Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid in humans, shares a high degree of homology with a closely related serovar, S. Typhimurium. Yet, unlike S. Typhimurium, S. Typhi does not establish infection in mice, the reasons for which are not well understood. Here, we present evidence that the response of mice to infection with S. Typhi is marked by early antibacterial activities. Cell-free peritoneal fluids from S. Typhi but not S. Typhimurium-infected mice inhibited the replication of Salmonella ex vivo. The production of this activity was reduced in the presence of the serine protease inhibitor, phenylmethylsulfonlyl fluoride (PMSF). PMSF also inhibited the generation of antibacterial activity released from in vitro S. Typhi-infected peritoneal macrophages in a cell death-dependent manner. Infection with S. Typhimurium but not S. Typhi was associated with reduction in the mRNA levels of iron-regulating molecules, ferroportin and lipocalin. These results suggest that early induction and sustenance of antibacterial activities may contribute to the nonestablishment of infection with S. Typhi in mice.
{"title":"Induction and sustenance of antibacterial activities distinguishes response of mice to Salmonella Typhi from response to Salmonella Typhimurium.","authors":"Jitender Yadav, Ayub Qadri","doi":"10.1093/femspd/ftad002","DOIUrl":"https://doi.org/10.1093/femspd/ftad002","url":null,"abstract":"<p><p>Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid in humans, shares a high degree of homology with a closely related serovar, S. Typhimurium. Yet, unlike S. Typhimurium, S. Typhi does not establish infection in mice, the reasons for which are not well understood. Here, we present evidence that the response of mice to infection with S. Typhi is marked by early antibacterial activities. Cell-free peritoneal fluids from S. Typhi but not S. Typhimurium-infected mice inhibited the replication of Salmonella ex vivo. The production of this activity was reduced in the presence of the serine protease inhibitor, phenylmethylsulfonlyl fluoride (PMSF). PMSF also inhibited the generation of antibacterial activity released from in vitro S. Typhi-infected peritoneal macrophages in a cell death-dependent manner. Infection with S. Typhimurium but not S. Typhi was associated with reduction in the mRNA levels of iron-regulating molecules, ferroportin and lipocalin. These results suggest that early induction and sustenance of antibacterial activities may contribute to the nonestablishment of infection with S. Typhi in mice.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":"81 ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10810138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Una Karanovic, Lei Lei, Craig A Martens, Kent Barbian, Grant McClarty, Harlan D Caldwell, Chunfu Yang
Chlamydia trachomatis is an obligate intracellular bacterium that causes blinding trachoma and sexually transmitted disease. The chlamydial plasmid is a critical virulence factor in the pathogenesis of these diseases. Plasmid gene protein 4 (Pgp4) plays a major role in chlamydial virulence by regulating the expression of both chromosomal genes and Pgp3. Despite the importance of Pgp4 in mediating lytic exit from host cells the pathogenic mechanism by which it functions is unknown. CT084 is a highly conserved chromosomal gene with homology to phospholipase D. We showed CT084 expression is regulated by Pgp4 and expressed late in the chlamydial developmental cycle. To investigate the function of CT084 in chlamydial lytic exit from infected cells, we made a CT084 null strain (ct084::bla) by using Targetron. The ct084::bla strain grew normally in vitro compared to wild-type strain; however, the strain did not lyse infected cells and produced significantly less and smaller plaques. Collectively, our finding shows Pgp4-regulated CT084-mediated chlamydia lytic exit from infected host cells.
{"title":"TargeTron inactivation of plasmid-regulated Chlamydia trachomatis CT084 results in a nonlytic phenotype.","authors":"Una Karanovic, Lei Lei, Craig A Martens, Kent Barbian, Grant McClarty, Harlan D Caldwell, Chunfu Yang","doi":"10.1093/femspd/ftad026","DOIUrl":"10.1093/femspd/ftad026","url":null,"abstract":"<p><p>Chlamydia trachomatis is an obligate intracellular bacterium that causes blinding trachoma and sexually transmitted disease. The chlamydial plasmid is a critical virulence factor in the pathogenesis of these diseases. Plasmid gene protein 4 (Pgp4) plays a major role in chlamydial virulence by regulating the expression of both chromosomal genes and Pgp3. Despite the importance of Pgp4 in mediating lytic exit from host cells the pathogenic mechanism by which it functions is unknown. CT084 is a highly conserved chromosomal gene with homology to phospholipase D. We showed CT084 expression is regulated by Pgp4 and expressed late in the chlamydial developmental cycle. To investigate the function of CT084 in chlamydial lytic exit from infected cells, we made a CT084 null strain (ct084::bla) by using Targetron. The ct084::bla strain grew normally in vitro compared to wild-type strain; however, the strain did not lyse infected cells and produced significantly less and smaller plaques. Collectively, our finding shows Pgp4-regulated CT084-mediated chlamydia lytic exit from infected host cells.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589100/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41147417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carlos Manuel Baroli, Juan Pablo Gorgojo, Bruno Martín Blancá, Martina Debandi, Maria Eugenia Rodriguez
The airway epithelial barrier is a continuous highly organized cell layer that separates the exterior from the underlying mucosal tissue, preventing pathogen invasion. Several respiratory pathogens have evolved mechanisms to compromise this barrier, invade and even reside alive within the epithelium. Bordetella pertussis is a persistent pathogen that infects the human airway epithelium, causing whooping cough. Previous studies have shown that B. pertussis survives inside phagocytic and nonphagocytic cells, suggesting that there might be an intracellular stage involved in the bacterial infectious process and/or in the pathogen persistence inside the host. In this study we found evidence that B. pertussis is able to survive inside respiratory epithelial cells. According to our results, this pathogen preferentially attaches near or on top of the tight junctions in polarized human bronchial epithelial cells and disrupts these structures in an adenylate cyclase-dependent manner, exposing their basolateral membrane. We further found that the bacterial internalization is significantly higher in cells exposing this membrane compared with cells only exposing the apical membrane. Once internalized, B. pertussis mainly remains in nondegradative phagosomes with access to nutrients. Taken together, these results point at the respiratory epithelial cells as a potential niche of persistence.
{"title":"Bordetella pertussis targets the basolateral membrane of polarized respiratory epithelial cells, gets internalized, and survives in intracellular locations.","authors":"Carlos Manuel Baroli, Juan Pablo Gorgojo, Bruno Martín Blancá, Martina Debandi, Maria Eugenia Rodriguez","doi":"10.1093/femspd/ftad035","DOIUrl":"10.1093/femspd/ftad035","url":null,"abstract":"<p><p>The airway epithelial barrier is a continuous highly organized cell layer that separates the exterior from the underlying mucosal tissue, preventing pathogen invasion. Several respiratory pathogens have evolved mechanisms to compromise this barrier, invade and even reside alive within the epithelium. Bordetella pertussis is a persistent pathogen that infects the human airway epithelium, causing whooping cough. Previous studies have shown that B. pertussis survives inside phagocytic and nonphagocytic cells, suggesting that there might be an intracellular stage involved in the bacterial infectious process and/or in the pathogen persistence inside the host. In this study we found evidence that B. pertussis is able to survive inside respiratory epithelial cells. According to our results, this pathogen preferentially attaches near or on top of the tight junctions in polarized human bronchial epithelial cells and disrupts these structures in an adenylate cyclase-dependent manner, exposing their basolateral membrane. We further found that the bacterial internalization is significantly higher in cells exposing this membrane compared with cells only exposing the apical membrane. Once internalized, B. pertussis mainly remains in nondegradative phagosomes with access to nutrients. Taken together, these results point at the respiratory epithelial cells as a potential niche of persistence.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138470638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kit Neikirk, Taylor Barongan, Tiffany Rolle, Edgar Garza Lopez, Andrea Marshall, Heather K Beasley, Amber Crabtree, Elsie C Spencer, Haysetta Shuler, Denise Martinez, Sandra Murray, Chia Vang, Felysha Jenkins, Steven Damo, Zer Vue
Choosing a mentor requires a certain level of introspection for both the mentor and the mentee. The dynamics of mentorship may change depending on the academic status of the mentee. Regardless, mentors should help their trainees grow both academically and professionally. The success of an individual in the fields of science, technology, engineering, mathematics, and medicine (STEMM) depends on more than intellectual capacity; a holistic view encompassing all factors that contribute to scientific achievement is all-important. Specifically, one new method scientists can adopt is quotients, which are scales and techniques that can be used to measure aptitude in a specific area. In this paper, we focus on these factors and how to grow one's adversity quotient (AQ), social quotient (SQ), and personal growth initiative scale (PGIS). We also look at how mentors can better understand the biases of their trainees. In addressing this, mentors can help trainees become more visible and encourage other trainees to become allies through reducing biases.
{"title":"Using quotients as a mentor to facilitate the success of underrepresented students.","authors":"Kit Neikirk, Taylor Barongan, Tiffany Rolle, Edgar Garza Lopez, Andrea Marshall, Heather K Beasley, Amber Crabtree, Elsie C Spencer, Haysetta Shuler, Denise Martinez, Sandra Murray, Chia Vang, Felysha Jenkins, Steven Damo, Zer Vue","doi":"10.1093/femspd/ftad008","DOIUrl":"10.1093/femspd/ftad008","url":null,"abstract":"<p><p>Choosing a mentor requires a certain level of introspection for both the mentor and the mentee. The dynamics of mentorship may change depending on the academic status of the mentee. Regardless, mentors should help their trainees grow both academically and professionally. The success of an individual in the fields of science, technology, engineering, mathematics, and medicine (STEMM) depends on more than intellectual capacity; a holistic view encompassing all factors that contribute to scientific achievement is all-important. Specifically, one new method scientists can adopt is quotients, which are scales and techniques that can be used to measure aptitude in a specific area. In this paper, we focus on these factors and how to grow one's adversity quotient (AQ), social quotient (SQ), and personal growth initiative scale (PGIS). We also look at how mentors can better understand the biases of their trainees. In addressing this, mentors can help trainees become more visible and encourage other trainees to become allies through reducing biases.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":"81 ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255757/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9690815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chloe G Shaw, Christina Pavloudi, Megan A Barela Hudgell, Ryley S Crow, Jimmy H Saw, R Alexander Pyron, L Courtney Smith
Bald sea urchin disease (BSUD) is most likely a bacterial infection that occurs in a wide range of sea urchin species and causes the loss of surface appendages. The disease has a variety of additional symptoms, which may be the result of the many bacteria that are associated with BSUD. Previous studies have investigated causative agents of BSUD, however, there are few reports on the surface microbiome associated with the infection. Here, we report changes to the surface microbiome on purple sea urchins in a closed marine aquarium that contracted and then recovered from BSUD in addition to the microbiome of healthy sea urchins in a separate aquarium. 16S rRNA gene sequencing shows that microhabitats of different aquaria are characterized by different microbial compositions, and that diseased, recovered, and healthy sea urchins have distinct microbial compositions, which indicates that there is a correlation between microbial shifts and recovery from disease.
{"title":"Bald sea urchin disease shifts the surface microbiome on purple sea urchins in an aquarium.","authors":"Chloe G Shaw, Christina Pavloudi, Megan A Barela Hudgell, Ryley S Crow, Jimmy H Saw, R Alexander Pyron, L Courtney Smith","doi":"10.1093/femspd/ftad025","DOIUrl":"10.1093/femspd/ftad025","url":null,"abstract":"<p><p>Bald sea urchin disease (BSUD) is most likely a bacterial infection that occurs in a wide range of sea urchin species and causes the loss of surface appendages. The disease has a variety of additional symptoms, which may be the result of the many bacteria that are associated with BSUD. Previous studies have investigated causative agents of BSUD, however, there are few reports on the surface microbiome associated with the infection. Here, we report changes to the surface microbiome on purple sea urchins in a closed marine aquarium that contracted and then recovered from BSUD in addition to the microbiome of healthy sea urchins in a separate aquarium. 16S rRNA gene sequencing shows that microhabitats of different aquaria are characterized by different microbial compositions, and that diseased, recovered, and healthy sea urchins have distinct microbial compositions, which indicates that there is a correlation between microbial shifts and recovery from disease.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10550250/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10253787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Helicobacter pylori is a gram-negative microaerophilic bacterium and is associated with gastrointestinal diseases ranging from peptic ulcer and gastritis to gastric cancer and mucosa-associated lymphoid tissue lymphoma. In our laboratory, the transcriptomes and miRnomes of AGS cells infected with H. pylori have been profiled, and an miRNA-mRNA network has been constructed. MicroRNA 671-5p is upregulated during H. pylori infection of AGS cells or of mice. In this study, the role of miR-671-5p during infection has been investigated. It has been validated that miR-671-5p targets the transcriptional repressor CDCA7L, which is downregulated during infection (in vitro and in vivo) concomitant with miR-671-5p upregulation. Further, it has been established that the expression of monoamine oxidase A (MAO-A) is repressed by CDCA7L, and that MAO-A triggers the generation of reactive oxygen species (ROS). Consequently, miR-671-5p/CDCA7L signaling is linked to the generation of ROS during H. pylori infection. Finally, it has been demonstrated that ROS-mediated caspase 3 activation and apoptosis that occurs during H. pylori infection, is dependent on the miR-671-5p/CDCA7L/MAO-A axis. Based on the above reports, it is suggested that targeting miR-671-5p could offer a means of regulating the course and consequences of H. pylori infection.
{"title":"Uncovering the role of microRNA671-5p/CDCA7L/monoamine oxidase-A signaling in Helicobacter pylori mediated apoptosis in gastric epithelial cells.","authors":"Thurbu Tshering Lepcha, Manish Kumar, Arun Kumar Sharma, Soumya Mal, Debayan Majumder, Kuladip Jana, Joyoti Basu, Manikuntala Kundu","doi":"10.1093/femspd/ftad006","DOIUrl":"https://doi.org/10.1093/femspd/ftad006","url":null,"abstract":"<p><p>Helicobacter pylori is a gram-negative microaerophilic bacterium and is associated with gastrointestinal diseases ranging from peptic ulcer and gastritis to gastric cancer and mucosa-associated lymphoid tissue lymphoma. In our laboratory, the transcriptomes and miRnomes of AGS cells infected with H. pylori have been profiled, and an miRNA-mRNA network has been constructed. MicroRNA 671-5p is upregulated during H. pylori infection of AGS cells or of mice. In this study, the role of miR-671-5p during infection has been investigated. It has been validated that miR-671-5p targets the transcriptional repressor CDCA7L, which is downregulated during infection (in vitro and in vivo) concomitant with miR-671-5p upregulation. Further, it has been established that the expression of monoamine oxidase A (MAO-A) is repressed by CDCA7L, and that MAO-A triggers the generation of reactive oxygen species (ROS). Consequently, miR-671-5p/CDCA7L signaling is linked to the generation of ROS during H. pylori infection. Finally, it has been demonstrated that ROS-mediated caspase 3 activation and apoptosis that occurs during H. pylori infection, is dependent on the miR-671-5p/CDCA7L/MAO-A axis. Based on the above reports, it is suggested that targeting miR-671-5p could offer a means of regulating the course and consequences of H. pylori infection.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":"81 ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9466067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mechanism of Chlamydia trachomatis causing tubal ectopic pregnancy (EP) is not well understood. Tetraspanins (tspans), activin-A, and inhibin-A might play a role in the development of pathological conditions leading to EP. The study aimed to elucidate the expression of tspans, activin-A, and inhibin-A with a role of associated cytokines in C. trachomatis-associated EP and analyze interacting partners of DEGs, with an expression of a few important interacting genes. Fallopian tissue and serum were collected from 100 EP (Group I) and 100 controls (Group II) from SJH, New Delhi, India. Detection of C. trachomatis was done by polymerase chain reaction (PCR) and IgG antibodies were detected by enzyme-linked immunosorbent assay. Expression of tspans, activin-A, inhibin-A, and cytokines was analyzed by real time (RT)-PCR and their interacting genes were assessed by STRING. Expression of few disease-associated interacting genes was studied by RT-PCR. A total of 29% (Group I) were C. trachomatis positive. Tspans and activin-A were significantly upregulated, while inhibin-A was significantly downregulated in Group Ia. ITGA1, TLR-2, ITGB2, and Smad-3 were a few interacting genes. Expression of ITGA1, TLR-2, and Smad-3 was significantly upregulated in C. trachomatis-positive EP. Results suggested dysregulated tspans, activin-A, and inhibin-A might play a role in C. trachomatis-infected tubal EP.
{"title":"Chlamydia trachomatis infection regulates the expression of tetraspanins, activin-A, and inhibin-A in tubal ectopic pregnancy.","authors":"Shipra Pant, Tanu Bhati, Astha Dimri, Renu Arora, Fouzia Siraj, Sheikh Raisuddin, Sangita Rastogi","doi":"10.1093/femspd/ftad018","DOIUrl":"10.1093/femspd/ftad018","url":null,"abstract":"<p><p>Mechanism of Chlamydia trachomatis causing tubal ectopic pregnancy (EP) is not well understood. Tetraspanins (tspans), activin-A, and inhibin-A might play a role in the development of pathological conditions leading to EP. The study aimed to elucidate the expression of tspans, activin-A, and inhibin-A with a role of associated cytokines in C. trachomatis-associated EP and analyze interacting partners of DEGs, with an expression of a few important interacting genes. Fallopian tissue and serum were collected from 100 EP (Group I) and 100 controls (Group II) from SJH, New Delhi, India. Detection of C. trachomatis was done by polymerase chain reaction (PCR) and IgG antibodies were detected by enzyme-linked immunosorbent assay. Expression of tspans, activin-A, inhibin-A, and cytokines was analyzed by real time (RT)-PCR and their interacting genes were assessed by STRING. Expression of few disease-associated interacting genes was studied by RT-PCR. A total of 29% (Group I) were C. trachomatis positive. Tspans and activin-A were significantly upregulated, while inhibin-A was significantly downregulated in Group Ia. ITGA1, TLR-2, ITGB2, and Smad-3 were a few interacting genes. Expression of ITGA1, TLR-2, and Smad-3 was significantly upregulated in C. trachomatis-positive EP. Results suggested dysregulated tspans, activin-A, and inhibin-A might play a role in C. trachomatis-infected tubal EP.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":"81 ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9958365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wanhai Qin, Anno Saris, Cornelis van 't Veer, Joris J T H Roelofs, Brendon P Scicluna, Alex F de Vos, Tom van der Poll
MicroRNA-155 (miR-155) plays a crucial role in regulating host inflammatory responses during bacterial infection. Previous studies have shown that constitutive miR-155 deficiency alleviates inflammation while having varying effects in different bacterial infection models. However, whether miR-155 in myeloid cells is involved in the regulation of inflammatory and antibacterial responses is largely elusive. Mice with myeloid cell specific miR-155 deficiency were generated to study the in vitro response of bone marrow-derived macrophages (BMDMs), alveolar macrophages (AMs) and peritoneal macrophages (PMs) to lipopolysaccharide (LPS), and the in vivo response after intranasal or intraperitoneal challenge with LPS or infection with Klebsiella (K.) pneumoniae via the airways. MiR-155-deficient macrophages released less inflammatory cytokines than control macrophages upon stimulation with LPS in vitro. However, the in vivo inflammatory cytokine response to LPS or K. pneumoniae was not affected by myeloid miR-155 deficiency. Moreover, bacterial outgrowth in the lungs was not altered in myeloid miR-155-deficient mice, but Klebsiella loads in the liver of these mice were significantly higher than in control mice. These data argue against a major role for myeloid miR-155 in host inflammatory responses during LPS-induced inflammation and K. pneumoniae-induced pneumosepsis but suggest that myeloid miR-155 contributes to host defense against Klebsiella infection in the liver.
{"title":"Myeloid miR-155 plays a limited role in antibacterial defense during Klebsiella-derived pneumosepsis and is dispensable for lipopolysaccharide- or Klebsiella-induced inflammation in mice.","authors":"Wanhai Qin, Anno Saris, Cornelis van 't Veer, Joris J T H Roelofs, Brendon P Scicluna, Alex F de Vos, Tom van der Poll","doi":"10.1093/femspd/ftad031","DOIUrl":"10.1093/femspd/ftad031","url":null,"abstract":"<p><p>MicroRNA-155 (miR-155) plays a crucial role in regulating host inflammatory responses during bacterial infection. Previous studies have shown that constitutive miR-155 deficiency alleviates inflammation while having varying effects in different bacterial infection models. However, whether miR-155 in myeloid cells is involved in the regulation of inflammatory and antibacterial responses is largely elusive. Mice with myeloid cell specific miR-155 deficiency were generated to study the in vitro response of bone marrow-derived macrophages (BMDMs), alveolar macrophages (AMs) and peritoneal macrophages (PMs) to lipopolysaccharide (LPS), and the in vivo response after intranasal or intraperitoneal challenge with LPS or infection with Klebsiella (K.) pneumoniae via the airways. MiR-155-deficient macrophages released less inflammatory cytokines than control macrophages upon stimulation with LPS in vitro. However, the in vivo inflammatory cytokine response to LPS or K. pneumoniae was not affected by myeloid miR-155 deficiency. Moreover, bacterial outgrowth in the lungs was not altered in myeloid miR-155-deficient mice, but Klebsiella loads in the liver of these mice were significantly higher than in control mice. These data argue against a major role for myeloid miR-155 in host inflammatory responses during LPS-induced inflammation and K. pneumoniae-induced pneumosepsis but suggest that myeloid miR-155 contributes to host defense against Klebsiella infection in the liver.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10636497/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49680819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chlamydia trachomatis, C. pneumoniae, and C. psittaci, the three Chlamydia species known to cause human disease, have been collectively linked to several pathologies, including conjunctivitis, trachoma, respiratory disease, acute and chronic urogenital infections and their complications, and psittacosis. In vitro, animal, and human studies also established additional correlations, such as between C. pneumoniae and atherosclerosis and between C. trachomatis and ovarian cancer. As part of their survival and pathogenesis strategies as obligate intracellular bacteria, Chlamydia spp. modulate all three major types of epigenetic changes, which include deoxyribonucleic acid (DNA) methylation, histone post-translational modifications, and microRNA-mediated gene silencing. Some of these epigenetic changes may be implicated in key aspects of pathogenesis, such as the ability of the Chlamydia spp. to induce epithelial-to-mesenchymal transition, interfere with DNA damage repair, suppress cholesterol efflux from infected macrophages, act as a co-factor in human papillomavirus (HPV)-mediated cervical cancer, prevent apoptosis, and preserve the integrity of mitochondrial networks in infected host cells. A better understanding of the individual and collective contribution of epigenetic changes to pathogenesis will enhance our knowledge about the biology of Chlamydia spp. and facilitate the development of novel therapies and biomarkers. Pathogenic Chlamydia spp. contribute to epigenetically-mediated gene expression changes in host cells by multiple mechanisms.
{"title":"Epigenetic changes induced by pathogenic Chlamydia spp.","authors":"Richard A Stein, Lily M Thompson","doi":"10.1093/femspd/ftad034","DOIUrl":"10.1093/femspd/ftad034","url":null,"abstract":"<p><p>Chlamydia trachomatis, C. pneumoniae, and C. psittaci, the three Chlamydia species known to cause human disease, have been collectively linked to several pathologies, including conjunctivitis, trachoma, respiratory disease, acute and chronic urogenital infections and their complications, and psittacosis. In vitro, animal, and human studies also established additional correlations, such as between C. pneumoniae and atherosclerosis and between C. trachomatis and ovarian cancer. As part of their survival and pathogenesis strategies as obligate intracellular bacteria, Chlamydia spp. modulate all three major types of epigenetic changes, which include deoxyribonucleic acid (DNA) methylation, histone post-translational modifications, and microRNA-mediated gene silencing. Some of these epigenetic changes may be implicated in key aspects of pathogenesis, such as the ability of the Chlamydia spp. to induce epithelial-to-mesenchymal transition, interfere with DNA damage repair, suppress cholesterol efflux from infected macrophages, act as a co-factor in human papillomavirus (HPV)-mediated cervical cancer, prevent apoptosis, and preserve the integrity of mitochondrial networks in infected host cells. A better understanding of the individual and collective contribution of epigenetic changes to pathogenesis will enhance our knowledge about the biology of Chlamydia spp. and facilitate the development of novel therapies and biomarkers. Pathogenic Chlamydia spp. contribute to epigenetically-mediated gene expression changes in host cells by multiple mechanisms.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138461421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tamar A Smith-Norowitz, Anastasiya Shulman, Haram Abdelmajid, Margaret R Hammerschlag, Rauno Joks, Diana Weaver, Stephan Kohlhoff
Chlamydia pneumoniae is an obligate intracellular bacterium that causes respiratory infections in humans. An association between persistent C. pneumoniae infection and asthma pathogenesis has been described. It is unknown whether specific immunoglobulin E (IgE) is a marker of persistent immune activation responses. Therefore, the association between C. pneumoniae-specific-IgE antibodies (Abs) and interferon (IFN)-gamma produced by C. pneumoniae-stimulated peripheral blood mononuclear cells (PBMC) was examined. Blood was collected and serum separated. PBMC from 63 children with or without stable asthma (N = 45 and 18, respectively) were infected or not infected with C. pneumoniae AR-39 and cultured for up to 7 days. Supernatants were collected, and IFN-gamma levels measured (ELISA). Serum C. pneumoniae-IgE Abs were detected by immunoblotting. C. pneumoniae-IgE Abs were detected in asthmatics (27%), compared with non-asthmatics (11%) (P = NS). IFN-gamma responses were more prevalent among asthmatics who had positive C. pneumoniae-IgE Abs (60%) compared with asthmatics without C. pneumoniae-IgE Abs (20%) (P = 0.1432). IFN-gamma responses in C. pneumoniae-stimulated PBMC from children with asthma were more frequent in children who had specific anti-C. pneumoniae-IgE Abs compared to those who did not. This immune response may reflect persistent infection, which may contribute to ongoing asthma symptoms.
{"title":"Chlamydia pneumoniae-immunoglobulin E antibody responses in serum from children with asthma.","authors":"Tamar A Smith-Norowitz, Anastasiya Shulman, Haram Abdelmajid, Margaret R Hammerschlag, Rauno Joks, Diana Weaver, Stephan Kohlhoff","doi":"10.1093/femspd/ftad015","DOIUrl":"https://doi.org/10.1093/femspd/ftad015","url":null,"abstract":"<p><p>Chlamydia pneumoniae is an obligate intracellular bacterium that causes respiratory infections in humans. An association between persistent C. pneumoniae infection and asthma pathogenesis has been described. It is unknown whether specific immunoglobulin E (IgE) is a marker of persistent immune activation responses. Therefore, the association between C. pneumoniae-specific-IgE antibodies (Abs) and interferon (IFN)-gamma produced by C. pneumoniae-stimulated peripheral blood mononuclear cells (PBMC) was examined. Blood was collected and serum separated. PBMC from 63 children with or without stable asthma (N = 45 and 18, respectively) were infected or not infected with C. pneumoniae AR-39 and cultured for up to 7 days. Supernatants were collected, and IFN-gamma levels measured (ELISA). Serum C. pneumoniae-IgE Abs were detected by immunoblotting. C. pneumoniae-IgE Abs were detected in asthmatics (27%), compared with non-asthmatics (11%) (P = NS). IFN-gamma responses were more prevalent among asthmatics who had positive C. pneumoniae-IgE Abs (60%) compared with asthmatics without C. pneumoniae-IgE Abs (20%) (P = 0.1432). IFN-gamma responses in C. pneumoniae-stimulated PBMC from children with asthma were more frequent in children who had specific anti-C. pneumoniae-IgE Abs compared to those who did not. This immune response may reflect persistent infection, which may contribute to ongoing asthma symptoms.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":"81 ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9897881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}