Pub Date : 2024-09-01Epub Date: 2024-08-14DOI: 10.1080/20477724.2024.2392225
Murat Aydin, Nurten Nur Aydin, Esra Laloğlu
Crimean-Congo hemorrhagic fever (CCHF) is a widespread tick-borne viral disease. YKL-40 (also known as chitinase-3-like-1 protein) is an acute phase protein released by various immune cells. The purpose of this study was to investigate the relationship between YKL-40 level and the clinical course and prognosis of CCHF. The study included 78 patients who were admitted to our hospital between April 15 and 30 August 2022 and had a positive polymerase chain reaction test result for CCHF. The patients were divided into two groups, severe and non-severe. In addition, a control group consisting of 22 healthy people was established. Mean serum YKL-40 levels were significantly higher in patients than controls (106.8 ng/mL ± 91.2 and 47.1 ng/mL ± 35.3, respectively; p < 0.001). However, mean YKL-40 levels were also significantly higher in patients with severe CCHF compared to non-severe cases (173.3 ± 112.3 and 67.5 ± 41.7, respectively; p < 0.001). A comparison of the 10 exitus patients and the 68 survivors revealed significantly higher YKL-40 levels in the exitus group (mean: 214.0 ± 139.0 and 92.8 ± 73.6, respectively; p = 0.001). A receiver operating characteristic analysis for YKL-40 levels to distinguish between severe and non-severe patients found an area under the curve of 0.925. YKL-40 levels were measured with a sensitivity of 97% and a specificity of 84% with a cutoff value of 90.7 ng/mL. YKL-40 levels measured at the time of hospital presentation in patients with CCHF can be used as a biomarker for clinical course and prognosis.
{"title":"Evaluation of the relationship between YKL-40 level and clinical severity in patients with Crimean-Congo hemorrhagic fever.","authors":"Murat Aydin, Nurten Nur Aydin, Esra Laloğlu","doi":"10.1080/20477724.2024.2392225","DOIUrl":"10.1080/20477724.2024.2392225","url":null,"abstract":"<p><p>Crimean-Congo hemorrhagic fever (CCHF) is a widespread tick-borne viral disease. YKL-40 (also known as chitinase-3-like-1 protein) is an acute phase protein released by various immune cells. The purpose of this study was to investigate the relationship between YKL-40 level and the clinical course and prognosis of CCHF. The study included 78 patients who were admitted to our hospital between April 15 and 30 August 2022 and had a positive polymerase chain reaction test result for CCHF. The patients were divided into two groups, severe and non-severe. In addition, a control group consisting of 22 healthy people was established. Mean serum YKL-40 levels were significantly higher in patients than controls (106.8 ng/mL ± 91.2 and 47.1 ng/mL ± 35.3, respectively; <i>p</i> < 0.001). However, mean YKL-40 levels were also significantly higher in patients with severe CCHF compared to non-severe cases (173.3 ± 112.3 and 67.5 ± 41.7, respectively; <i>p</i> < 0.001). A comparison of the 10 exitus patients and the 68 survivors revealed significantly higher YKL-40 levels in the exitus group (mean: 214.0 ± 139.0 and 92.8 ± 73.6, respectively; <i>p</i> = 0.001). A receiver operating characteristic analysis for YKL-40 levels to distinguish between severe and non-severe patients found an area under the curve of 0.925. YKL-40 levels were measured with a sensitivity of 97% and a specificity of 84% with a cutoff value of 90.7 ng/mL. YKL-40 levels measured at the time of hospital presentation in patients with CCHF can be used as a biomarker for clinical course and prognosis.</p>","PeriodicalId":19850,"journal":{"name":"Pathogens and Global Health","volume":" ","pages":"492-498"},"PeriodicalIF":2.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441043/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141976322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The mortality rate of Nipah virus (NiV) can vary in different regions, and its pattern across timelines has yet to be assessed. The primary objective is to perform a comparative analysis of mortality rates across different timelines and countries. Articles reporting NiV mortality from inception to November 2023 were analyzed in PubMed, Ovid Embase, Scopus, and Web of Science databases. A meta-analysis utilizing random-effects models determined the mortality rate secondary to NiV complications. The initial search strategy yielded 1213 records, of which 36 articles met the inclusion criteria, comprising 2736 NiV patients. The Global mortality rate of the Nipah virus in the 2014-2023 decade was 80.1% (CI: 68.7-88.1%), indicating a significant 24% increase compared to the preceding decade (2004-2013) with a mortality rate of 54.1% (CI: 35.5-71.6%). Among the countries analyzed for overall mortality from 1994-2023, India experienced the highest mortality rate at 82.7% (CI: 74.6-88.6%), followed by Bangladesh at 62.1% (CI: 45.6-76.2%), Philippines at 52.9% (CI: 30-74.5%), Malaysia at 28.9% (CI: 21.4-37.9%), and Singapore at 21% (CI: 8-45%). Subgroup analysis revealed that India consistently had the highest mortality rate for the past two decades (91.7% and 89.3%). The primary complication leading to mortality was encephalitis, accounting for 95% of cases. This systematic review and meta-analysis revealed a noteworthy surge in NiV mortality rates, particularly in the current decade (2014-2023). The escalation, with India reporting a concerning level of mortality of 89.3-91.7% in the past decades, signifies a pressing public health challenge.
{"title":"Global and regional mortality statistics of nipah virus from 1994 to 2023: a comprehensive systematic review and meta-analysis.","authors":"Srivatsa Surya Vasudevan, Arun Subash, Fena Mehta, Tiba Yamin Kandrikar, Rupak Desai, Kaif Khan, Sneha Khanduja, Aakanksha Pitliya, Lekhya Raavi, Sai Gautham Kanagala, Piyush Gondaliya","doi":"10.1080/20477724.2024.2380131","DOIUrl":"10.1080/20477724.2024.2380131","url":null,"abstract":"<p><p>The mortality rate of Nipah virus (NiV) can vary in different regions, and its pattern across timelines has yet to be assessed. The primary objective is to perform a comparative analysis of mortality rates across different timelines and countries. Articles reporting NiV mortality from inception to November 2023 were analyzed in PubMed, Ovid Embase, Scopus, and Web of Science databases. A meta-analysis utilizing random-effects models determined the mortality rate secondary to NiV complications. The initial search strategy yielded 1213 records, of which 36 articles met the inclusion criteria, comprising 2736 NiV patients. The Global mortality rate of the Nipah virus in the 2014-2023 decade was 80.1% (CI: 68.7-88.1%), indicating a significant 24% increase compared to the preceding decade (2004-2013) with a mortality rate of 54.1% (CI: 35.5-71.6%). Among the countries analyzed for overall mortality from 1994-2023, India experienced the highest mortality rate at 82.7% (CI: 74.6-88.6%), followed by Bangladesh at 62.1% (CI: 45.6-76.2%), Philippines at 52.9% (CI: 30-74.5%), Malaysia at 28.9% (CI: 21.4-37.9%), and Singapore at 21% (CI: 8-45%). Subgroup analysis revealed that India consistently had the highest mortality rate for the past two decades (91.7% and 89.3%). The primary complication leading to mortality was encephalitis, accounting for 95% of cases. This systematic review and meta-analysis revealed a noteworthy surge in NiV mortality rates, particularly in the current decade (2014-2023). The escalation, with India reporting a concerning level of mortality of 89.3-91.7% in the past decades, signifies a pressing public health challenge.</p>","PeriodicalId":19850,"journal":{"name":"Pathogens and Global Health","volume":" ","pages":"471-480"},"PeriodicalIF":4.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441053/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141727653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-06-17DOI: 10.1080/20477724.2024.2369378
Reza Eshraghi, Ashkan Bahrami, Motahare Karimi Houyeh, Maryam Nasr Azadani
In the fourth year of the COVID-19 occurrence, a new COVID-19 variant, JN.1, has emerged and spread globally and become the dominant strain in several regions. It has some specific mutations in its spike proteins, empowering it with higher transmissibility. Regarding the significance of the issue, understanding the clinical and immunological traits of JN.1 is critical for enhancing health strategies and vaccination efforts globally, with the ultimate goal of bolstering our collective response to the pandemic. In this study, we take a look at the latest findings of JN.1 characteristics and mutations as well as its consequences on bypassing immune system. We demonstrate the importance of continual surveillance and strategic adaptation within healthcare frameworks along with the significance of wastewater sampling for the rapid identification of emerging SARS-CoV-2 variants.
{"title":"JN.1 and the ongoing battle: unpacking the characteristics of a new dominant COVID-19 variant.","authors":"Reza Eshraghi, Ashkan Bahrami, Motahare Karimi Houyeh, Maryam Nasr Azadani","doi":"10.1080/20477724.2024.2369378","DOIUrl":"10.1080/20477724.2024.2369378","url":null,"abstract":"<p><p>In the fourth year of the COVID-19 occurrence, a new COVID-19 variant, JN.1, has emerged and spread globally and become the dominant strain in several regions. It has some specific mutations in its spike proteins, empowering it with higher transmissibility. Regarding the significance of the issue, understanding the clinical and immunological traits of JN.1 is critical for enhancing health strategies and vaccination efforts globally, with the ultimate goal of bolstering our collective response to the pandemic. In this study, we take a look at the latest findings of JN.1 characteristics and mutations as well as its consequences on bypassing immune system. We demonstrate the importance of continual surveillance and strategic adaptation within healthcare frameworks along with the significance of wastewater sampling for the rapid identification of emerging SARS-CoV-2 variants.</p>","PeriodicalId":19850,"journal":{"name":"Pathogens and Global Health","volume":" ","pages":"453-458"},"PeriodicalIF":4.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441051/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141331547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-08-14DOI: 10.1080/20477724.2024.2388489
Irene Molina-de la Fuente, Marc Christian Tahita, Kabore Bérenger, Thuy Huong Ta Tang, Luz García, Vicenta González, Agustín Benito, Judith M Hübschen, Halidou Tinto, Pedro Berzosa
Malaria in pregnancy causes adverse consequences and prompt and accurate diagnosis is essential for case management. In malaria endemic countries, diagnosis is mainly based on rapid diagnostic tests (RDT) and microscopy. However, increasing reports of false negatives caused by low parasitemia and pfhrp2/3 deletions raise concerns about HRP2-based RDT usefulness. This study aimed to assess RDT and microscopy performance and to describe pfhrp2/3 deletions in a cohort of 418 pregnant women in Burkina Faso. Malaria was diagnosed using RDT and microscopy and blood samples were collected during antenatal care visits. Diagnostic results were compared to PCR as gold standard. Pfhrp2 and pfhrp3 deletions were characterized for patients with confirmed P. falciparum infection. RDT had better sensitivity (76%) but lower specificity (83%) than microscopy (sensitivity = 57%; specificity = 98%). Low parasitemia (<150 parasites/µL), especially in multigravidae, was the principal factor causing false negatives by both methods. Moreover, pfhrp2 deletion frequency among overall false negatives by RDT was 21.43%. Higher frequency of deletions was found among all samples, independently of RDT result, for example around 2% of samples had double deletions meaning that the majority of deletions had no effect on RDT testing. Finally, it was found higher pfhrp2 deletion in women with lower uterine height during the first trimester. Wider and National surveillance study of deletions is recommended among pregnant women and in Burkina Faso.
{"title":"Malaria diagnosis challenges and <i>pfhrp2</i> and <i>pfhrp3</i> gene deletions using pregnant women as sentinel population in Nanoro region, Burkina Faso.","authors":"Irene Molina-de la Fuente, Marc Christian Tahita, Kabore Bérenger, Thuy Huong Ta Tang, Luz García, Vicenta González, Agustín Benito, Judith M Hübschen, Halidou Tinto, Pedro Berzosa","doi":"10.1080/20477724.2024.2388489","DOIUrl":"10.1080/20477724.2024.2388489","url":null,"abstract":"<p><p>Malaria in pregnancy causes adverse consequences and prompt and accurate diagnosis is essential for case management. In malaria endemic countries, diagnosis is mainly based on rapid diagnostic tests (RDT) and microscopy. However, increasing reports of false negatives caused by low parasitemia and <i>pfhrp2/3</i> deletions raise concerns about HRP2-based RDT usefulness. This study aimed to assess RDT and microscopy performance and to describe <i>pfhrp2/3</i> deletions in a cohort of 418 pregnant women in Burkina Faso. Malaria was diagnosed using RDT and microscopy and blood samples were collected during antenatal care visits. Diagnostic results were compared to PCR as gold standard. <i>Pfhrp2</i> and <i>pfhrp3</i> deletions were characterized for patients with confirmed <i>P. falciparum</i> infection. RDT had better sensitivity (76%) but lower specificity (83%) than microscopy (sensitivity = 57%; specificity = 98%). Low parasitemia (<150 parasites/µL), especially in multigravidae, was the principal factor causing false negatives by both methods. Moreover, <i>pfhrp2</i> deletion frequency among overall false negatives by RDT was 21.43%. Higher frequency of deletions was found among all samples, independently of RDT result, for example around 2% of samples had double deletions meaning that the majority of deletions had no effect on RDT testing. Finally, it was found higher <i>pfhrp2</i> deletion in women with lower uterine height during the first trimester. Wider and National surveillance study of deletions is recommended among pregnant women and in Burkina Faso.</p>","PeriodicalId":19850,"journal":{"name":"Pathogens and Global Health","volume":" ","pages":"481-491"},"PeriodicalIF":2.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441055/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141976323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-20DOI: 10.1080/20477724.2024.2381402
Syahrul Amin Sa'adon, Nur Hana Jasni, Hairul Hisham Hamzah, Nurulhasanah Othman
The development of rapid, accurate, and efficient detection methods for protozoan parasites can substantially control the outbreak of protozoan parasites infection, which poses a threat to global public health. Idealistically, electrochemical biosensors would be able to overcome the limitations of current detection methods due to their simplified detection procedure, on-site quantitative analysis, rapid detection time, high sensitivity, and portability. The objective of this scoping review is to evaluate the current state of electrochemical biosensors for detecting protozoan parasites. This review followed the most recent Preferred Reporting Items for Systematic Review and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) recommendations. Using electrochemical biosensor and protozoan parasite keywords, a literature search was conducted in PubMed, Scopus, Web of Science, and ScienceDirect on journals published between January 2014 and January 2022. Of the 52 studies, 19 were evaluated for eligibility, and 11 met the review's inclusion criteria to evaluate the effectiveness and limitations of the developed electrochemical biosensor platforms for detecting protozoan parasite including information about the samples, biomarkers, bioreceptors, detection system platform, nanomaterials used in fabrication, and limit of detection (LoD). Most electrochemical biosensors were fabricated using conventional electrodes rather than screen-printed electrodes (SPE). The range of the linear calibration curves for the developed electrochemical biosensors was between 200 ng/ml and 0.77 pM. The encouraging detection performance of the electrochemical biosensors demonstrate their potential as a superior alternative to existing detection techniques. On the other hand, more study is needed to determine the sensitivity and specificity of the electrochemical sensing platform for protozoan parasite detection.
{"title":"Electrochemical biosensors for the detection of protozoan parasite: a scoping review.","authors":"Syahrul Amin Sa'adon, Nur Hana Jasni, Hairul Hisham Hamzah, Nurulhasanah Othman","doi":"10.1080/20477724.2024.2381402","DOIUrl":"10.1080/20477724.2024.2381402","url":null,"abstract":"<p><p>The development of rapid, accurate, and efficient detection methods for protozoan parasites can substantially control the outbreak of protozoan parasites infection, which poses a threat to global public health. Idealistically, electrochemical biosensors would be able to overcome the limitations of current detection methods due to their simplified detection procedure, on-site quantitative analysis, rapid detection time, high sensitivity, and portability. The objective of this scoping review is to evaluate the current state of electrochemical biosensors for detecting protozoan parasites. This review followed the most recent Preferred Reporting Items for Systematic Review and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) recommendations. Using electrochemical biosensor and protozoan parasite keywords, a literature search was conducted in PubMed, Scopus, Web of Science, and ScienceDirect on journals published between January 2014 and January 2022. Of the 52 studies, 19 were evaluated for eligibility, and 11 met the review's inclusion criteria to evaluate the effectiveness and limitations of the developed electrochemical biosensor platforms for detecting protozoan parasite including information about the samples, biomarkers, bioreceptors, detection system platform, nanomaterials used in fabrication, and limit of detection (LoD). Most electrochemical biosensors were fabricated using conventional electrodes rather than screen-printed electrodes (SPE). The range of the linear calibration curves for the developed electrochemical biosensors was between 200 ng/ml and 0.77 pM. The encouraging detection performance of the electrochemical biosensors demonstrate their potential as a superior alternative to existing detection techniques. On the other hand, more study is needed to determine the sensitivity and specificity of the electrochemical sensing platform for protozoan parasite detection.</p>","PeriodicalId":19850,"journal":{"name":"Pathogens and Global Health","volume":" ","pages":"459-470"},"PeriodicalIF":4.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441015/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141727652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2023-10-18DOI: 10.1080/20477724.2023.2272363
William C Lieber, Faraan O Rahim, Henry S Q Lartey, Devesh Shah, Blandina T Mmbaga, Nathan M Thielman, Julian T Hertz
{"title":"Capacity building for infectious disease control in Sub-Saharan Africa.","authors":"William C Lieber, Faraan O Rahim, Henry S Q Lartey, Devesh Shah, Blandina T Mmbaga, Nathan M Thielman, Julian T Hertz","doi":"10.1080/20477724.2023.2272363","DOIUrl":"10.1080/20477724.2023.2272363","url":null,"abstract":"","PeriodicalId":19850,"journal":{"name":"Pathogens and Global Health","volume":" ","pages":"526-528"},"PeriodicalIF":4.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441048/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49680865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-03-20DOI: 10.1080/20477724.2024.2329376
Laxit K Bhatt, Jitendra H Patel, Chitrang R Shah, Sudhir R Patel, Shital D Patel, Vipul A Patel, Rajesh Sundar, Mukul R Jain
Occupational immunization is an integral part of institutional occupational safety and health (OSH) programs. Laboratory animal workers (LAWs) are personnel working with various small and large vertebrate animals. LAWs are at the risk of contracting a myriad of zoonotic infections as they are occupationally exposed to animals and their biological products. Immunizing employees against such zoonotic pathogens is the best way to prevent disease transmission. This review provides information on various zoonotic diseases, vaccines available to protect against such infections, and vaccination schedules. Certain sections of institutional occupational immunization programs such as risk evaluation, immunizing special categories of personnel and exemption from immunization among others are also described. Additionally, the authors have discussed various probable modes of impact through which occupational immunization of laboratory animal workers fulfills different United Nations Sustainable Development Goals.
{"title":"Immunization of laboratory animal workers: occupational health and safety aspects.","authors":"Laxit K Bhatt, Jitendra H Patel, Chitrang R Shah, Sudhir R Patel, Shital D Patel, Vipul A Patel, Rajesh Sundar, Mukul R Jain","doi":"10.1080/20477724.2024.2329376","DOIUrl":"10.1080/20477724.2024.2329376","url":null,"abstract":"<p><p>Occupational immunization is an integral part of institutional occupational safety and health (OSH) programs. Laboratory animal workers (LAWs) are personnel working with various small and large vertebrate animals. LAWs are at the risk of contracting a myriad of zoonotic infections as they are occupationally exposed to animals and their biological products. Immunizing employees against such zoonotic pathogens is the best way to prevent disease transmission. This review provides information on various zoonotic diseases, vaccines available to protect against such infections, and vaccination schedules. Certain sections of institutional occupational immunization programs such as risk evaluation, immunizing special categories of personnel and exemption from immunization among others are also described. Additionally, the authors have discussed various probable modes of impact through which occupational immunization of laboratory animal workers fulfills different United Nations Sustainable Development Goals.</p>","PeriodicalId":19850,"journal":{"name":"Pathogens and Global Health","volume":" ","pages":"376-396"},"PeriodicalIF":4.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338203/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140175876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Climate change may increase the risk of dengue and yellow fever transmission by urban and sylvatic mosquito vectors. Previous research primarily focused on Aedes aegypti and Aedes albopictus. However, dengue and yellow fever have a complex transmission cycle involving sylvatic vectors. Our aim was to analyze how the distribution of areas favorable to both urban and sylvatic vectors could be modified as a consequence of climate change. We projected, to future scenarios, baseline distribution models already published for these vectors based on the favorability function, and mapped the areas where mosquitoes' favorability could increase, decrease or remain stable in the near (2041-2060) and distant (2061-2080) future. Favorable areas for the presence of dengue and yellow fever vectors show little differences in the future compared to the baseline models, with changes being perceptible only at regional scales. The model projections predict dengue vectors expanding in West and Central Africa and in South-East Asia, reaching Borneo. Yellow fever vectors could spread in West and Central Africa and in the Amazon. In some locations of Europe, the models suggest a reestablishment of Ae. aegypti, while Ae. albopictus will continue to find new favorable areas. The results underline the need to focus more on vectors Ae. vittatus, Ae. luteocephalus and Ae. africanus in West and Central sub-Saharan Africa, especially Cameroon, Central Africa Republic, and northern Democratic Republic of Congo; and underscore the importance of enhancing entomological monitoring in areas where populations of often overlooked vectors may thrive as a result of climate changes.
{"title":"Potential climate change effects on the distribution of urban and sylvatic dengue and yellow fever vectors.","authors":"Alisa Aliaga-Samanez, David Romero, Kris Murray, Marina Segura, Raimundo Real, Jesús Olivero","doi":"10.1080/20477724.2024.2369377","DOIUrl":"10.1080/20477724.2024.2369377","url":null,"abstract":"<p><p>Climate change may increase the risk of dengue and yellow fever transmission by urban and sylvatic mosquito vectors. Previous research primarily focused on <i>Aedes aegypti</i> and <i>Aedes albopictus</i>. However, dengue and yellow fever have a complex transmission cycle involving sylvatic vectors. Our aim was to analyze how the distribution of areas favorable to both urban and sylvatic vectors could be modified as a consequence of climate change. We projected, to future scenarios, baseline distribution models already published for these vectors based on the favorability function, and mapped the areas where mosquitoes' favorability could increase, decrease or remain stable in the near (2041-2060) and distant (2061-2080) future. Favorable areas for the presence of dengue and yellow fever vectors show little differences in the future compared to the baseline models, with changes being perceptible only at regional scales. The model projections predict dengue vectors expanding in West and Central Africa and in South-East Asia, reaching Borneo. Yellow fever vectors could spread in West and Central Africa and in the Amazon. In some locations of Europe, the models suggest a reestablishment of <i>Ae. aegypti</i>, while <i>Ae. albopictus</i> will continue to find new favorable areas. The results underline the need to focus more on vectors <i>Ae. vittatus</i>, <i>Ae. luteocephalus</i> and <i>Ae. africanus</i> in West and Central sub-Saharan Africa, especially Cameroon, Central Africa Republic, and northern Democratic Republic of Congo; and underscore the importance of enhancing entomological monitoring in areas where populations of often overlooked vectors may thrive as a result of climate changes.</p>","PeriodicalId":19850,"journal":{"name":"Pathogens and Global Health","volume":" ","pages":"397-407"},"PeriodicalIF":4.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338215/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141555325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2023-07-30DOI: 10.1080/20477724.2023.2240085
Asmaa R Ellakany, Hanan El Baz, Zeinab S Shoheib, Mohamed Elzallat, Dalia S Ashour, Nabila A Yassen
Schistosomiasis is a neglected tropical disease. Egg-induced granuloma formation and tissue fibrosis are the main causes of the high morbidity and mortality of schistosomiasis. Mesenchymal stem cells (MSCs)-derived exosomes play an important role with a superior safety profile than MSCs in the treatment of liver fibrosis. Therefore, the aim of this study was to investigate the potential therapeutic effect of MSCs-derived exosomes on schistosomal hepatic fibrosis. Exosomes were isolated from bone marrow MSCs and characterized. A total of 85 mice were divided into four groups: group I (control group), group II (PZQ group) infected and treated with PZQ, group III (EXO group) infected and treated with MSCs-derived exosomes and group IV (PZQ+EXO group) infected and treated with both PZQ and MSCs-derived exosomes. Assessment of treatment efficacy was evaluated by histopathological and immunohistochemical examination of liver sections by proliferating cell nuclear antigen (PCNA) and nuclear factor-κB (NF-κB). The results showed significant reduction of the number and diameter of hepatic granulomas, hepatic fibrosis, upregulation of PCNA expression and reduction of NF-κB expression in EXO and PZQ+EXO groups as compared to other groups at all durations post infection. Additionally, more improvement was observed in PZQ+EXO group. In conclusion, MSCs-derived exosomes are a promising agent for the treatment of schistosomal hepatic fibrosis, and their combination with PZQ shows a synergistic action including antifibrotic and anti-inflammatory effects. However, further studies are required to establish their functional components and their mechanisms of action.
{"title":"Stem cell-derived exosomes as a potential therapy for schistosomal hepatic fibrosis in experimental animals.","authors":"Asmaa R Ellakany, Hanan El Baz, Zeinab S Shoheib, Mohamed Elzallat, Dalia S Ashour, Nabila A Yassen","doi":"10.1080/20477724.2023.2240085","DOIUrl":"10.1080/20477724.2023.2240085","url":null,"abstract":"<p><p>Schistosomiasis is a neglected tropical disease. Egg-induced granuloma formation and tissue fibrosis are the main causes of the high morbidity and mortality of schistosomiasis. Mesenchymal stem cells (MSCs)-derived exosomes play an important role with a superior safety profile than MSCs in the treatment of liver fibrosis. Therefore, the aim of this study was to investigate the potential therapeutic effect of MSCs-derived exosomes on schistosomal hepatic fibrosis. Exosomes were isolated from bone marrow MSCs and characterized. A total of 85 mice were divided into four groups: group I (control group), group II (PZQ group) infected and treated with PZQ, group III (EXO group) infected and treated with MSCs-derived exosomes and group IV (PZQ+EXO group) infected and treated with both PZQ and MSCs-derived exosomes. Assessment of treatment efficacy was evaluated by histopathological and immunohistochemical examination of liver sections by proliferating cell nuclear antigen (PCNA) and nuclear factor-κB (NF-κB). The results showed significant reduction of the number and diameter of hepatic granulomas, hepatic fibrosis, upregulation of PCNA expression and reduction of NF-κB expression in EXO and PZQ+EXO groups as compared to other groups at all durations post infection. Additionally, more improvement was observed in PZQ+EXO group. In conclusion, MSCs-derived exosomes are a promising agent for the treatment of schistosomal hepatic fibrosis, and their combination with PZQ shows a synergistic action including antifibrotic and anti-inflammatory effects. However, further studies are required to establish their functional components and their mechanisms of action.</p>","PeriodicalId":19850,"journal":{"name":"Pathogens and Global Health","volume":" ","pages":"429-449"},"PeriodicalIF":4.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338202/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9888746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-06-17DOI: 10.1080/20477724.2024.2365581
Zeeshan Mustafa, Haris Manzoor Khan, Syed Ghazanfar Ali, Hiba Sami, Ahmad Almatroudi, Masood Alam Khan, Arif Khan, Wafa Abdullah I Al-Megrin, Khaled S Allemailem, Islam Ahmad, Asmaa El-Kady, Mohammed Suliman Al-Muzaini, Mohammad Azam Khan, Mohd Azam
Dengue fever poses a significant global health threat, with symptoms including dengue hemorrhagic fever and dengue shock syndrome. Each year, India experiences fatal dengue outbreaks with severe manifestations. The primary cause of severe inflammatory responses in dengue is a cytokine storm. Individuals with a secondary dengue infection of a different serotype face an increased risk of complications due to antibody-dependent enhancement. Therefore, it is crucial to identify potential risk factors and biomarkers for effective disease management. In the current study, we assessed the prevalence of dengue infection in and around Aligarh, India, and explored the role of cytokines, including CXCL5, CXCL9, and CCL17, in primary and secondary dengue infections, correlating them with various clinical indices. Among 1,500 suspected cases, 367 tested positive for dengue using Real-Time PCR and ELISA. In secondary dengue infections, the serum levels of CXCL5, CXCL9, and CCL17 were significantly higher than in primary infections (P < 0.05). Dengue virus (DENV)-2 showed the highest concentrations of CXCL5 and CCL17, whereas DENV-1 showed the highest concentrations of CXCL9. Early detection of these cytokines could serve as potential biomarkers for diagnosing severe dengue, and downregulation of these cytokines may prove beneficial for the treatment of severe dengue infections.
{"title":"Distinct inflammatory markers in primary and secondary dengue infection: can cytokines CXCL5, CXCL9, and CCL17 act as surrogate markers?","authors":"Zeeshan Mustafa, Haris Manzoor Khan, Syed Ghazanfar Ali, Hiba Sami, Ahmad Almatroudi, Masood Alam Khan, Arif Khan, Wafa Abdullah I Al-Megrin, Khaled S Allemailem, Islam Ahmad, Asmaa El-Kady, Mohammed Suliman Al-Muzaini, Mohammad Azam Khan, Mohd Azam","doi":"10.1080/20477724.2024.2365581","DOIUrl":"10.1080/20477724.2024.2365581","url":null,"abstract":"<p><p>Dengue fever poses a significant global health threat, with symptoms including dengue hemorrhagic fever and dengue shock syndrome. Each year, India experiences fatal dengue outbreaks with severe manifestations. The primary cause of severe inflammatory responses in dengue is a cytokine storm. Individuals with a secondary dengue infection of a different serotype face an increased risk of complications due to antibody-dependent enhancement. Therefore, it is crucial to identify potential risk factors and biomarkers for effective disease management. In the current study, we assessed the prevalence of dengue infection in and around Aligarh, India, and explored the role of cytokines, including CXCL5, CXCL9, and CCL17, in primary and secondary dengue infections, correlating them with various clinical indices. Among 1,500 suspected cases, 367 tested positive for dengue using Real-Time PCR and ELISA. In secondary dengue infections, the serum levels of CXCL5, CXCL9, and CCL17 were significantly higher than in primary infections (P < 0.05). Dengue virus (DENV)-2 showed the highest concentrations of CXCL5 and CCL17, whereas DENV-1 showed the highest concentrations of CXCL9. Early detection of these cytokines could serve as potential biomarkers for diagnosing severe dengue, and downregulation of these cytokines may prove beneficial for the treatment of severe dengue infections.</p>","PeriodicalId":19850,"journal":{"name":"Pathogens and Global Health","volume":" ","pages":"408-417"},"PeriodicalIF":4.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338208/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141331546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}