Hanna Marti, Kensuke Shima, Sebastien Boutin, Jan Rupp, Ian N Clarke, Karine Laroucau, Nicole Borel
The obligate intracellular bacterial genus Chlamydia harbours species with zoonotic potential, particularly C. psittaci, causative agent of psittacosis, and C. abortus, which may lead to miscarriage in pregnant women. The impact of other bird chlamydiae such as C. avium, C. gallinaceae, and C. buteonis, or reptilian species such as C. crocodili, amongst others, on human health is unclear. The chlamydial native plasmid, a suspected virulence factor, is present in all currently described 14 Chlamydia species except for some plasmid-free strains. The plasmid is also the primary tool to study chlamydial genetics, a still developing field that has mostly focused on C. trachomatis. Only recently, genetic transformation of C. felis, C. pecorum, C. pneumoniae, C. psittaci, and C. suis has succeeded, but existing methods have yet to be refined. In this review article, we will provide an update on the recent developments concerning the zoonotic potential of chlamydiae. Furthermore, we present an overview about the current state of knowledge regarding the chlamydial plasmid in terms of prevalence and significance as a virulence factor. Finally, we give insights into the progress of developing genetic tools for chlamydial species other than C. trachomatis with a special focus on zoonotic and veterinary chlamydiae.
细胞内衣原体细菌属中有一些物种具有人畜共患病的潜能,特别是鹦鹉热的病原体 C. psittaci 和可能导致孕妇流产的 C. abortus。其他鸟类衣原体,如鸟疫衣原体、五倍子衣原体和布氏衣原体,或爬行动物衣原体,如鳄鱼衣原体等,对人类健康的影响尚不清楚。衣原体原生质粒是一种可疑的致病因子,除了一些不含质粒的菌株外,目前描述的 14 种衣原体都含有这种质粒。质粒也是研究衣原体遗传学的主要工具,这一仍在发展的领域主要集中在沙眼衣原体上。直到最近,才成功实现了对毛滴虫、白喉杆菌、肺炎双球菌、鹦鹉热双球菌和猪流感双球菌的基因转化,但现有方法还有待完善。在这篇综述文章中,我们将介绍有关衣原体人畜共患病可能性的最新进展。此外,我们还将从衣原体质粒的流行率和作为致病因子的重要性两个方面概述目前对衣原体质粒的了解情况。最后,我们介绍了针对沙眼衣原体以外的衣原体物种开发遗传工具的进展情况,并特别关注了人畜共患衣原体和兽用衣原体。
{"title":"Zoonotic and other veterinary chlamydiae - an update, the role of the plasmid and plasmid-mediated transformation.","authors":"Hanna Marti, Kensuke Shima, Sebastien Boutin, Jan Rupp, Ian N Clarke, Karine Laroucau, Nicole Borel","doi":"10.1093/femspd/ftae030","DOIUrl":"10.1093/femspd/ftae030","url":null,"abstract":"<p><p>The obligate intracellular bacterial genus Chlamydia harbours species with zoonotic potential, particularly C. psittaci, causative agent of psittacosis, and C. abortus, which may lead to miscarriage in pregnant women. The impact of other bird chlamydiae such as C. avium, C. gallinaceae, and C. buteonis, or reptilian species such as C. crocodili, amongst others, on human health is unclear. The chlamydial native plasmid, a suspected virulence factor, is present in all currently described 14 Chlamydia species except for some plasmid-free strains. The plasmid is also the primary tool to study chlamydial genetics, a still developing field that has mostly focused on C. trachomatis. Only recently, genetic transformation of C. felis, C. pecorum, C. pneumoniae, C. psittaci, and C. suis has succeeded, but existing methods have yet to be refined. In this review article, we will provide an update on the recent developments concerning the zoonotic potential of chlamydiae. Furthermore, we present an overview about the current state of knowledge regarding the chlamydial plasmid in terms of prevalence and significance as a virulence factor. Finally, we give insights into the progress of developing genetic tools for chlamydial species other than C. trachomatis with a special focus on zoonotic and veterinary chlamydiae.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11645104/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142681612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Omkar Indari, Subhrojyoti Ghosh, Adhiraj Singh Bal, Ajay James, Mehek Garg, Amit Mishra, Krishanpal Karmodiya, Hem Chandra Jha
Epstein-Barr virus (EBV) may cause harm in immunocompromised conditions or on stress stimuli. Various chemical agents have been utilized to induce the lytic cycle in EBV-infected cells. However, apart from chemical agents and external stress stimuli, certain infectious agents may reactivate the EBV. In addition, the acute infection of other pathogens may provide suitable conditions for EBV to thrive more and planting the roots for EBV-associated pathologies. Various bacteria such as periodontal pathogens like Aggregatibacter, Helicobacter pylori, etc. have shown to induce EBV reactivation either by triggering host cells directly or indirectly. Viruses such as Human simplex virus-1 (HSV) induce EBV reactivation by HSV US3 kinase while other viruses such as HIV, hepatitis virus, and even novel SARS-CoV-2 have also been reported to cause EBV reactivation. The eukaryotic pathogens such as Plasmodium falciparum and Aspergillus flavus can also reactivate EBV either by surface protein interaction or as an impact of aflatoxin, respectively. To highlight the underexplored niche of EBV reactivation by biological agents, we have comprehensively presented the related information in this review. This may help to shedding the light on the research gaps as well as to unveil yet unexplored mechanisms of EBV reactivation.
{"title":"Awakening the sleeping giant: Epstein-Barr virus reactivation by biological agents.","authors":"Omkar Indari, Subhrojyoti Ghosh, Adhiraj Singh Bal, Ajay James, Mehek Garg, Amit Mishra, Krishanpal Karmodiya, Hem Chandra Jha","doi":"10.1093/femspd/ftae002","DOIUrl":"10.1093/femspd/ftae002","url":null,"abstract":"<p><p>Epstein-Barr virus (EBV) may cause harm in immunocompromised conditions or on stress stimuli. Various chemical agents have been utilized to induce the lytic cycle in EBV-infected cells. However, apart from chemical agents and external stress stimuli, certain infectious agents may reactivate the EBV. In addition, the acute infection of other pathogens may provide suitable conditions for EBV to thrive more and planting the roots for EBV-associated pathologies. Various bacteria such as periodontal pathogens like Aggregatibacter, Helicobacter pylori, etc. have shown to induce EBV reactivation either by triggering host cells directly or indirectly. Viruses such as Human simplex virus-1 (HSV) induce EBV reactivation by HSV US3 kinase while other viruses such as HIV, hepatitis virus, and even novel SARS-CoV-2 have also been reported to cause EBV reactivation. The eukaryotic pathogens such as Plasmodium falciparum and Aspergillus flavus can also reactivate EBV either by surface protein interaction or as an impact of aflatoxin, respectively. To highlight the underexplored niche of EBV reactivation by biological agents, we have comprehensively presented the related information in this review. This may help to shedding the light on the research gaps as well as to unveil yet unexplored mechanisms of EBV reactivation.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10901609/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139570224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yunqi Mi, Yan Guo, Xuliang Luo, Yang Bai, Haonan Chen, Meihua Wang, Yang Wang, Jiao Guo
Japanese encephalitis virus (JEV) causes acute Japanese encephalitis (JE) in humans and reproductive disorders in pigs. There are ~68 000 cases of JE worldwide each year, with ~13 600-20 400 deaths. JE infections have a fatality rate of one-third, and half of the survivors experience permanent neurological sequelae. The disease is prevalent throughout the Asia-Pacific region and has the potential to spread globally. JEV poses a serious threat to human life and health, and vaccination is currently the only strategy for long-term sustainable protection against JEV infection. However, licensed JEV vaccines are not effective against all strains of JEV. To date, there are no drugs approved for clinical use, and the development of anti-JEV drugs is urgently needed. Natural products are characterized by a wide range of sources, unique structures, and low prices, and this paper provides an overview of the research and development of anti-JEV bioactive natural products.
{"title":"Natural products and derivatives as Japanese encephalitis virus antivirals.","authors":"Yunqi Mi, Yan Guo, Xuliang Luo, Yang Bai, Haonan Chen, Meihua Wang, Yang Wang, Jiao Guo","doi":"10.1093/femspd/ftae022","DOIUrl":"10.1093/femspd/ftae022","url":null,"abstract":"<p><p>Japanese encephalitis virus (JEV) causes acute Japanese encephalitis (JE) in humans and reproductive disorders in pigs. There are ~68 000 cases of JE worldwide each year, with ~13 600-20 400 deaths. JE infections have a fatality rate of one-third, and half of the survivors experience permanent neurological sequelae. The disease is prevalent throughout the Asia-Pacific region and has the potential to spread globally. JEV poses a serious threat to human life and health, and vaccination is currently the only strategy for long-term sustainable protection against JEV infection. However, licensed JEV vaccines are not effective against all strains of JEV. To date, there are no drugs approved for clinical use, and the development of anti-JEV drugs is urgently needed. Natural products are characterized by a wide range of sources, unique structures, and low prices, and this paper provides an overview of the research and development of anti-JEV bioactive natural products.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11556344/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142351524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neisseria gonorrhea (Ngo) is a major concern for global public health due to its severe implications for reproductive health. Understanding its metabolic phenotype is crucial for comprehending its pathogenicity. Despite Ngo's ability to encode tricarboxylic acid (TCA) cycle proteins, GltA and AcnB, their activities are notably restricted. To investigate this phenomenon, we used the iNgo_557 metabolic model and incorporated a constraint on total cellular protein content. Our results indicate that low cellular protein content severely limits GltA and AcnB activity, leading to a shift toward acetate overflow for Adenosine triphosphate (ATP) production, which is more efficient in terms of protein usage. Surprisingly, increasing cellular protein content alleviates this restriction on GltA and AcnB and delays the onset of acetate overflow, highlighting protein allocation as a critical determinant in understanding Ngo's metabolic phenotype. These findings underscore the significance of Ngo's metabolic adaptation in light of optimal protein allocation, providing a blueprint to understand Ngo's metabolic landscape.
{"title":"Optimal protein allocation controls the inhibition of GltA and AcnB in Neisseria gonorrhoeae.","authors":"Nabia Shahreen, Niaz Bahar Chowdhury, Rajib Saha","doi":"10.1093/femspd/ftae023","DOIUrl":"10.1093/femspd/ftae023","url":null,"abstract":"<p><p>Neisseria gonorrhea (Ngo) is a major concern for global public health due to its severe implications for reproductive health. Understanding its metabolic phenotype is crucial for comprehending its pathogenicity. Despite Ngo's ability to encode tricarboxylic acid (TCA) cycle proteins, GltA and AcnB, their activities are notably restricted. To investigate this phenomenon, we used the iNgo_557 metabolic model and incorporated a constraint on total cellular protein content. Our results indicate that low cellular protein content severely limits GltA and AcnB activity, leading to a shift toward acetate overflow for Adenosine triphosphate (ATP) production, which is more efficient in terms of protein usage. Surprisingly, increasing cellular protein content alleviates this restriction on GltA and AcnB and delays the onset of acetate overflow, highlighting protein allocation as a critical determinant in understanding Ngo's metabolic phenotype. These findings underscore the significance of Ngo's metabolic adaptation in light of optimal protein allocation, providing a blueprint to understand Ngo's metabolic landscape.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493098/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142351525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Charlotte Abell-King, Alaska Pokhrel, Scott A Rice, Iain G Duggin, Bill Söderström
Urinary tract infection (UTI), one of the most common bacterial infections worldwide, is a typical example of an infection that is often polymicrobial in nature. While the overall infection course is known on a macroscale, bacterial behavior is not fully understood at the cellular level and bacterial pathophysiology during multispecies infection is not well characterized. Here, using clinically relevant bacteria, human epithelial bladder cells and human urine, we establish co-infection models combined with high resolution imaging to compare single- and multi-species bladder cell invasion events in three common uropathogens: uropathogenic Escherichia coli (UPEC), Klebsiella pneumoniae and Enterococcus faecalis. While all three species invaded the bladder cells, under flow conditions the Gram-positive E. faecalis was significantly less invasive compared to the Gram-negative UPEC and K. pneumoniae. When introduced simultaneously during an infection experiment, all three bacterial species sometimes invaded the same bladder cell, at differing frequencies suggesting complex interactions between bacterial species and bladder cells. Inside host cells, we observed encasement of E. faecalis colonies specifically by UPEC. During subsequent dispersal from the host cells, only the Gram-negative bacteria underwent infection-related filamentation (IRF). Taken together, our data suggest that bacterial multispecies invasions of single bladder cells are frequent and support earlier studies showing intraspecies cooperation on a biochemical level during UTI.
{"title":"Multispecies bacterial invasion of human host cells.","authors":"Charlotte Abell-King, Alaska Pokhrel, Scott A Rice, Iain G Duggin, Bill Söderström","doi":"10.1093/femspd/ftae012","DOIUrl":"10.1093/femspd/ftae012","url":null,"abstract":"<p><p>Urinary tract infection (UTI), one of the most common bacterial infections worldwide, is a typical example of an infection that is often polymicrobial in nature. While the overall infection course is known on a macroscale, bacterial behavior is not fully understood at the cellular level and bacterial pathophysiology during multispecies infection is not well characterized. Here, using clinically relevant bacteria, human epithelial bladder cells and human urine, we establish co-infection models combined with high resolution imaging to compare single- and multi-species bladder cell invasion events in three common uropathogens: uropathogenic Escherichia coli (UPEC), Klebsiella pneumoniae and Enterococcus faecalis. While all three species invaded the bladder cells, under flow conditions the Gram-positive E. faecalis was significantly less invasive compared to the Gram-negative UPEC and K. pneumoniae. When introduced simultaneously during an infection experiment, all three bacterial species sometimes invaded the same bladder cell, at differing frequencies suggesting complex interactions between bacterial species and bladder cells. Inside host cells, we observed encasement of E. faecalis colonies specifically by UPEC. During subsequent dispersal from the host cells, only the Gram-negative bacteria underwent infection-related filamentation (IRF). Taken together, our data suggest that bacterial multispecies invasions of single bladder cells are frequent and support earlier studies showing intraspecies cooperation on a biochemical level during UTI.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11180983/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141093318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Helene May, Yongjie Liu, Stephanie Kadow, Michael J Edwards, Simone Keitsch, Barbara Wilker, Markus Kamler, Heike Grassmé, Yuqing Wu, Erich Gulbins
Sphingosine has been previously shown to kill many strains of pathogenic bacteria including Pseudomonas aeruginosa, Staphyloccus aureus, Acinetobacter, and atypical mycobacteria. However, these studies were performed on isolated or extracellular bacteria and it is unknown whether sphingosine also targets intracellular bacteria. Here, we demonstrate that exogenously-added sphingosine directly binds to extracellular P. aeruginosa and S. aureus, but also targets and binds to intracellular bacteria. Intracellular sphingosine and bacteria were identified by sequential immunostainings. We further show that exogenously-added sphingosine also kills intracellular P. aeruginosa and S. aureus using modified gentamycin assays. Intracellular killing of P. aeruginosa and S. aureus by sphingosine is not mediated by improved phagosomal-lysosomal fusion. In summary, our data indicate that sphingosine binds to and most likely also directly kills extra- and intracellular P. aeruginosa and S. aureus.
{"title":"Sphingosine kills intracellular Pseudomonas aeruginosa and Staphylococcus aureus.","authors":"Helene May, Yongjie Liu, Stephanie Kadow, Michael J Edwards, Simone Keitsch, Barbara Wilker, Markus Kamler, Heike Grassmé, Yuqing Wu, Erich Gulbins","doi":"10.1093/femspd/ftae016","DOIUrl":"10.1093/femspd/ftae016","url":null,"abstract":"<p><p>Sphingosine has been previously shown to kill many strains of pathogenic bacteria including Pseudomonas aeruginosa, Staphyloccus aureus, Acinetobacter, and atypical mycobacteria. However, these studies were performed on isolated or extracellular bacteria and it is unknown whether sphingosine also targets intracellular bacteria. Here, we demonstrate that exogenously-added sphingosine directly binds to extracellular P. aeruginosa and S. aureus, but also targets and binds to intracellular bacteria. Intracellular sphingosine and bacteria were identified by sequential immunostainings. We further show that exogenously-added sphingosine also kills intracellular P. aeruginosa and S. aureus using modified gentamycin assays. Intracellular killing of P. aeruginosa and S. aureus by sphingosine is not mediated by improved phagosomal-lysosomal fusion. In summary, our data indicate that sphingosine binds to and most likely also directly kills extra- and intracellular P. aeruginosa and S. aureus.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285155/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141727603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jenane Konesan, Kate H Moore, Kylie J Mansfield, Lu Liu
Urinary tract infections (UTIs), primarily caused by uropathogenic Escherichia coli (UPEC), have an unclear impact on bladder mucosal physiology. This study investigates UPEC's effects on the urothelium and lamina propria using an ex vivo porcine bladder model. Bladder mucosal strips were analysed for contractile responses to acetylcholine, serotonin, and neurokinin A. Given rising antibiotic resistance, non-antibiotic agents such as cranberry and d-mannose were also evaluated for their potential to prevent UPEC-induced damage. The findings of the current study revealed that UPEC significantly compromised urothelial integrity, barrier function, and permeability, with loss of urothelial cells, uroplakins, and tight junction protein ZO-1 expression. Additionally, infected bladders exhibited a markedly enhanced contractile response to serotonin compared to uninfected controls. Notably, neither cranberry nor d-mannose offered protection against UPEC-mediated damage or mitigated the heightened serotonin-induced contractility. This study provides novel insights into how UPEC disrupts bladder cell biology and highlights the possible involvement of serotonin in the pathophysiology of UTIs.
{"title":"Uropathogenic Escherichia coli causes significant urothelial damage in an ex vivo porcine bladder model, with no protective effect observed from cranberry or d-mannose.","authors":"Jenane Konesan, Kate H Moore, Kylie J Mansfield, Lu Liu","doi":"10.1093/femspd/ftae026","DOIUrl":"10.1093/femspd/ftae026","url":null,"abstract":"<p><p>Urinary tract infections (UTIs), primarily caused by uropathogenic Escherichia coli (UPEC), have an unclear impact on bladder mucosal physiology. This study investigates UPEC's effects on the urothelium and lamina propria using an ex vivo porcine bladder model. Bladder mucosal strips were analysed for contractile responses to acetylcholine, serotonin, and neurokinin A. Given rising antibiotic resistance, non-antibiotic agents such as cranberry and d-mannose were also evaluated for their potential to prevent UPEC-induced damage. The findings of the current study revealed that UPEC significantly compromised urothelial integrity, barrier function, and permeability, with loss of urothelial cells, uroplakins, and tight junction protein ZO-1 expression. Additionally, infected bladders exhibited a markedly enhanced contractile response to serotonin compared to uninfected controls. Notably, neither cranberry nor d-mannose offered protection against UPEC-mediated damage or mitigated the heightened serotonin-induced contractility. This study provides novel insights into how UPEC disrupts bladder cell biology and highlights the possible involvement of serotonin in the pathophysiology of UTIs.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhe-Yu Peng, Song Yang, Hong-Zheng Lu, Lin-Min Wang, Ni Li, Hai-Ting Zhang, Si-Yu Xing, Yi-Nan Du, Sheng-Qun Deng
Zika virus (ZIKV), which belongs to the Flavivirus family, is mainly transmitted via the bite of Aedes mosquitoes. In newborns, ZIKV infection can cause severe symptoms such as microcephaly, while in adults, it can lead to Guillain‒Barré syndrome (GBS). Due to the lack of specific therapeutic methods against ZIKV, the development of a safe and effective vaccine is extremely important. Several potential ZIKV vaccines, such as live attenuated, inactivated, nucleic acid, viral vector, and recombinant subunit vaccines, have demonstrated promising outcomes in clinical trials involving human participants. Therefore, in this review, the recent developmental progress, advantages and disadvantages of these five vaccine types are examined, and practical recommendations for future development are provided.
{"title":"A review on Zika vaccine development.","authors":"Zhe-Yu Peng, Song Yang, Hong-Zheng Lu, Lin-Min Wang, Ni Li, Hai-Ting Zhang, Si-Yu Xing, Yi-Nan Du, Sheng-Qun Deng","doi":"10.1093/femspd/ftad036","DOIUrl":"10.1093/femspd/ftad036","url":null,"abstract":"<p><p>Zika virus (ZIKV), which belongs to the Flavivirus family, is mainly transmitted via the bite of Aedes mosquitoes. In newborns, ZIKV infection can cause severe symptoms such as microcephaly, while in adults, it can lead to Guillain‒Barré syndrome (GBS). Due to the lack of specific therapeutic methods against ZIKV, the development of a safe and effective vaccine is extremely important. Several potential ZIKV vaccines, such as live attenuated, inactivated, nucleic acid, viral vector, and recombinant subunit vaccines, have demonstrated promising outcomes in clinical trials involving human participants. Therefore, in this review, the recent developmental progress, advantages and disadvantages of these five vaccine types are examined, and practical recommendations for future development are provided.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10901608/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139403950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chlamydia trachomatis is the most prevalent bacterial sexually transmitted infection globally. Antibiotic treatment is highly effective, but infection is often asymptomatic resulting in most individuals going undetected and untreated. This untreated infection can ascend to the upper female genital tract to cause pelvic inflammatory disease, tubal factor infertility, and ectopic pregnancy. Chlamydia screening and treatment programs have failed to control this epidemic and demonstrate the need for an efficacious vaccine to prevent transmission and disease. Animal models and human epidemiological data reveal that natural immunity can provide partial or short-lived sterilizing immunity. These data further demonstrate the importance of eliciting interferon gamma (IFNγ)-producing cluster of differentiation 4 (CD4) T cells (Th1 and Th1/17 cells) that can likely synergize with antibody-mediated opsonophagocytosis to provide optimal protection. These studies have guided preclinical rational vaccine design for decades and the first Phase 1 clinical trials have recently been completed. Recent advances have led to improvements in vaccine platforms and clinically safe adjuvants that help provide a path forward. This review describes vaccine models, correlates of immunity, antigen and adjuvant selection, and future clinical testing for Chlamydia vaccine development.
{"title":"Advances in vaccine development for Chlamydia trachomatis.","authors":"Taylor B Poston","doi":"10.1093/femspd/ftae017","DOIUrl":"10.1093/femspd/ftae017","url":null,"abstract":"<p><p>Chlamydia trachomatis is the most prevalent bacterial sexually transmitted infection globally. Antibiotic treatment is highly effective, but infection is often asymptomatic resulting in most individuals going undetected and untreated. This untreated infection can ascend to the upper female genital tract to cause pelvic inflammatory disease, tubal factor infertility, and ectopic pregnancy. Chlamydia screening and treatment programs have failed to control this epidemic and demonstrate the need for an efficacious vaccine to prevent transmission and disease. Animal models and human epidemiological data reveal that natural immunity can provide partial or short-lived sterilizing immunity. These data further demonstrate the importance of eliciting interferon gamma (IFNγ)-producing cluster of differentiation 4 (CD4) T cells (Th1 and Th1/17 cells) that can likely synergize with antibody-mediated opsonophagocytosis to provide optimal protection. These studies have guided preclinical rational vaccine design for decades and the first Phase 1 clinical trials have recently been completed. Recent advances have led to improvements in vaccine platforms and clinically safe adjuvants that help provide a path forward. This review describes vaccine models, correlates of immunity, antigen and adjuvant selection, and future clinical testing for Chlamydia vaccine development.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338180/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141752339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tayhlor Tanner, F N U Medhavi, Shakyra Richardson, Yusuf O Omosun, Francis O Eko
Chlamydia trachomatis (Ct) is the most common sexually transmitted bacterial infection worldwide, potentially leading to severe pathologies including pelvic inflammatory disease, ectopic pregnancy, and tubal infertility if left untreated. Current strategies, including screening and antibiotics, have limited effectiveness due to high rates of asymptomatic cases and logistical challenges. A multiepitope prophylactic vaccine could afford long-term protection against infection. Immunoinformatic analyses were employed to design a multiepitope Chlamydia vaccine antigen. B- and T-cell epitopes from five highly conserved and immunogenic Ct antigens were predicted and selected for the vaccine design. The final construct, adjuvanted with cholera toxin A1 subunit (CTA1), was further screened for immunogenicity. CTA1-MECA (multiepitope Chlamydia trachomatis antigen) was identified as antigenic and nonallergenic. A tertiary structure was predicted, refined, and validated as a good quality model. Molecular docking exhibited strong interactions between the vaccine and toll-like receptor 4 (TLR4). Additionally, immune responses consistent with protection including IFN-γ, IgG + IgM antibodies, and T- and B-cell responses were predicted following vaccination in an immune simulation. Expression of the construct in an Escherichia coli expression vector proved efficient. To further validate the vaccine efficacy, we assessed its immunogenicity in mice. Immunization with CTA1-MECA elicited high levels of Chlamydia-specific antibodies in mucosal and systemic compartments.
沙眼衣原体(Ct)是全球最常见的性传播细菌感染,如果不及时治疗,有可能导致严重的病变,包括盆腔炎、宫外孕和输卵管性不孕。目前的策略包括筛查和抗生素,但由于无症状病例比例高和后勤方面的挑战,效果有限。多表位预防性疫苗可为预防感染提供长期保护。免疫形式分析被用来设计多表位衣原体疫苗抗原。从五个高度保守且具有免疫原性的 Ct 抗原中预测并选择了 B 细胞和 T 细胞表位用于疫苗设计。用霍乱毒素 A1 亚基(CTA1)佐剂的最终构建物进一步进行了免疫原性筛选。经鉴定,CTA1-MECA 具有抗原性和非过敏性。对三级结构进行了预测、完善和验证,认为这是一个优质模型。分子对接显示疫苗与类毒素受体 4(TLR4)之间有很强的相互作用。此外,在免疫模拟中预测了接种疫苗后与保护作用一致的免疫反应,包括 IFN-γ、IgG + IgM 抗体以及 T 细胞和 B 细胞反应。在大肠杆菌表达载体中表达该构建体证明是有效的。为了进一步验证疫苗的功效,我们评估了小鼠的免疫原性。用 CTA1-MECA 进行免疫接种可在粘膜和全身产生高水平的衣原体特异性抗体。
{"title":"In silico design and analysis of a multiepitope vaccine against Chlamydia.","authors":"Tayhlor Tanner, F N U Medhavi, Shakyra Richardson, Yusuf O Omosun, Francis O Eko","doi":"10.1093/femspd/ftae015","DOIUrl":"10.1093/femspd/ftae015","url":null,"abstract":"<p><p>Chlamydia trachomatis (Ct) is the most common sexually transmitted bacterial infection worldwide, potentially leading to severe pathologies including pelvic inflammatory disease, ectopic pregnancy, and tubal infertility if left untreated. Current strategies, including screening and antibiotics, have limited effectiveness due to high rates of asymptomatic cases and logistical challenges. A multiepitope prophylactic vaccine could afford long-term protection against infection. Immunoinformatic analyses were employed to design a multiepitope Chlamydia vaccine antigen. B- and T-cell epitopes from five highly conserved and immunogenic Ct antigens were predicted and selected for the vaccine design. The final construct, adjuvanted with cholera toxin A1 subunit (CTA1), was further screened for immunogenicity. CTA1-MECA (multiepitope Chlamydia trachomatis antigen) was identified as antigenic and nonallergenic. A tertiary structure was predicted, refined, and validated as a good quality model. Molecular docking exhibited strong interactions between the vaccine and toll-like receptor 4 (TLR4). Additionally, immune responses consistent with protection including IFN-γ, IgG + IgM antibodies, and T- and B-cell responses were predicted following vaccination in an immune simulation. Expression of the construct in an Escherichia coli expression vector proved efficient. To further validate the vaccine efficacy, we assessed its immunogenicity in mice. Immunization with CTA1-MECA elicited high levels of Chlamydia-specific antibodies in mucosal and systemic compartments.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11234648/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141420273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}