首页 > 最新文献

Pathogens and disease最新文献

英文 中文
Zoonotic and other veterinary chlamydiae - an update, the role of the plasmid and plasmid-mediated transformation. 人畜共患病和其他兽用衣原体--最新进展、质粒的作用和质粒介导的转化。
IF 2.7 4区 医学 Q3 IMMUNOLOGY Pub Date : 2024-02-07 DOI: 10.1093/femspd/ftae030
Hanna Marti, Kensuke Shima, Sebastien Boutin, Jan Rupp, Ian N Clarke, Karine Laroucau, Nicole Borel

The obligate intracellular bacterial genus Chlamydia harbours species with zoonotic potential, particularly C. psittaci, causative agent of psittacosis, and C. abortus, which may lead to miscarriage in pregnant women. The impact of other bird chlamydiae such as C. avium, C. gallinaceae, and C. buteonis, or reptilian species such as C. crocodili, amongst others, on human health is unclear. The chlamydial native plasmid, a suspected virulence factor, is present in all currently described 14 Chlamydia species except for some plasmid-free strains. The plasmid is also the primary tool to study chlamydial genetics, a still developing field that has mostly focused on C. trachomatis. Only recently, genetic transformation of C. felis, C. pecorum, C. pneumoniae, C. psittaci, and C. suis has succeeded, but existing methods have yet to be refined. In this review article, we will provide an update on the recent developments concerning the zoonotic potential of chlamydiae. Furthermore, we present an overview about the current state of knowledge regarding the chlamydial plasmid in terms of prevalence and significance as a virulence factor. Finally, we give insights into the progress of developing genetic tools for chlamydial species other than C. trachomatis with a special focus on zoonotic and veterinary chlamydiae.

细胞内衣原体细菌属中有一些物种具有人畜共患病的潜能,特别是鹦鹉热的病原体 C. psittaci 和可能导致孕妇流产的 C. abortus。其他鸟类衣原体,如鸟疫衣原体、五倍子衣原体和布氏衣原体,或爬行动物衣原体,如鳄鱼衣原体等,对人类健康的影响尚不清楚。衣原体原生质粒是一种可疑的致病因子,除了一些不含质粒的菌株外,目前描述的 14 种衣原体都含有这种质粒。质粒也是研究衣原体遗传学的主要工具,这一仍在发展的领域主要集中在沙眼衣原体上。直到最近,才成功实现了对毛滴虫、白喉杆菌、肺炎双球菌、鹦鹉热双球菌和猪流感双球菌的基因转化,但现有方法还有待完善。在这篇综述文章中,我们将介绍有关衣原体人畜共患病可能性的最新进展。此外,我们还将从衣原体质粒的流行率和作为致病因子的重要性两个方面概述目前对衣原体质粒的了解情况。最后,我们介绍了针对沙眼衣原体以外的衣原体物种开发遗传工具的进展情况,并特别关注了人畜共患衣原体和兽用衣原体。
{"title":"Zoonotic and other veterinary chlamydiae - an update, the role of the plasmid and plasmid-mediated transformation.","authors":"Hanna Marti, Kensuke Shima, Sebastien Boutin, Jan Rupp, Ian N Clarke, Karine Laroucau, Nicole Borel","doi":"10.1093/femspd/ftae030","DOIUrl":"10.1093/femspd/ftae030","url":null,"abstract":"<p><p>The obligate intracellular bacterial genus Chlamydia harbours species with zoonotic potential, particularly C. psittaci, causative agent of psittacosis, and C. abortus, which may lead to miscarriage in pregnant women. The impact of other bird chlamydiae such as C. avium, C. gallinaceae, and C. buteonis, or reptilian species such as C. crocodili, amongst others, on human health is unclear. The chlamydial native plasmid, a suspected virulence factor, is present in all currently described 14 Chlamydia species except for some plasmid-free strains. The plasmid is also the primary tool to study chlamydial genetics, a still developing field that has mostly focused on C. trachomatis. Only recently, genetic transformation of C. felis, C. pecorum, C. pneumoniae, C. psittaci, and C. suis has succeeded, but existing methods have yet to be refined. In this review article, we will provide an update on the recent developments concerning the zoonotic potential of chlamydiae. Furthermore, we present an overview about the current state of knowledge regarding the chlamydial plasmid in terms of prevalence and significance as a virulence factor. Finally, we give insights into the progress of developing genetic tools for chlamydial species other than C. trachomatis with a special focus on zoonotic and veterinary chlamydiae.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11645104/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142681612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Awakening the sleeping giant: Epstein-Barr virus reactivation by biological agents. 唤醒沉睡的巨人生物制剂导致的爱泼斯坦-巴氏病毒再活化。
IF 2.7 4区 医学 Q3 IMMUNOLOGY Pub Date : 2024-02-07 DOI: 10.1093/femspd/ftae002
Omkar Indari, Subhrojyoti Ghosh, Adhiraj Singh Bal, Ajay James, Mehek Garg, Amit Mishra, Krishanpal Karmodiya, Hem Chandra Jha

Epstein-Barr virus (EBV) may cause harm in immunocompromised conditions or on stress stimuli. Various chemical agents have been utilized to induce the lytic cycle in EBV-infected cells. However, apart from chemical agents and external stress stimuli, certain infectious agents may reactivate the EBV. In addition, the acute infection of other pathogens may provide suitable conditions for EBV to thrive more and planting the roots for EBV-associated pathologies. Various bacteria such as periodontal pathogens like Aggregatibacter, Helicobacter pylori, etc. have shown to induce EBV reactivation either by triggering host cells directly or indirectly. Viruses such as Human simplex virus-1 (HSV) induce EBV reactivation by HSV US3 kinase while other viruses such as HIV, hepatitis virus, and even novel SARS-CoV-2 have also been reported to cause EBV reactivation. The eukaryotic pathogens such as Plasmodium falciparum and Aspergillus flavus can also reactivate EBV either by surface protein interaction or as an impact of aflatoxin, respectively. To highlight the underexplored niche of EBV reactivation by biological agents, we have comprehensively presented the related information in this review. This may help to shedding the light on the research gaps as well as to unveil yet unexplored mechanisms of EBV reactivation.

爱泼斯坦巴氏病毒(EBV)可能会在免疫力低下或受到应激刺激时造成危害。各种化学制剂被用来诱导 EBV 感染细胞的溶解循环。然而,除了化学制剂和外部应激刺激外,某些传染性病原体也可能重新激活 EBV。此外,其他病原体的急性感染也可能为 EBV 提供适宜的生长条件,为 EBV 相关病症的发生埋下祸根。各种细菌,如牙周病病原体(如聚合杆菌、幽门螺杆菌等),通过直接或间接触发宿主细胞,诱导 EBV 再激活。病毒(如人类单纯疱疹病毒-1(HSV))通过 HSV US3 激酶诱导 EBV 再激活,而其他病毒(如艾滋病毒、肝炎病毒,甚至新型 SARS-CoV-2 病毒)据报道也会导致 EBV 再激活。真核病原体(如恶性疟原虫和黄曲霉菌)也能通过表面蛋白相互作用或黄曲霉毒素的影响使 EBV 再激活。为了强调生物制剂对 EBV 再激活这一尚未充分探索的领域,我们在本综述中全面介绍了相关信息。这可能有助于揭示研究空白,并揭示尚未探索的 EBV 再激活机制。
{"title":"Awakening the sleeping giant: Epstein-Barr virus reactivation by biological agents.","authors":"Omkar Indari, Subhrojyoti Ghosh, Adhiraj Singh Bal, Ajay James, Mehek Garg, Amit Mishra, Krishanpal Karmodiya, Hem Chandra Jha","doi":"10.1093/femspd/ftae002","DOIUrl":"10.1093/femspd/ftae002","url":null,"abstract":"<p><p>Epstein-Barr virus (EBV) may cause harm in immunocompromised conditions or on stress stimuli. Various chemical agents have been utilized to induce the lytic cycle in EBV-infected cells. However, apart from chemical agents and external stress stimuli, certain infectious agents may reactivate the EBV. In addition, the acute infection of other pathogens may provide suitable conditions for EBV to thrive more and planting the roots for EBV-associated pathologies. Various bacteria such as periodontal pathogens like Aggregatibacter, Helicobacter pylori, etc. have shown to induce EBV reactivation either by triggering host cells directly or indirectly. Viruses such as Human simplex virus-1 (HSV) induce EBV reactivation by HSV US3 kinase while other viruses such as HIV, hepatitis virus, and even novel SARS-CoV-2 have also been reported to cause EBV reactivation. The eukaryotic pathogens such as Plasmodium falciparum and Aspergillus flavus can also reactivate EBV either by surface protein interaction or as an impact of aflatoxin, respectively. To highlight the underexplored niche of EBV reactivation by biological agents, we have comprehensively presented the related information in this review. This may help to shedding the light on the research gaps as well as to unveil yet unexplored mechanisms of EBV reactivation.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10901609/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139570224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Natural products and derivatives as Japanese encephalitis virus antivirals. 作为日本脑炎病毒抗病毒药物的天然产品及其衍生物。
IF 2.7 4区 医学 Q3 IMMUNOLOGY Pub Date : 2024-02-07 DOI: 10.1093/femspd/ftae022
Yunqi Mi, Yan Guo, Xuliang Luo, Yang Bai, Haonan Chen, Meihua Wang, Yang Wang, Jiao Guo

Japanese encephalitis virus (JEV) causes acute Japanese encephalitis (JE) in humans and reproductive disorders in pigs. There are ~68 000 cases of JE worldwide each year, with ~13 600-20 400 deaths. JE infections have a fatality rate of one-third, and half of the survivors experience permanent neurological sequelae. The disease is prevalent throughout the Asia-Pacific region and has the potential to spread globally. JEV poses a serious threat to human life and health, and vaccination is currently the only strategy for long-term sustainable protection against JEV infection. However, licensed JEV vaccines are not effective against all strains of JEV. To date, there are no drugs approved for clinical use, and the development of anti-JEV drugs is urgently needed. Natural products are characterized by a wide range of sources, unique structures, and low prices, and this paper provides an overview of the research and development of anti-JEV bioactive natural products.

日本脑炎病毒(JEV)会导致人类急性日本脑炎(JE)和猪的生殖障碍。全世界每年约有 68,000 例 JE 病例,约有 13,600 至 20,400 人死亡。JE 感染的致死率为三分之一,半数幸存者会留下永久性神经系统后遗症。这种疾病流行于整个亚太地区,并有可能向全球蔓延。JEV 对人类的生命和健康构成严重威胁,接种疫苗是目前长期持续预防 JEV 感染的唯一策略。然而,获得许可的 JEV 疫苗并不能有效预防所有的 JEV 株系。迄今为止,还没有药物被批准用于临床,因此迫切需要开发抗 JEV 药物。天然产物具有来源广泛、结构独特、价格低廉等特点,本文概述了抗 JEV 生物活性天然产物的研究与开发。
{"title":"Natural products and derivatives as Japanese encephalitis virus antivirals.","authors":"Yunqi Mi, Yan Guo, Xuliang Luo, Yang Bai, Haonan Chen, Meihua Wang, Yang Wang, Jiao Guo","doi":"10.1093/femspd/ftae022","DOIUrl":"10.1093/femspd/ftae022","url":null,"abstract":"<p><p>Japanese encephalitis virus (JEV) causes acute Japanese encephalitis (JE) in humans and reproductive disorders in pigs. There are ~68 000 cases of JE worldwide each year, with ~13 600-20 400 deaths. JE infections have a fatality rate of one-third, and half of the survivors experience permanent neurological sequelae. The disease is prevalent throughout the Asia-Pacific region and has the potential to spread globally. JEV poses a serious threat to human life and health, and vaccination is currently the only strategy for long-term sustainable protection against JEV infection. However, licensed JEV vaccines are not effective against all strains of JEV. To date, there are no drugs approved for clinical use, and the development of anti-JEV drugs is urgently needed. Natural products are characterized by a wide range of sources, unique structures, and low prices, and this paper provides an overview of the research and development of anti-JEV bioactive natural products.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11556344/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142351524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal protein allocation controls the inhibition of GltA and AcnB in Neisseria gonorrhoeae. 最佳蛋白质分配控制着淋病奈瑟菌中 GltA 和 AcnB 的抑制作用。
IF 2.7 4区 医学 Q3 IMMUNOLOGY Pub Date : 2024-02-07 DOI: 10.1093/femspd/ftae023
Nabia Shahreen, Niaz Bahar Chowdhury, Rajib Saha

Neisseria gonorrhea (Ngo) is a major concern for global public health due to its severe implications for reproductive health. Understanding its metabolic phenotype is crucial for comprehending its pathogenicity. Despite Ngo's ability to encode tricarboxylic acid (TCA) cycle proteins, GltA and AcnB, their activities are notably restricted. To investigate this phenomenon, we used the iNgo_557 metabolic model and incorporated a constraint on total cellular protein content. Our results indicate that low cellular protein content severely limits GltA and AcnB activity, leading to a shift toward acetate overflow for Adenosine triphosphate (ATP) production, which is more efficient in terms of protein usage. Surprisingly, increasing cellular protein content alleviates this restriction on GltA and AcnB and delays the onset of acetate overflow, highlighting protein allocation as a critical determinant in understanding Ngo's metabolic phenotype. These findings underscore the significance of Ngo's metabolic adaptation in light of optimal protein allocation, providing a blueprint to understand Ngo's metabolic landscape.

淋病奈瑟菌(Ngo)对生殖健康有严重影响,是全球公共卫生关注的一个主要问题。了解其代谢表型对于理解其致病性至关重要。尽管 Ngo 能够编码 TCA 循环蛋白 GltA 和 AcnB,但它们的活性明显受到限制。为了研究这一现象,我们使用了 iNgoo_557 代谢模型,并加入了对细胞蛋白质总含量的限制。我们的研究结果表明,细胞蛋白质含量低会严重限制 GltA 和 AcnB 的活性,导致它们转向生产 ATP 的醋酸盐溢出,而醋酸盐溢出对蛋白质的利用率更高。令人惊讶的是,增加细胞蛋白质含量会减轻对 GltA 和 AcnB 的限制,并推迟乙酸溢出的发生,这突出表明蛋白质分配是了解 Ngo 代谢表型的关键决定因素。这些发现强调了 Ngo 在最佳蛋白质分配方面的代谢适应性,为了解 Ngo 的代谢状况提供了一个蓝图。
{"title":"Optimal protein allocation controls the inhibition of GltA and AcnB in Neisseria gonorrhoeae.","authors":"Nabia Shahreen, Niaz Bahar Chowdhury, Rajib Saha","doi":"10.1093/femspd/ftae023","DOIUrl":"10.1093/femspd/ftae023","url":null,"abstract":"<p><p>Neisseria gonorrhea (Ngo) is a major concern for global public health due to its severe implications for reproductive health. Understanding its metabolic phenotype is crucial for comprehending its pathogenicity. Despite Ngo's ability to encode tricarboxylic acid (TCA) cycle proteins, GltA and AcnB, their activities are notably restricted. To investigate this phenomenon, we used the iNgo_557 metabolic model and incorporated a constraint on total cellular protein content. Our results indicate that low cellular protein content severely limits GltA and AcnB activity, leading to a shift toward acetate overflow for Adenosine triphosphate (ATP) production, which is more efficient in terms of protein usage. Surprisingly, increasing cellular protein content alleviates this restriction on GltA and AcnB and delays the onset of acetate overflow, highlighting protein allocation as a critical determinant in understanding Ngo's metabolic phenotype. These findings underscore the significance of Ngo's metabolic adaptation in light of optimal protein allocation, providing a blueprint to understand Ngo's metabolic landscape.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493098/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142351525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multispecies bacterial invasion of human host cells. 多菌种细菌入侵人类宿主细胞。
IF 2.7 4区 医学 Q3 IMMUNOLOGY Pub Date : 2024-02-07 DOI: 10.1093/femspd/ftae012
Charlotte Abell-King, Alaska Pokhrel, Scott A Rice, Iain G Duggin, Bill Söderström

Urinary tract infection (UTI), one of the most common bacterial infections worldwide, is a typical example of an infection that is often polymicrobial in nature. While the overall infection course is known on a macroscale, bacterial behavior is not fully understood at the cellular level and bacterial pathophysiology during multispecies infection is not well characterized. Here, using clinically relevant bacteria, human epithelial bladder cells and human urine, we establish co-infection models combined with high resolution imaging to compare single- and multi-species bladder cell invasion events in three common uropathogens: uropathogenic Escherichia coli (UPEC), Klebsiella pneumoniae and Enterococcus faecalis. While all three species invaded the bladder cells, under flow conditions the Gram-positive E. faecalis was significantly less invasive compared to the Gram-negative UPEC and K. pneumoniae. When introduced simultaneously during an infection experiment, all three bacterial species sometimes invaded the same bladder cell, at differing frequencies suggesting complex interactions between bacterial species and bladder cells. Inside host cells, we observed encasement of E. faecalis colonies specifically by UPEC. During subsequent dispersal from the host cells, only the Gram-negative bacteria underwent infection-related filamentation (IRF). Taken together, our data suggest that bacterial multispecies invasions of single bladder cells are frequent and support earlier studies showing intraspecies cooperation on a biochemical level during UTI.

尿路感染(UTI)是全球最常见的细菌感染之一,是一种典型的多微生物感染。虽然人们从宏观上了解了整个感染过程,但在细胞水平上对细菌的行为还不完全了解,多菌种感染过程中细菌的病理生理学特征也不十分明确。在这里,我们利用临床相关细菌、人类膀胱上皮细胞和人类尿液,结合高分辨率成像技术建立了共同感染模型,以比较三种常见泌尿病原体(致病性大肠杆菌(UPEC)、肺炎克雷伯菌和粪肠球菌)的单菌种和多菌种膀胱细胞侵袭事件。虽然这三种病原体都会侵入膀胱细胞,但在流动条件下,革兰氏阳性的粪肠球菌与革兰氏阴性的尿路致病性大肠杆菌和肺炎克雷伯菌相比,侵入性明显较低。在感染实验中,如果同时引入三种细菌,它们有时会侵入同一个膀胱细胞,但侵入频率不同,这表明细菌种类与膀胱细胞之间存在复杂的相互作用。在宿主细胞内,我们观察到粪肠球菌菌落专门被 UPEC 包囊。在随后离开宿主细胞的过程中,只有革兰氏阴性细菌发生了感染相关丝状化(IRF)。总之,我们的数据表明,细菌多菌种入侵单个膀胱细胞的现象很常见,并支持了早先的研究,这些研究显示了UTI期间菌种间在生化水平上的合作。
{"title":"Multispecies bacterial invasion of human host cells.","authors":"Charlotte Abell-King, Alaska Pokhrel, Scott A Rice, Iain G Duggin, Bill Söderström","doi":"10.1093/femspd/ftae012","DOIUrl":"10.1093/femspd/ftae012","url":null,"abstract":"<p><p>Urinary tract infection (UTI), one of the most common bacterial infections worldwide, is a typical example of an infection that is often polymicrobial in nature. While the overall infection course is known on a macroscale, bacterial behavior is not fully understood at the cellular level and bacterial pathophysiology during multispecies infection is not well characterized. Here, using clinically relevant bacteria, human epithelial bladder cells and human urine, we establish co-infection models combined with high resolution imaging to compare single- and multi-species bladder cell invasion events in three common uropathogens: uropathogenic Escherichia coli (UPEC), Klebsiella pneumoniae and Enterococcus faecalis. While all three species invaded the bladder cells, under flow conditions the Gram-positive E. faecalis was significantly less invasive compared to the Gram-negative UPEC and K. pneumoniae. When introduced simultaneously during an infection experiment, all three bacterial species sometimes invaded the same bladder cell, at differing frequencies suggesting complex interactions between bacterial species and bladder cells. Inside host cells, we observed encasement of E. faecalis colonies specifically by UPEC. During subsequent dispersal from the host cells, only the Gram-negative bacteria underwent infection-related filamentation (IRF). Taken together, our data suggest that bacterial multispecies invasions of single bladder cells are frequent and support earlier studies showing intraspecies cooperation on a biochemical level during UTI.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11180983/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141093318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sphingosine kills intracellular Pseudomonas aeruginosa and Staphylococcus aureus. 鞘氨醇能杀死细胞内的绿脓杆菌和金黄色葡萄球菌。
IF 2.7 4区 医学 Q3 IMMUNOLOGY Pub Date : 2024-02-07 DOI: 10.1093/femspd/ftae016
Helene May, Yongjie Liu, Stephanie Kadow, Michael J Edwards, Simone Keitsch, Barbara Wilker, Markus Kamler, Heike Grassmé, Yuqing Wu, Erich Gulbins

Sphingosine has been previously shown to kill many strains of pathogenic bacteria including Pseudomonas aeruginosa, Staphyloccus aureus, Acinetobacter, and atypical mycobacteria. However, these studies were performed on isolated or extracellular bacteria and it is unknown whether sphingosine also targets intracellular bacteria. Here, we demonstrate that exogenously-added sphingosine directly binds to extracellular P. aeruginosa and S. aureus, but also targets and binds to intracellular bacteria. Intracellular sphingosine and bacteria were identified by sequential immunostainings. We further show that exogenously-added sphingosine also kills intracellular P. aeruginosa and S. aureus using modified gentamycin assays. Intracellular killing of P. aeruginosa and S. aureus by sphingosine is not mediated by improved phagosomal-lysosomal fusion. In summary, our data indicate that sphingosine binds to and most likely also directly kills extra- and intracellular P. aeruginosa and S. aureus.

鞘氨醇以前曾被证明可以杀死许多致病菌株,包括铜绿假单胞菌、金黄色葡萄球菌、不动杆菌和非典型分枝杆菌。然而,这些研究都是针对分离的或细胞外的细菌进行的,鞘氨醇是否也针对细胞内的细菌尚不清楚。在这里,我们证明了外源添加的鞘磷脂不仅能直接与细胞外的铜绿假单胞菌和金黄色葡萄球菌结合,还能与细胞内的细菌靶向结合。细胞内的鞘磷脂和细菌是通过连续的免疫染色法确定的。我们使用改良庆大霉素试验进一步证明,外源添加的鞘磷脂也能杀死细胞内的铜绿假单胞菌和金黄色葡萄球菌。鞘磷脂对铜绿假单胞菌和金黄色葡萄球菌的胞内杀灭作用不是通过改善吞噬体-溶酶体融合来介导的。总之,我们的数据表明,鞘磷脂能与铜绿假单胞菌和金黄色葡萄球菌结合,并很可能直接杀死细胞外和细胞内的铜绿假单胞菌和金黄色葡萄球菌。
{"title":"Sphingosine kills intracellular Pseudomonas aeruginosa and Staphylococcus aureus.","authors":"Helene May, Yongjie Liu, Stephanie Kadow, Michael J Edwards, Simone Keitsch, Barbara Wilker, Markus Kamler, Heike Grassmé, Yuqing Wu, Erich Gulbins","doi":"10.1093/femspd/ftae016","DOIUrl":"10.1093/femspd/ftae016","url":null,"abstract":"<p><p>Sphingosine has been previously shown to kill many strains of pathogenic bacteria including Pseudomonas aeruginosa, Staphyloccus aureus, Acinetobacter, and atypical mycobacteria. However, these studies were performed on isolated or extracellular bacteria and it is unknown whether sphingosine also targets intracellular bacteria. Here, we demonstrate that exogenously-added sphingosine directly binds to extracellular P. aeruginosa and S. aureus, but also targets and binds to intracellular bacteria. Intracellular sphingosine and bacteria were identified by sequential immunostainings. We further show that exogenously-added sphingosine also kills intracellular P. aeruginosa and S. aureus using modified gentamycin assays. Intracellular killing of P. aeruginosa and S. aureus by sphingosine is not mediated by improved phagosomal-lysosomal fusion. In summary, our data indicate that sphingosine binds to and most likely also directly kills extra- and intracellular P. aeruginosa and S. aureus.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285155/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141727603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uropathogenic Escherichia coli causes significant urothelial damage in an ex vivo porcine bladder model, with no protective effect observed from cranberry or d-mannose. 在体外猪膀胱模型中,致病性大肠杆菌会造成严重的尿道损伤,而蔓越莓或 D-甘露糖均无保护作用。
IF 2.7 4区 医学 Q3 IMMUNOLOGY Pub Date : 2024-02-07 DOI: 10.1093/femspd/ftae026
Jenane Konesan, Kate H Moore, Kylie J Mansfield, Lu Liu

Urinary tract infections (UTIs), primarily caused by uropathogenic Escherichia coli (UPEC), have an unclear impact on bladder mucosal physiology. This study investigates UPEC's effects on the urothelium and lamina propria using an ex vivo porcine bladder model. Bladder mucosal strips were analysed for contractile responses to acetylcholine, serotonin, and neurokinin A. Given rising antibiotic resistance, non-antibiotic agents such as cranberry and d-mannose were also evaluated for their potential to prevent UPEC-induced damage. The findings of the current study revealed that UPEC significantly compromised urothelial integrity, barrier function, and permeability, with loss of urothelial cells, uroplakins, and tight junction protein ZO-1 expression. Additionally, infected bladders exhibited a markedly enhanced contractile response to serotonin compared to uninfected controls. Notably, neither cranberry nor d-mannose offered protection against UPEC-mediated damage or mitigated the heightened serotonin-induced contractility. This study provides novel insights into how UPEC disrupts bladder cell biology and highlights the possible involvement of serotonin in the pathophysiology of UTIs.

主要由尿路致病性大肠杆菌(UPEC)引起的尿路感染(UTI)对膀胱粘膜生理学的影响尚不明确。本研究利用猪膀胱体外模型研究了 UPEC 对尿路上皮细胞和固有膜的影响。鉴于抗生素耐药性的增加,本研究还评估了蔓越莓和 D-甘露糖等非抗生素制剂预防 UPEC 引起的损伤的潜力。目前的研究结果表明,UPEC 严重损害了尿道的完整性、屏障功能和通透性,导致尿道细胞、尿棘蛋白和紧密连接蛋白 ZO-1 的表达丧失。此外,与未感染的对照组相比,受感染的膀胱对血清素的收缩反应明显增强。值得注意的是,蔓越莓和 D-甘露糖都不能抵御 UPEC 介导的损伤,也不能减轻血清素诱导的收缩力增强。这项研究为了解 UPEC 如何破坏膀胱细胞生物学提供了新的视角,并强调了血清素可能参与UTI的病理生理学。
{"title":"Uropathogenic Escherichia coli causes significant urothelial damage in an ex vivo porcine bladder model, with no protective effect observed from cranberry or d-mannose.","authors":"Jenane Konesan, Kate H Moore, Kylie J Mansfield, Lu Liu","doi":"10.1093/femspd/ftae026","DOIUrl":"10.1093/femspd/ftae026","url":null,"abstract":"<p><p>Urinary tract infections (UTIs), primarily caused by uropathogenic Escherichia coli (UPEC), have an unclear impact on bladder mucosal physiology. This study investigates UPEC's effects on the urothelium and lamina propria using an ex vivo porcine bladder model. Bladder mucosal strips were analysed for contractile responses to acetylcholine, serotonin, and neurokinin A. Given rising antibiotic resistance, non-antibiotic agents such as cranberry and d-mannose were also evaluated for their potential to prevent UPEC-induced damage. The findings of the current study revealed that UPEC significantly compromised urothelial integrity, barrier function, and permeability, with loss of urothelial cells, uroplakins, and tight junction protein ZO-1 expression. Additionally, infected bladders exhibited a markedly enhanced contractile response to serotonin compared to uninfected controls. Notably, neither cranberry nor d-mannose offered protection against UPEC-mediated damage or mitigated the heightened serotonin-induced contractility. This study provides novel insights into how UPEC disrupts bladder cell biology and highlights the possible involvement of serotonin in the pathophysiology of UTIs.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review on Zika vaccine development. 寨卡疫苗研发综述。
IF 2.7 4区 医学 Q3 IMMUNOLOGY Pub Date : 2024-02-07 DOI: 10.1093/femspd/ftad036
Zhe-Yu Peng, Song Yang, Hong-Zheng Lu, Lin-Min Wang, Ni Li, Hai-Ting Zhang, Si-Yu Xing, Yi-Nan Du, Sheng-Qun Deng

Zika virus (ZIKV), which belongs to the Flavivirus family, is mainly transmitted via the bite of Aedes mosquitoes. In newborns, ZIKV infection can cause severe symptoms such as microcephaly, while in adults, it can lead to Guillain‒Barré syndrome (GBS). Due to the lack of specific therapeutic methods against ZIKV, the development of a safe and effective vaccine is extremely important. Several potential ZIKV vaccines, such as live attenuated, inactivated, nucleic acid, viral vector, and recombinant subunit vaccines, have demonstrated promising outcomes in clinical trials involving human participants. Therefore, in this review, the recent developmental progress, advantages and disadvantages of these five vaccine types are examined, and practical recommendations for future development are provided.

寨卡病毒(ZIKV)属于黄热病病毒科,主要通过伊蚊叮咬传播。新生儿感染寨卡病毒可导致小头畸形等严重症状,而成人感染寨卡病毒可导致格林-巴利综合征(GBS)。由于缺乏针对 ZIKV 的特定治疗方法,因此开发一种安全有效的疫苗极为重要。几种潜在的 ZIKV 疫苗,如减毒活疫苗、灭活疫苗、核酸疫苗、病毒载体疫苗和重组亚单位疫苗,已在有人类参与的临床试验中显示出良好的效果。因此,本综述对这五种疫苗的最新研发进展和优缺点进行了研究,并对未来的研发提出了切实可行的建议。
{"title":"A review on Zika vaccine development.","authors":"Zhe-Yu Peng, Song Yang, Hong-Zheng Lu, Lin-Min Wang, Ni Li, Hai-Ting Zhang, Si-Yu Xing, Yi-Nan Du, Sheng-Qun Deng","doi":"10.1093/femspd/ftad036","DOIUrl":"10.1093/femspd/ftad036","url":null,"abstract":"<p><p>Zika virus (ZIKV), which belongs to the Flavivirus family, is mainly transmitted via the bite of Aedes mosquitoes. In newborns, ZIKV infection can cause severe symptoms such as microcephaly, while in adults, it can lead to Guillain‒Barré syndrome (GBS). Due to the lack of specific therapeutic methods against ZIKV, the development of a safe and effective vaccine is extremely important. Several potential ZIKV vaccines, such as live attenuated, inactivated, nucleic acid, viral vector, and recombinant subunit vaccines, have demonstrated promising outcomes in clinical trials involving human participants. Therefore, in this review, the recent developmental progress, advantages and disadvantages of these five vaccine types are examined, and practical recommendations for future development are provided.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10901608/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139403950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in vaccine development for Chlamydia trachomatis. 沙眼衣原体疫苗开发进展。
IF 2.7 4区 医学 Q3 IMMUNOLOGY Pub Date : 2024-02-07 DOI: 10.1093/femspd/ftae017
Taylor B Poston

Chlamydia trachomatis is the most prevalent bacterial sexually transmitted infection globally. Antibiotic treatment is highly effective, but infection is often asymptomatic resulting in most individuals going undetected and untreated. This untreated infection can ascend to the upper female genital tract to cause pelvic inflammatory disease, tubal factor infertility, and ectopic pregnancy. Chlamydia screening and treatment programs have failed to control this epidemic and demonstrate the need for an efficacious vaccine to prevent transmission and disease. Animal models and human epidemiological data reveal that natural immunity can provide partial or short-lived sterilizing immunity. These data further demonstrate the importance of eliciting interferon gamma (IFNγ)-producing cluster of differentiation 4 (CD4) T cells (Th1 and Th1/17 cells) that can likely synergize with antibody-mediated opsonophagocytosis to provide optimal protection. These studies have guided preclinical rational vaccine design for decades and the first Phase 1 clinical trials have recently been completed. Recent advances have led to improvements in vaccine platforms and clinically safe adjuvants that help provide a path forward. This review describes vaccine models, correlates of immunity, antigen and adjuvant selection, and future clinical testing for Chlamydia vaccine development.

沙眼衣原体是全球最普遍的细菌性性传播感染。抗生素治疗非常有效,但感染后往往没有症状,导致大多数人未被发现和治疗。这种未经治疗的感染可蔓延至女性上生殖道,导致盆腔炎、输卵管因素性不孕和宫外孕。衣原体筛查和治疗计划未能控制这一流行病,因此需要一种有效的疫苗来预防传播和疾病。动物模型和人类流行病学数据显示,自然免疫可提供部分或短暂的绝育免疫力。这些数据进一步证明了诱导产生 IFNγ 的 CD4 T 细胞(Th1 和 Th1/17 细胞)的重要性,这种细胞很可能与抗体介导的溶血作用协同作用,从而提供最佳保护。几十年来,这些研究一直指导着临床前的合理疫苗设计,而第一批 1 期临床试验最近也已完成。最近的研究进展改进了疫苗平台和临床安全佐剂,为疫苗设计提供了前进的道路。本综述介绍了疫苗模型、免疫相关性、抗原和佐剂选择以及衣原体疫苗开发的未来临床测试。
{"title":"Advances in vaccine development for Chlamydia trachomatis.","authors":"Taylor B Poston","doi":"10.1093/femspd/ftae017","DOIUrl":"10.1093/femspd/ftae017","url":null,"abstract":"<p><p>Chlamydia trachomatis is the most prevalent bacterial sexually transmitted infection globally. Antibiotic treatment is highly effective, but infection is often asymptomatic resulting in most individuals going undetected and untreated. This untreated infection can ascend to the upper female genital tract to cause pelvic inflammatory disease, tubal factor infertility, and ectopic pregnancy. Chlamydia screening and treatment programs have failed to control this epidemic and demonstrate the need for an efficacious vaccine to prevent transmission and disease. Animal models and human epidemiological data reveal that natural immunity can provide partial or short-lived sterilizing immunity. These data further demonstrate the importance of eliciting interferon gamma (IFNγ)-producing cluster of differentiation 4 (CD4) T cells (Th1 and Th1/17 cells) that can likely synergize with antibody-mediated opsonophagocytosis to provide optimal protection. These studies have guided preclinical rational vaccine design for decades and the first Phase 1 clinical trials have recently been completed. Recent advances have led to improvements in vaccine platforms and clinically safe adjuvants that help provide a path forward. This review describes vaccine models, correlates of immunity, antigen and adjuvant selection, and future clinical testing for Chlamydia vaccine development.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338180/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141752339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In silico design and analysis of a multiepitope vaccine against Chlamydia. 针对衣原体的多表位疫苗的硅学设计和分析。
IF 2.7 4区 医学 Q3 IMMUNOLOGY Pub Date : 2024-02-07 DOI: 10.1093/femspd/ftae015
Tayhlor Tanner, F N U Medhavi, Shakyra Richardson, Yusuf O Omosun, Francis O Eko

Chlamydia trachomatis (Ct) is the most common sexually transmitted bacterial infection worldwide, potentially leading to severe pathologies including pelvic inflammatory disease, ectopic pregnancy, and tubal infertility if left untreated. Current strategies, including screening and antibiotics, have limited effectiveness due to high rates of asymptomatic cases and logistical challenges. A multiepitope prophylactic vaccine could afford long-term protection against infection. Immunoinformatic analyses were employed to design a multiepitope Chlamydia vaccine antigen. B- and T-cell epitopes from five highly conserved and immunogenic Ct antigens were predicted and selected for the vaccine design. The final construct, adjuvanted with cholera toxin A1 subunit (CTA1), was further screened for immunogenicity. CTA1-MECA (multiepitope Chlamydia trachomatis antigen) was identified as antigenic and nonallergenic. A tertiary structure was predicted, refined, and validated as a good quality model. Molecular docking exhibited strong interactions between the vaccine and toll-like receptor 4 (TLR4). Additionally, immune responses consistent with protection including IFN-γ, IgG + IgM antibodies, and T- and B-cell responses were predicted following vaccination in an immune simulation. Expression of the construct in an Escherichia coli expression vector proved efficient. To further validate the vaccine efficacy, we assessed its immunogenicity in mice. Immunization with CTA1-MECA elicited high levels of Chlamydia-specific antibodies in mucosal and systemic compartments.

沙眼衣原体(Ct)是全球最常见的性传播细菌感染,如果不及时治疗,有可能导致严重的病变,包括盆腔炎、宫外孕和输卵管性不孕。目前的策略包括筛查和抗生素,但由于无症状病例比例高和后勤方面的挑战,效果有限。多表位预防性疫苗可为预防感染提供长期保护。免疫形式分析被用来设计多表位衣原体疫苗抗原。从五个高度保守且具有免疫原性的 Ct 抗原中预测并选择了 B 细胞和 T 细胞表位用于疫苗设计。用霍乱毒素 A1 亚基(CTA1)佐剂的最终构建物进一步进行了免疫原性筛选。经鉴定,CTA1-MECA 具有抗原性和非过敏性。对三级结构进行了预测、完善和验证,认为这是一个优质模型。分子对接显示疫苗与类毒素受体 4(TLR4)之间有很强的相互作用。此外,在免疫模拟中预测了接种疫苗后与保护作用一致的免疫反应,包括 IFN-γ、IgG + IgM 抗体以及 T 细胞和 B 细胞反应。在大肠杆菌表达载体中表达该构建体证明是有效的。为了进一步验证疫苗的功效,我们评估了小鼠的免疫原性。用 CTA1-MECA 进行免疫接种可在粘膜和全身产生高水平的衣原体特异性抗体。
{"title":"In silico design and analysis of a multiepitope vaccine against Chlamydia.","authors":"Tayhlor Tanner, F N U Medhavi, Shakyra Richardson, Yusuf O Omosun, Francis O Eko","doi":"10.1093/femspd/ftae015","DOIUrl":"10.1093/femspd/ftae015","url":null,"abstract":"<p><p>Chlamydia trachomatis (Ct) is the most common sexually transmitted bacterial infection worldwide, potentially leading to severe pathologies including pelvic inflammatory disease, ectopic pregnancy, and tubal infertility if left untreated. Current strategies, including screening and antibiotics, have limited effectiveness due to high rates of asymptomatic cases and logistical challenges. A multiepitope prophylactic vaccine could afford long-term protection against infection. Immunoinformatic analyses were employed to design a multiepitope Chlamydia vaccine antigen. B- and T-cell epitopes from five highly conserved and immunogenic Ct antigens were predicted and selected for the vaccine design. The final construct, adjuvanted with cholera toxin A1 subunit (CTA1), was further screened for immunogenicity. CTA1-MECA (multiepitope Chlamydia trachomatis antigen) was identified as antigenic and nonallergenic. A tertiary structure was predicted, refined, and validated as a good quality model. Molecular docking exhibited strong interactions between the vaccine and toll-like receptor 4 (TLR4). Additionally, immune responses consistent with protection including IFN-γ, IgG + IgM antibodies, and T- and B-cell responses were predicted following vaccination in an immune simulation. Expression of the construct in an Escherichia coli expression vector proved efficient. To further validate the vaccine efficacy, we assessed its immunogenicity in mice. Immunization with CTA1-MECA elicited high levels of Chlamydia-specific antibodies in mucosal and systemic compartments.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11234648/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141420273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Pathogens and disease
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1