A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Primary Amoebic Meningoencephalitis (PAM) is a severe and often fatal infection caused by the free-living amoebae Naegleria fowleri. This condition typically results from exposure to contaminated warm freshwater/inadequately treated recreational water/or ablution/nasal irrigation with contaminated water. The management of PAM is hindered by the absence of effective treatment coupled with challenges in early diagnosis. This review explores emerging patents that could be utilized for the treatment, diagnosis of PAM, as well as water treatment. Recent patents from the past five years, along with research and innovations are reviewed and categorized into therapeutic agents, water treatment technologies, and diagnostic methods. It is hoped that collaboration and awareness between pharmaceutical companies, water industries, and academic institutions is essential for advancing effective strategies against this severe central nervous system pathogen.
PI3K and AKT signaling pathway has been linked to the pathophysiology of various diseases. This pathway has emerged as a crucial therapeutic strategy for cancer and other diseases. To better understand recent development of PI3K and AKT, a patent-based landscape study was performed. The results shows that both PI3K and AKT targets have shown prolific patent filings over the past 20 years. This study is the first to depict the therapeutic applications of both PI3K and AKT targets based on a patent big data analysis. Ten key therapeutic applications were identified, with over 77% of patents related to anti-cancer therapy for both PI3K and AKT targets. Additionally, our findings show that combination therapy is a distinguishing feature for drugs targeting both PI3K and AKT. The average time from patent application to drug approval for PI3K target drugs is 8.8 years. PI3K target drugs obtain market approval faster compared to AKT drugs. Approximately, 2 years of patent term extension could be obtained if the time from the patent application date to the drug approval date is less than 10 years.
The glucokinase enzyme (belongs to the hexokinase family) is present in liver cells and β-cells of the pancreas. Glucokinase acts as a catalyst in the conversion of glucose-6-phosphate from glucose which is rate-limiting step in glucose metabolism. Glucokinase becomes malfunctional or remains inactivated in diabetes. Glucokinase activators are compounds that bind at the allosteric site of the glucokinase enzyme and activate it. This article highlights the patent and recent research papers history with possible SAR from year 2014-2023. The data comprises the discussion of novel chemotypes (GKAs) that are being targeted for drug development and entered into clinical trials. GK activators have attracted massive interest since successful results have been reported from clinical trials data.
Introduction: Mesothelin protein is an overexpressed molecule in epithelioid mesothelioma, epithelial ovarian cancer, and pancreatic adenocarcinoma, which is why it is considered a potential therapeutic target.
Areas covered: WO2024082060 patent describes a trivalent bispecific antibody directed against MSLN/CD3/MSLN, and lung cancer treatment method. This antibody exhibits binding activity to MSLN-containing tumor cells, as well as inhibition of tumor growth rate in murine models of lung and ovarian cancer.
Expert opinion: The trispecific structure suggesting that this antibody is a potential candidate for clinical trials for the treatment of lung cancer associated with high levels of MSLN expression.
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Three-dimensional (3D) printing is one of the most flexible technologies for preparing tablets, offering controlled drug release profiles. The current patent describes the preparation of immediate-release 3D-printed tablets of hydrochlorothiazide to improve disintegration and dissolution profile. The patent involves the preparation of drug-loaded filament via hot-melt extrusion and utilizing the same filaments for printing 3D-printed tablets using fused deposition modeling. The tablets were printed with different shapes and sizes by incorporating channels within the tablet spaces, termed as gaplets. The introduction of channels within the tablet design improves the disintegration and dissolution profile of the drug significantly. The morphological characteristic of 3D-printed tablets was studied by using scanning electron microscopy and revealed the presence of gaplets in the tablets.

