and the other in 1982 to Sune Bergström and Bengt Samuelsson for their work on prostaglandins and the discovery of leukotrienes. Pharmacology at Karolinska Institutet has over the last decade been ranked globally among the top 10 according to the QS World University Ranking. With the Department of Physiology and Pharmacology now celebrating its 75-year anniversary, we wanted to take this as an opportunity to showcase recent research achievements and how they paved the way for current activities at the department. We emphasize examples from preclinical and clinical research where the dpartment's integrative environment and robust infrastructure have successfully facilitated the translation of findings into clinical applications and patient benefits. The close collaboration between preclinical scientists and clinical researchers across various disciplines, along with a strong network of partnerships within the department and beyond, positions us to continue leading world-class pharmacological research at the Department of Physiology and Pharmacology for decades to come.
卡罗林斯卡医学院是一所医科大学,下设 21 个系,分布在三个部门或校园集团。卡罗林斯卡医学院在药理学研究方面有着悠久而成功的传统,在神经元控制血管扩张、心血管药理学、神经精神药理学、受体药理学和药物基因组学等领域取得了许多开创性的研究成果,并获得了许多其他认可、1970 年,乌尔夫-冯-欧拉(Ulf von Euler)因发现神经递质的储存、释放和失活过程而荣获诺贝尔生理学与医学奖;1982 年,苏内-伯格斯特罗姆(Sune Bergström)和本特-萨缪尔森(Bengt Samuelsson)因研究前列腺素和发现白三烯而荣获诺贝尔生理学与医学奖。根据 QS 世界大学排名,卡罗林斯卡医学院的药理学在过去十年中一直位居全球前十名。在生理学和药理学系迎来 75 周年庆典之际,我们希望借此机会展示最近的研究成果,以及这些成果如何为该系当前的活动铺平了道路。我们强调临床前和临床研究中的实例,在这些实例中,生理学与药理学系的综合环境和强大的基础设施成功地促进了研究成果转化为临床应用并造福患者。临床前科学家和各学科临床研究人员之间的密切合作,以及系内外强大的合作伙伴网络,使我们能够在未来数十年中继续引领生理学和药理学系的世界级药理学研究。
{"title":"The 75-Year Anniversary of the Department of Physiology and Pharmacology at Karolinska Institutet—Examples of Recent Accomplishments and Future Perspectives","authors":"Eddie Weitzberg, Magnus Ingelman-Sundberg, Jon O. Lundberg, Göran Engberg, Gunnar Schulte, Volker M. Lauschke, Lynette Daws","doi":"10.1124/pharmrev.124.001433","DOIUrl":"https://doi.org/10.1124/pharmrev.124.001433","url":null,"abstract":"Karolinska Institutet is a medical university encompassing 21 departments distributed across three departmental or campus groups. Pharmacological research has a long and successful tradition at the institute with a multitude of seminal findings in the areas of neuronal control of vasodilatation, cardiovascular pharmacology, neuropsychopharmacology, receptor pharmacology, and pharmacogenomics that resulted in, among many other recognitions, two Nobel prizes in Physiology and Medicine, one in 1970 to Ulf von Euler for his discovery of the processes involved in storage, release, and inactivation of neurotransmitters and the other in 1982 to Sune Bergström and Bengt Samuelsson for their work on prostaglandins and the discovery of leukotrienes. Pharmacology at Karolinska Institutet has over the last decade been ranked globally among the top 10 according to the QS World University Ranking. With the Department of Physiology and Pharmacology now celebrating its 75-year anniversary, we wanted to take this as an opportunity to showcase recent research achievements and how they paved the way for current activities at the department. We emphasize examples from preclinical and clinical research where the dpartment's integrative environment and robust infrastructure have successfully facilitated the translation of findings into clinical applications and patient benefits. The close collaboration between preclinical scientists and clinical researchers across various disciplines, along with a strong network of partnerships within the department and beyond, positions us to continue leading world-class pharmacological research at the Department of Physiology and Pharmacology for decades to come.","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"60 1","pages":""},"PeriodicalIF":21.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ironing Out the Mechanism of gp130 Signaling 厘清 gp130 信号传递机制
IF 21.1 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-01 DOI: 10.1124/pharmrev.124.001245
Essam Eldin A. Osman, Nouri Neamati, Des Richardson
gp130 functions as a shared signal-transducing subunit not only for interleukin (IL)-6 but also for eight other human cytokine receptor complexes. The IL-6 signaling pathway mediated through gp130 encompasses classical, trans, or cluster signaling, intricately regulated by a diverse array of modulators affecting IL-6, its receptor, and gp130. Currently, only a limited number of small molecule antagonists and agonists for gp130 are known. This review aims to comprehensively examine the current knowledge of these modulators and provide insights into their pharmacological properties, particularly in the context of cancer and other diseases. Notably, the prominent gp130 modulators SC144, bazedoxifene, and raloxifene are discussed in detail, with a specific focus on the discovery of SC144’s iron-chelating properties. This adds a new dimension to the understanding of its pharmacological effects and therapeutic potential in conditions where iron homeostasis is significant. Our bioinformatic analysis of gp130 and genes related to iron homeostasis reveals insightful correlations, implicating the role of iron in the gp130 signaling pathway. Overall, this review contributes to the evolving understanding of gp130 modulation and its potential therapeutic applications in various disease contexts.
gp130 不仅是白细胞介素(IL)-6 的共享信号转导亚基,也是其他八种人类细胞因子受体复合物的共享信号转导亚基。通过 gp130 介导的 IL-6 信号转导途径包括经典、反式或集群信号转导,由影响 IL-6、其受体和 gp130 的各种调节剂错综复杂地调节。目前,已知的 gp130 小分子拮抗剂和激动剂数量有限。本综述旨在全面考察这些调节剂的现有知识,并深入了解它们的药理特性,尤其是在癌症和其他疾病方面。值得注意的是,本综述详细讨论了著名的 gp130 调节剂 SC144、bazedoxifene 和 raloxifene,并特别关注 SC144 的铁螯合特性。这为我们了解 SC144 的药理作用和在铁平衡非常重要的情况下的治疗潜力增添了新的维度。我们对 gp130 和铁平衡相关基因的生物信息学分析揭示了深刻的相关性,暗示了铁在 gp130 信号通路中的作用。总之,这篇综述有助于加深人们对 gp130 调节及其在各种疾病中的潜在治疗应用的理解。
{"title":"Ironing Out the Mechanism of gp130 Signaling","authors":"Essam Eldin A. Osman, Nouri Neamati, Des Richardson","doi":"10.1124/pharmrev.124.001245","DOIUrl":"https://doi.org/10.1124/pharmrev.124.001245","url":null,"abstract":"gp130 functions as a shared signal-transducing subunit not only for interleukin (IL)-6 but also for eight other human cytokine receptor complexes. The IL-6 signaling pathway mediated through gp130 encompasses classical, trans, or cluster signaling, intricately regulated by a diverse array of modulators affecting IL-6, its receptor, and gp130. Currently, only a limited number of small molecule antagonists and agonists for gp130 are known. This review aims to comprehensively examine the current knowledge of these modulators and provide insights into their pharmacological properties, particularly in the context of cancer and other diseases. Notably, the prominent gp130 modulators SC144, bazedoxifene, and raloxifene are discussed in detail, with a specific focus on the discovery of SC144’s iron-chelating properties. This adds a new dimension to the understanding of its pharmacological effects and therapeutic potential in conditions where iron homeostasis is significant. Our bioinformatic analysis of gp130 and genes related to iron homeostasis reveals insightful correlations, implicating the role of iron in the gp130 signaling pathway. Overall, this review contributes to the evolving understanding of gp130 modulation and its potential therapeutic applications in various disease contexts.","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"22 1","pages":""},"PeriodicalIF":21.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glatiramer Acetate for the Treatment of Multiple Sclerosis: From First-Generation Therapy to Elucidation of Immunomodulation and Repair 醋酸格拉替雷治疗多发性硬化症:从第一代疗法到免疫调节和修复的阐明
IF 21.1 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-01 DOI: 10.1124/pharmrev.124.000927
Rina Aharoni, Ron Milo, Ruth Arnon, Francesca Levi-Schaffer
Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS), with a putative autoimmune origin and complex pathogenesis. Modification of the natural history of MS by reducing relapses and slowing disability accumulation was first attained in the 1990 s with the development of the first-generation disease-modifying therapies. Glatiramer acetate (GA), a copolymer of L-alanine, L-lysine, L-glutamic acid, and L-tyrosine, was discovered due to its ability to suppress the animal model of MS, experimental autoimmune encephalomyelitis. Extensive clinical trials and long-term assessments established the efficacy and the safety of GA. Furthermore, studies of the therapeutic processes induced by GA in animal models and in MS patients indicate that GA affects various levels of the innate and the adaptive immune response, generating deviation from proinflammatory to anti-inflammatory pathways. This includes competition for binding to antigen presenting cells; driving dendritic cells, monocytes, and B-cells toward anti-inflammatory responses; and stimulating T-helper 2 and T-regulatory cells. The immune cells stimulated by GA reach the CNS and secrete in situ anti-inflammatory cytokines alleviating the pathological processes. Furthermore, cumulative findings reveal that in addition to its immunomodulatory effect, GA promotes neuroprotective repair processes such as neurotrophic factors secretion, remyelination, and neurogenesis. This review aims to provide an overview of MS pathology diagnosis and treatment as well as the diverse mechanism of action of GA.
多发性硬化症(MS)是中枢神经系统(CNS)的一种慢性炎症性脱髓鞘和神经退行性疾病,可能源于自身免疫,发病机制复杂。20 世纪 90 年代,随着第一代疾病修饰疗法的开发,通过减少复发和减缓残疾累积来改变多发性硬化症的自然病史的目标首次实现。醋酸格拉替雷(GA)是一种由L-丙氨酸、L-赖氨酸、L-谷氨酸和L-酪氨酸组成的共聚物,因其能够抑制多发性硬化症的动物模型--实验性自身免疫性脑脊髓炎而被发现。广泛的临床试验和长期评估证实了 GA 的有效性和安全性。此外,对 GA 在动物模型和多发性硬化症患者中诱导的治疗过程的研究表明,GA 会影响先天性和适应性免疫反应的不同水平,产生从促炎到抗炎途径的偏差。这包括与抗原呈递细胞竞争结合;促使树突状细胞、单核细胞和 B 细胞产生抗炎反应;以及刺激 T 辅助 2 细胞和 T 调节细胞。受 GA 刺激的免疫细胞进入中枢神经系统,并在原位分泌抗炎细胞因子,从而缓解病理过程。此外,累积的研究结果表明,除了免疫调节作用外,GA 还能促进神经保护性修复过程,如神经营养因子分泌、髓鞘再形成和神经再生。本综述旨在概述多发性硬化症的病理诊断和治疗以及 GA 的多种作用机制。
{"title":"Glatiramer Acetate for the Treatment of Multiple Sclerosis: From First-Generation Therapy to Elucidation of Immunomodulation and Repair","authors":"Rina Aharoni, Ron Milo, Ruth Arnon, Francesca Levi-Schaffer","doi":"10.1124/pharmrev.124.000927","DOIUrl":"https://doi.org/10.1124/pharmrev.124.000927","url":null,"abstract":"Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS), with a putative autoimmune origin and complex pathogenesis. Modification of the natural history of MS by reducing relapses and slowing disability accumulation was first attained in the 1990 s with the development of the first-generation disease-modifying therapies. Glatiramer acetate (GA), a copolymer of L-alanine, L-lysine, L-glutamic acid, and L-tyrosine, was discovered due to its ability to suppress the animal model of MS, experimental autoimmune encephalomyelitis. Extensive clinical trials and long-term assessments established the efficacy and the safety of GA. Furthermore, studies of the therapeutic processes induced by GA in animal models and in MS patients indicate that GA affects various levels of the innate and the adaptive immune response, generating deviation from proinflammatory to anti-inflammatory pathways. This includes competition for binding to antigen presenting cells; driving dendritic cells, monocytes, and B-cells toward anti-inflammatory responses; and stimulating T-helper 2 and T-regulatory cells. The immune cells stimulated by GA reach the CNS and secrete in situ anti-inflammatory cytokines alleviating the pathological processes. Furthermore, cumulative findings reveal that in addition to its immunomodulatory effect, GA promotes neuroprotective repair processes such as neurotrophic factors secretion, remyelination, and neurogenesis. This review aims to provide an overview of MS pathology diagnosis and treatment as well as the diverse mechanism of action of GA.","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"32 1","pages":""},"PeriodicalIF":21.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pharmacological therapies for male infertility. 男性不育症的药物疗法。
IF 19.3 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-21 DOI: 10.1124/pharmrev.124.001085
Amarnath Rambhatla, Rupin Shah, Germar M Pinggera, Taymour Mostafa, Widi Atmoko, Ramadan Saleh, Eric Chung, Taha Hamoda, Selahittin Cayan, Hyun Jun Park, Ates Kadioglu, Logan Hubbard, Ashok Agarwal

Male factor infertility is a multifaceted problem that affects approximately 50% of couples suffering from infertility. Causes of male infertility include endocrine disturbances, gonadotoxins, genetic abnormalities, varicocele, malignancies, infections, congenital or acquired urogenital abnormalities, iatrogenic factors, immunological factors, and idiopathic reasons. There are a variety of treatment options for male infertility, depending on the underlying cause(s). These can include surgical treatments, medical/hormonal therapies, and assisted reproductive techniques (ART), which can be combined with surgical sperm retrieval (SSR) if necessary. In this review article, the pharmacological therapies for male infertility are grouped by their underlying causes. Some of these therapies are targeted and specific, while others are used empirically to treat idiopathic male infertility. This will include treatments to optimize infertility in patients who have hypogonadism, ejaculatory dysfunction, infections, or idiopathic male infertility. Finally, we will provide an overview of the future directions of pharmacological therapies for male infertility. Significance Statement Male infertility is a significant worldwide problem. Detailed knowledge of the pharmacological therapies available will ensure the prescription of appropriate therapy and avoid the use of unnecessary or harmful treatments.

男性因素不育是一个多方面的问题,影响着约 50%的不育夫妇。导致男性不育的原因包括内分泌紊乱、性腺毒素、遗传异常、精索静脉曲张、恶性肿瘤、感染、先天性或后天性泌尿生殖系统异常、先天性因素、免疫因素和特发性原因。男性不育有多种治疗方案,具体取决于潜在的病因。其中包括手术治疗、药物/激素疗法和辅助生殖技术(ART),必要时可结合手术取精(SSR)。在这篇综述文章中,男性不育症的药物疗法按其根本原因进行了分类。其中一些疗法具有针对性和特异性,而另一些则是根据经验用于治疗特发性男性不育症。这将包括优化性腺功能减退症、射精功能障碍、感染或特发性男性不育患者不育症的治疗方法。最后,我们将概述男性不育症药物疗法的未来发展方向。意义声明 男性不育是一个严重的世界性问题。对现有药物疗法的详细了解将确保开出适当的治疗处方,避免使用不必要或有害的治疗方法。
{"title":"Pharmacological therapies for male infertility.","authors":"Amarnath Rambhatla, Rupin Shah, Germar M Pinggera, Taymour Mostafa, Widi Atmoko, Ramadan Saleh, Eric Chung, Taha Hamoda, Selahittin Cayan, Hyun Jun Park, Ates Kadioglu, Logan Hubbard, Ashok Agarwal","doi":"10.1124/pharmrev.124.001085","DOIUrl":"10.1124/pharmrev.124.001085","url":null,"abstract":"<p><p>Male factor infertility is a multifaceted problem that affects approximately 50% of couples suffering from infertility. Causes of male infertility include endocrine disturbances, gonadotoxins, genetic abnormalities, varicocele, malignancies, infections, congenital or acquired urogenital abnormalities, iatrogenic factors, immunological factors, and idiopathic reasons. There are a variety of treatment options for male infertility, depending on the underlying cause(s). These can include surgical treatments, medical/hormonal therapies, and assisted reproductive techniques (ART), which can be combined with surgical sperm retrieval (SSR) if necessary. In this review article, the pharmacological therapies for male infertility are grouped by their underlying causes. Some of these therapies are targeted and specific, while others are used empirically to treat idiopathic male infertility. This will include treatments to optimize infertility in patients who have hypogonadism, ejaculatory dysfunction, infections, or idiopathic male infertility. Finally, we will provide an overview of the future directions of pharmacological therapies for male infertility. <b>Significance Statement</b> Male infertility is a significant worldwide problem. Detailed knowledge of the pharmacological therapies available will ensure the prescription of appropriate therapy and avoid the use of unnecessary or harmful treatments.</p>","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":" ","pages":""},"PeriodicalIF":19.3,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142471881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How to drug a cloud? Targeting intrinsically disordered proteins. 如何给云下药?瞄准内在无序蛋白
IF 19.3 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-21 DOI: 10.1124/pharmrev.124.001113
Vladimir N Uversky

Biologically active proteins/regions without stable structure (i.e., intrinsically disordered proteins and regions (IDPs and IDRs)) are commonly found in all proteomes. They have a unique functional repertoire that complements the functionalities of ordered proteins and domains. IDPs/IDRs are multifunctional promiscuous binders capable of folding at interaction with specific binding partners on a template- or context-dependent manner, many of which undergo liquid-liquid phase separation, leading to the formation of membrane-less organelles and biomolecular condensates. Many of them are frequently related to the pathogenesis of various human diseases. All this defines IDPs/IDRs as attractive targets for the development of novel drugs. However, their lack of unique structures, multifunctionality, binding promiscuity, and involvement in unusual modes of action preclude direct use of traditional structure-based drug design approaches for targeting IDPs/IDRs, and make disorder-based drug discovery for these "protein clouds" challenging. Despite all these complexities there is continuing progress in the design of small molecules affecting IDPs/IDRs. This article describes the major structural features of IDPs/IDRs and the peculiarities of the disorder-based functionality. It also discusses the roles of IDPs/IDRs in various pathologies, and shows why the approaches elaborated for finding drugs targeting ordered proteins cannot be directly used for the intrinsic disorder-based drug design, and introduces some novel methodologies suitable for these purposes. Finally, it emphasizes that regardless of their multifunctionality, binding promiscuity, lack of unique structures, and highly dynamic nature, "protein clouds" are principally druggable. Significance Statement Intrinsically disordered proteins and regions are highly abundant in nature, have multiple important biological functions, are commonly involved in the pathogenesis of a multitude of human diseases, and are therefore considered as very attractive drug targets. Although dealing with these unstructured multifunctional protein/regions is a challenging task, multiple innovative approaches have been designed to target them by small molecules.

没有稳定结构的生物活性蛋白质/区域(即内在无序蛋白质和区域(IDPs 和 IDRs))普遍存在于所有蛋白质组中。它们具有独特的功能,与有序蛋白质和结构域的功能相辅相成。IDPs/IDRs是多功能的杂合粘合剂,能够以依赖模板或上下文的方式与特定的结合伙伴相互作用而折叠,其中许多会发生液-液相分离,从而形成无膜细胞器和生物分子凝聚体。它们中的许多经常与各种人类疾病的发病机制有关。所有这些都将 IDPs/IDRs 定义为开发新型药物的诱人靶点。然而,由于它们缺乏独特的结构、多功能性、结合杂乱性以及参与不寻常的作用模式,因此无法直接使用传统的基于结构的药物设计方法来设计 IDPs/IDRs 靶点,这也使得针对这些 "蛋白质云 "的基于紊乱的药物发现具有挑战性。尽管存在这些复杂性,影响 IDPs/IDRs 的小分子药物设计仍在不断取得进展。本文介绍了 IDPs/IDRs 的主要结构特征以及基于无序功能的特殊性。文章还讨论了 IDPs/IDRs 在各种病症中的作用,说明了为什么为寻找靶向有序蛋白质的药物而精心设计的方法不能直接用于基于内在无序的药物设计,并介绍了一些适用于这些目的的新方法。最后,该研究强调,尽管 "蛋白质云 "具有多功能性、结合杂乱性、缺乏独特结构以及高度动态性,但它们基本上是可以药物治疗的。意义声明 内在无序蛋白质和区域在自然界中含量极高,具有多种重要的生物学功能,通常与多种人类疾病的发病机制有关,因此被认为是极具吸引力的药物靶点。尽管处理这些非结构化多功能蛋白质/区域是一项具有挑战性的任务,但人们已设计出多种创新方法,利用小分子药物来靶向它们。
{"title":"How to drug a cloud? Targeting intrinsically disordered proteins.","authors":"Vladimir N Uversky","doi":"10.1124/pharmrev.124.001113","DOIUrl":"10.1124/pharmrev.124.001113","url":null,"abstract":"<p><p>Biologically active proteins/regions without stable structure (i.e., intrinsically disordered proteins and regions (IDPs and IDRs)) are commonly found in all proteomes. They have a unique functional repertoire that complements the functionalities of ordered proteins and domains. IDPs/IDRs are multifunctional promiscuous binders capable of folding at interaction with specific binding partners on a template- or context-dependent manner, many of which undergo liquid-liquid phase separation, leading to the formation of membrane-less organelles and biomolecular condensates. Many of them are frequently related to the pathogenesis of various human diseases. All this defines IDPs/IDRs as attractive targets for the development of novel drugs. However, their lack of unique structures, multifunctionality, binding promiscuity, and involvement in unusual modes of action preclude direct use of traditional structure-based drug design approaches for targeting IDPs/IDRs, and make disorder-based drug discovery for these \"protein clouds\" challenging. Despite all these complexities there is continuing progress in the design of small molecules affecting IDPs/IDRs. This article describes the major structural features of IDPs/IDRs and the peculiarities of the disorder-based functionality. It also discusses the roles of IDPs/IDRs in various pathologies, and shows why the approaches elaborated for finding drugs targeting ordered proteins cannot be directly used for the intrinsic disorder-based drug design, and introduces some novel methodologies suitable for these purposes. Finally, it emphasizes that regardless of their multifunctionality, binding promiscuity, lack of unique structures, and highly dynamic nature, \"protein clouds\" are principally druggable. <b>Significance Statement</b> <b>Intrinsically disordered proteins and regions are highly abundant in nature, have multiple important biological functions, are commonly involved in the pathogenesis of a multitude of human diseases, and are therefore considered as very attractive drug targets. Although dealing with these unstructured multifunctional protein/regions is a challenging task, multiple innovative approaches have been designed to target them by small molecules.</b></p>","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":" ","pages":""},"PeriodicalIF":19.3,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142471880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cytochrome P450 Enzymes: The Old Pandora's Box with an Ever-Growing Hope for Therapy Optimization and Drug Development-Editorial. 细胞色素 P450 酶:老潘多拉魔盒:治疗优化和药物开发的希望与日俱增--社论。
IF 21.1 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-16 DOI: 10.1124/pharmrev.124.001432
Ahmed F El-Yazbi,Ali H Eid
{"title":"Cytochrome P450 Enzymes: The Old Pandora's Box with an Ever-Growing Hope for Therapy Optimization and Drug Development-Editorial.","authors":"Ahmed F El-Yazbi,Ali H Eid","doi":"10.1124/pharmrev.124.001432","DOIUrl":"https://doi.org/10.1124/pharmrev.124.001432","url":null,"abstract":"","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"133 1","pages":"1102-1103"},"PeriodicalIF":21.1,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142447959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Summing Up Pharmacological Reviews' 75th Anniversary Year and a Look to the Future. 总结《药理学评论》75 周年,展望未来。
IF 21.1 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-16 DOI: 10.1124/pharmrev.124.000992
Lynette C Daws
{"title":"Summing Up Pharmacological Reviews' 75th Anniversary Year and a Look to the Future.","authors":"Lynette C Daws","doi":"10.1124/pharmrev.124.000992","DOIUrl":"https://doi.org/10.1124/pharmrev.124.000992","url":null,"abstract":"","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"232 1","pages":"970-971"},"PeriodicalIF":21.1,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142447960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Pharmacological Reviews
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1