Pub Date : 2024-11-11DOI: 10.1007/s11103-024-01519-9
Edyta Deja-Sikora, Marcin Gołębiewski, Katarzyna Hrynkiewicz
Arbuscular mycorrhizal fungi (AMF) serve as both plant symbionts and allies in resisting pathogens and environmental stresses. Mycorrhizal colonization of plant roots can influence the outcomes of plant-pathogen interactions by enhancing specific host defense mechanisms. The transcriptional responses induced by AMF in virus-infected plants remain largely unexplored. In the presented study, we employed a comprehensive transcriptomic approach and qPCR to investigate the molecular determinants underlying the interaction between AMF and potato virus Y (PVY) in Solanum tuberosum L. Our primary goal was to identify the symbiosis- and defense-related determinants activated in mycorrhizal potatoes facing PVY. Through a comparative analysis of mRNA transcriptomes in experimental treatments comprising healthy and PVY-infected potatoes colonized by two AMF species, Rhizophagus regularis or Funneliformis mosseae, we unveiled the overexpression of genes associated with mycorrhiza, including nutrient exchange, lipid transfer, and cell wall remodeling. Furthermore, we identified several differentially expressed genes upregulated in all mycorrhizal treatments that encoded pathogenesis-related proteins involved in plant immune responses, thus verifying the bioprotective role of AMF. We investigated the relationship between mycorrhiza levels and PVY levels in potato leaves and roots. We found accumulation of the virus in the leaves of mycorrhizal plants, but our studies additionally showed a reduced PVY content in potato roots colonized by AMF, which has not been previously demonstrated. Furthermore, we observed that a virus-dependent reduction in nutrient exchange could occur in mycorrhizal roots in the presence of PVY. These findings provide an insights into the interplay between virus and AMF.
{"title":"Transcriptomic responses of Solanum tuberosum cv. Pirol to arbuscular mycorrhiza and potato virus Y (PVY) infection.","authors":"Edyta Deja-Sikora, Marcin Gołębiewski, Katarzyna Hrynkiewicz","doi":"10.1007/s11103-024-01519-9","DOIUrl":"10.1007/s11103-024-01519-9","url":null,"abstract":"<p><p>Arbuscular mycorrhizal fungi (AMF) serve as both plant symbionts and allies in resisting pathogens and environmental stresses. Mycorrhizal colonization of plant roots can influence the outcomes of plant-pathogen interactions by enhancing specific host defense mechanisms. The transcriptional responses induced by AMF in virus-infected plants remain largely unexplored. In the presented study, we employed a comprehensive transcriptomic approach and qPCR to investigate the molecular determinants underlying the interaction between AMF and potato virus Y (PVY) in Solanum tuberosum L. Our primary goal was to identify the symbiosis- and defense-related determinants activated in mycorrhizal potatoes facing PVY. Through a comparative analysis of mRNA transcriptomes in experimental treatments comprising healthy and PVY-infected potatoes colonized by two AMF species, Rhizophagus regularis or Funneliformis mosseae, we unveiled the overexpression of genes associated with mycorrhiza, including nutrient exchange, lipid transfer, and cell wall remodeling. Furthermore, we identified several differentially expressed genes upregulated in all mycorrhizal treatments that encoded pathogenesis-related proteins involved in plant immune responses, thus verifying the bioprotective role of AMF. We investigated the relationship between mycorrhiza levels and PVY levels in potato leaves and roots. We found accumulation of the virus in the leaves of mycorrhizal plants, but our studies additionally showed a reduced PVY content in potato roots colonized by AMF, which has not been previously demonstrated. Furthermore, we observed that a virus-dependent reduction in nutrient exchange could occur in mycorrhizal roots in the presence of PVY. These findings provide an insights into the interplay between virus and AMF.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 6","pages":"123"},"PeriodicalIF":3.9,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554710/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142625760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1007/s11103-024-01520-2
Eszter Gaál, András Farkas, Edina Türkösi, Klaudia Kruppa, Éva Szakács, Kitti Szőke-Pázsi, Péter Kovács, Balázs Kalapos, Éva Darkó, Mahmoud Said, Adam Lampar, László Ivanizs, Miroslav Valárik, Jaroslav Doležel, István Molnár
Wild wheat relative Aegilops biuncialis offers valuable traits for crop improvement through interspecific hybridization. However, gene transfer from Aegilops has been hampered by difficulties in detecting introgressed Ub- and Mb-genome chromatin in the wheat background at high resolution. The present study applied DArTseq technology to genotype two backcrossed populations (BC382, BC642) derived from crosses of wheat line Mv9kr1 with Ae. biuncialis accession, MvGB382 (early flowering and drought-tolerant) and MvGB642 (leaf rust-resistant). A total of 11,952 Aegilops-specific Silico-DArT markers and 8,998 wheat-specific markers were identified. Of these, 7,686 markers were assigned to Ub-genome chromosomes and 4,266 to Mb-genome chromosomes and were ordered using chromosome scale reference assemblies of hexaploid wheat and Ae. umbellulata. Ub-genome chromatin was detected in 5.7% of BC382 and 22.7% of BC642 lines, while 88.5% of BC382 and 84% of BC642 lines contained Mb-genome chromatin, predominantly the chromosomes 4Mb and 5Mb. The presence of alien chromatin was confirmed by microscopic analysis of mitotic metaphase cells using GISH and FISH, which allowed precise determination of the size and position of the introgression events. New Mv9kr1-Ae. biuncialis MvGB382 4Mb and 5Mb disomic addition lines together with a 5DS.5DL-5MbL recombination were identified. A possible effect of the 5MbL distal region on seed length has also been observed. Moreover, previously developed Mv9kr1-MvGB642 introgression lines were more precisely characterized. The newly developed cytogenetic stocks represent valuable genetic resources for wheat improvement, highlighting the importance of utilizing diverse genetic materials to enhance wheat breeding strategies.
{"title":"DArTseq genotyping facilitates identification of Aegilops biuncialis chromatin introgressed into bread wheat Mv9kr1.","authors":"Eszter Gaál, András Farkas, Edina Türkösi, Klaudia Kruppa, Éva Szakács, Kitti Szőke-Pázsi, Péter Kovács, Balázs Kalapos, Éva Darkó, Mahmoud Said, Adam Lampar, László Ivanizs, Miroslav Valárik, Jaroslav Doležel, István Molnár","doi":"10.1007/s11103-024-01520-2","DOIUrl":"10.1007/s11103-024-01520-2","url":null,"abstract":"<p><p>Wild wheat relative Aegilops biuncialis offers valuable traits for crop improvement through interspecific hybridization. However, gene transfer from Aegilops has been hampered by difficulties in detecting introgressed U<sup>b</sup>- and M<sup>b</sup>-genome chromatin in the wheat background at high resolution. The present study applied DArTseq technology to genotype two backcrossed populations (BC382, BC642) derived from crosses of wheat line Mv9kr1 with Ae. biuncialis accession, MvGB382 (early flowering and drought-tolerant) and MvGB642 (leaf rust-resistant). A total of 11,952 Aegilops-specific Silico-DArT markers and 8,998 wheat-specific markers were identified. Of these, 7,686 markers were assigned to U<sup>b</sup>-genome chromosomes and 4,266 to M<sup>b</sup>-genome chromosomes and were ordered using chromosome scale reference assemblies of hexaploid wheat and Ae. umbellulata. U<sup>b</sup>-genome chromatin was detected in 5.7% of BC382 and 22.7% of BC642 lines, while 88.5% of BC382 and 84% of BC642 lines contained M<sup>b</sup>-genome chromatin, predominantly the chromosomes 4M<sup>b</sup> and 5M<sup>b</sup>. The presence of alien chromatin was confirmed by microscopic analysis of mitotic metaphase cells using GISH and FISH, which allowed precise determination of the size and position of the introgression events. New Mv9kr1-Ae. biuncialis MvGB382 4M<sup>b</sup> and 5M<sup>b</sup> disomic addition lines together with a 5DS.5DL-5M<sup>b</sup>L recombination were identified. A possible effect of the 5M<sup>b</sup>L distal region on seed length has also been observed. Moreover, previously developed Mv9kr1-MvGB642 introgression lines were more precisely characterized. The newly developed cytogenetic stocks represent valuable genetic resources for wheat improvement, highlighting the importance of utilizing diverse genetic materials to enhance wheat breeding strategies.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 6","pages":"122"},"PeriodicalIF":3.9,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11543725/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142605881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1007/s11103-024-01518-w
Akihiro Ezoe, Motoaki Seki
The genome sizes of angiosperms decreased significantly more than the genome sizes of their ancestors (pteridophytes and gymnosperms). Decreases in genome size involve a highly complex process, with remnants of the genome size reduction scattered across the genome and not directly linked to specific genomic structures. This is because the associated mechanisms operate on a much smaller scale than the mechanisms mediating increases in genome size. This review thoroughly summarizes the available literature regarding the molecular mechanisms underlying genome size reductions and introduces Utricularia gibba and Arabidopsis thaliana as model species for the examination of the effects of these molecular mechanisms. Additionally, we propose that phosphorus deficiency and drought stress are the major external factors contributing to decreases in genome size. Considering these factors affect almost all land plants, angiosperms likely gained the mechanisms for genome size reductions. These environmental factors may affect the retention rates of deletions, while also influencing the mutation rates of deletions via the functional diversification of the proteins facilitating double-strand break repair. The biased retention and mutation rates of deletions may have synergistic effects that enhance deletions in intergenic regions, introns, transposable elements, duplicates, and repeats, leading to a rapid decrease in genome size. We suggest that these selection pressures and associated molecular mechanisms may drive key changes in angiosperms during recurrent cycles of genome size decreases and increases.
{"title":"Exploring the complexity of genome size reduction in angiosperms.","authors":"Akihiro Ezoe, Motoaki Seki","doi":"10.1007/s11103-024-01518-w","DOIUrl":"10.1007/s11103-024-01518-w","url":null,"abstract":"<p><p>The genome sizes of angiosperms decreased significantly more than the genome sizes of their ancestors (pteridophytes and gymnosperms). Decreases in genome size involve a highly complex process, with remnants of the genome size reduction scattered across the genome and not directly linked to specific genomic structures. This is because the associated mechanisms operate on a much smaller scale than the mechanisms mediating increases in genome size. This review thoroughly summarizes the available literature regarding the molecular mechanisms underlying genome size reductions and introduces Utricularia gibba and Arabidopsis thaliana as model species for the examination of the effects of these molecular mechanisms. Additionally, we propose that phosphorus deficiency and drought stress are the major external factors contributing to decreases in genome size. Considering these factors affect almost all land plants, angiosperms likely gained the mechanisms for genome size reductions. These environmental factors may affect the retention rates of deletions, while also influencing the mutation rates of deletions via the functional diversification of the proteins facilitating double-strand break repair. The biased retention and mutation rates of deletions may have synergistic effects that enhance deletions in intergenic regions, introns, transposable elements, duplicates, and repeats, leading to a rapid decrease in genome size. We suggest that these selection pressures and associated molecular mechanisms may drive key changes in angiosperms during recurrent cycles of genome size decreases and increases.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 6","pages":"121"},"PeriodicalIF":3.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530473/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1007/s11103-024-01516-y
Yuqing Wu, Yifeng Zhang, Haitong Fan, Jie Gao, Siyu Shen, Jifan Jia, Rong Liu, Ping Su, Yating Hu, Wei Gao, Dan Li
Amaryllidaceae alkaloids (AAs), such as galanthamine and lycorine, are natural products of Lycoris radiata possessing various pharmacological activities including anti-acetylcholinesterase, anti-inflammatory, and antitumour activities. Elucidating the biosynthesis of these special AAs is crucial for understanding their production and potential modification for improved clinical application, of which cytochrome P450 enzymes catalyse the formation of key alkaloid skeletons and subsequent modification processes, with the NAPDH cytochrome P450 reductases (CPRs) serving as essential redox partners. This study identified three CPRs, LrCPR1, LrCPR2, and LrCPR3, encoding 700, 697 and 695 amino acids, respectively, which belong to Class II CPRs. The LrCPRs reduced cytochrome c and ferricyanide in an NADPH-dependent manner, and their activities all followed the typical Michaelis-Menten curve. In yeast, the co-expression of LrCPRs and CYP96T6 produced the galantamine-like alkaloid namely N-demethylnarwedine, suggesting that they support the catalytic activity of CYP96T6. Quantitative analysis of the transcriptional expression profiles showed that LrCPRs were expressed in all the examined tissues of L. radiata, and their gene expression patterns are consistent with other genes that may be involved in the biosynthetic pathway of AAs, including cinnamate 4-hydroxylase and phenylalanine ammonia-lyase. Our study firstly provides the functional characterization of LrCPRs in L. radiata, which will contribute to the discovery of biosynthetic pathways and heterologous production of AAs.
{"title":"Multiple NADPH-cytochrome P450 reductases from Lycoris radiata involved in Amaryllidaceae alkaloids biosynthesis.","authors":"Yuqing Wu, Yifeng Zhang, Haitong Fan, Jie Gao, Siyu Shen, Jifan Jia, Rong Liu, Ping Su, Yating Hu, Wei Gao, Dan Li","doi":"10.1007/s11103-024-01516-y","DOIUrl":"10.1007/s11103-024-01516-y","url":null,"abstract":"<p><p>Amaryllidaceae alkaloids (AAs), such as galanthamine and lycorine, are natural products of Lycoris radiata possessing various pharmacological activities including anti-acetylcholinesterase, anti-inflammatory, and antitumour activities. Elucidating the biosynthesis of these special AAs is crucial for understanding their production and potential modification for improved clinical application, of which cytochrome P450 enzymes catalyse the formation of key alkaloid skeletons and subsequent modification processes, with the NAPDH cytochrome P450 reductases (CPRs) serving as essential redox partners. This study identified three CPRs, LrCPR1, LrCPR2, and LrCPR3, encoding 700, 697 and 695 amino acids, respectively, which belong to Class II CPRs. The LrCPRs reduced cytochrome c and ferricyanide in an NADPH-dependent manner, and their activities all followed the typical Michaelis-Menten curve. In yeast, the co-expression of LrCPRs and CYP96T6 produced the galantamine-like alkaloid namely N-demethylnarwedine, suggesting that they support the catalytic activity of CYP96T6. Quantitative analysis of the transcriptional expression profiles showed that LrCPRs were expressed in all the examined tissues of L. radiata, and their gene expression patterns are consistent with other genes that may be involved in the biosynthetic pathway of AAs, including cinnamate 4-hydroxylase and phenylalanine ammonia-lyase. Our study firstly provides the functional characterization of LrCPRs in L. radiata, which will contribute to the discovery of biosynthetic pathways and heterologous production of AAs.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 6","pages":"120"},"PeriodicalIF":3.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1007/s11103-024-01523-z
Diana Duarte-Delgado, Inci Vogt, Said Dadshani, Jens Léon, Agim Ballvora
Bread wheat is an important crop for the human diet, but the increasing soil salinization is reducing the yield. The Ca2+ signaling events at the early stages of the osmotic phase of salt stress are crucial for the acclimation response of the plants through the performance of calcium-sensing proteins, which activate or repress transcription factors (TFs) that affect the expression of downstream genes. Physiological, genetic mapping, and transcriptomics studies performed with the contrasting genotypes Syn86 (synthetic, salt-susceptible) and Zentos (elite cultivar, salt-tolerant) were integrated to gain a comprehensive understanding of the salt stress response. The MACE (Massive Analysis of cDNA 3'-Ends) based transcriptome analysis until 4 h after stress exposure revealed among the salt-responsive genes, the over-representation of genes coding for calcium-binding proteins. The functional and structural diversity within this category was studied and linked with the expression levels during the osmotic phase in the contrasting genotypes. The non-EF-hand category from calcium-binding proteins was found to be enriched for the susceptibility response. On the other side, the tolerant genotype was characterized by a faster and higher up-regulation of genes coding for proteins with EF-hand domain, such as RBOHD orthologs, and TF members. This study suggests that the interplay of calcium-binding proteins, WRKY, and AP2/ERF TF families in signaling pathways at the start of the osmotic phase can affect the expression of downstream genes. The identification of SNPs in promoter sequences and 3' -UTR regions provides insights into the molecular mechanisms controlling the differential expression of these genes through differential transcription factor binding affinity or altered mRNA stability.
{"title":"Expression interplay of genes coding for calcium-binding proteins and transcription factors during the osmotic phase provides insights on salt stress response mechanisms in bread wheat.","authors":"Diana Duarte-Delgado, Inci Vogt, Said Dadshani, Jens Léon, Agim Ballvora","doi":"10.1007/s11103-024-01523-z","DOIUrl":"10.1007/s11103-024-01523-z","url":null,"abstract":"<p><p>Bread wheat is an important crop for the human diet, but the increasing soil salinization is reducing the yield. The Ca<sup>2+</sup> signaling events at the early stages of the osmotic phase of salt stress are crucial for the acclimation response of the plants through the performance of calcium-sensing proteins, which activate or repress transcription factors (TFs) that affect the expression of downstream genes. Physiological, genetic mapping, and transcriptomics studies performed with the contrasting genotypes Syn86 (synthetic, salt-susceptible) and Zentos (elite cultivar, salt-tolerant) were integrated to gain a comprehensive understanding of the salt stress response. The MACE (Massive Analysis of cDNA 3'-Ends) based transcriptome analysis until 4 h after stress exposure revealed among the salt-responsive genes, the over-representation of genes coding for calcium-binding proteins. The functional and structural diversity within this category was studied and linked with the expression levels during the osmotic phase in the contrasting genotypes. The non-EF-hand category from calcium-binding proteins was found to be enriched for the susceptibility response. On the other side, the tolerant genotype was characterized by a faster and higher up-regulation of genes coding for proteins with EF-hand domain, such as RBOHD orthologs, and TF members. This study suggests that the interplay of calcium-binding proteins, WRKY, and AP2/ERF TF families in signaling pathways at the start of the osmotic phase can affect the expression of downstream genes. The identification of SNPs in promoter sequences and 3' -UTR regions provides insights into the molecular mechanisms controlling the differential expression of these genes through differential transcription factor binding affinity or altered mRNA stability.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 6","pages":"119"},"PeriodicalIF":3.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530504/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The N4-acetylcytidine (ac4C) modification has recently been characterized as a noncanonical RNA marker in plants. While the precise installation of ac4C sites in individual plant transcripts continues to present challenges, the biological roles of ac4C in specific plant species are gradually being deciphered. Herein, we utilized a deep learning technique called iac4C (intelligent ac4C) to predict ac4C sites in mRNA. ac4C deposition was effectively forecasted by the iac4C model (AUROC = 0.948), revealing a reliable distribution pattern primarily situated in the transcribing area as opposed to regions that are not translated. The iac4C deep learning approach using a combination of BiGRU and self-attention mechanisms both validates previous studies showing a positive correlation between ac4C and RNA splicing in plant species and reveals new examples of other splicing events associated with ac4C. Our advanced deep learning algorithm for analyzing ac4C enables swift identification of important biological phenomena that would otherwise be challenging to uncover through traditional experimental approaches. These findings provide insight into the essential regulatory function of site-specific ac4C deposition in alternative splicing processes. The source code and datasets for iac4C are available at https://github.com/xlwei507/iac4C .
{"title":"Deep learning modeling of RNA ac4C deposition reveals the importance of plant alternative splicing.","authors":"Bintao Guo, Xinlin Wei, Shuangcheng Liu, Wenchao Cui, Chao Zhou","doi":"10.1007/s11103-024-01512-2","DOIUrl":"10.1007/s11103-024-01512-2","url":null,"abstract":"<p><p>The N4-acetylcytidine (ac4C) modification has recently been characterized as a noncanonical RNA marker in plants. While the precise installation of ac4C sites in individual plant transcripts continues to present challenges, the biological roles of ac4C in specific plant species are gradually being deciphered. Herein, we utilized a deep learning technique called iac4C (intelligent ac4C) to predict ac4C sites in mRNA. ac4C deposition was effectively forecasted by the iac4C model (AUROC = 0.948), revealing a reliable distribution pattern primarily situated in the transcribing area as opposed to regions that are not translated. The iac4C deep learning approach using a combination of BiGRU and self-attention mechanisms both validates previous studies showing a positive correlation between ac4C and RNA splicing in plant species and reveals new examples of other splicing events associated with ac4C. Our advanced deep learning algorithm for analyzing ac4C enables swift identification of important biological phenomena that would otherwise be challenging to uncover through traditional experimental approaches. These findings provide insight into the essential regulatory function of site-specific ac4C deposition in alternative splicing processes. The source code and datasets for iac4C are available at https://github.com/xlwei507/iac4C .</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 6","pages":"118"},"PeriodicalIF":3.9,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant biomass can significantly contribute to alternative energy sources. Sorghum bicolor is a promising plant for producing energy, but is susceptible to iron deficiency, which inhibits its cultivation in iron-limiting calcareous soils. The molecular basis for the susceptibility of sorghum to iron deficiency remains unclear. Here, we explored the sorghum genome to identify genes involved in iron uptake and translocation. Iron deficiency-responsive gene expression was comparable to that in other graminaceous plants. A nicotianamine synthase gene, SbNAS1, was induced in response to iron deficiency, and SbNAS1 showed enzyme activity. Sorghum secreted 2'-deoxymugineic acid and other phytosiderophores under iron deficiency, but their levels were relatively low. Intercropping of sorghum with barley or rice rescued iron deficiency symptoms of sorghum. To produce bioengineered sorghum with enhanced tolerance to iron deficiency, we introduced four cassettes into sorghum: 35S promoter-OsIRO2 for activation of iron acquisition-related gene expression, SbIRT1 promoter-Refre1/372 for enhanced ferric-chelate reductase activity, and barley IDS3, and HvNAS1 genomic fragments for enhanced production of phytosiderophores and nicotianamine. The resultant single sorghum line exhibited enhanced secretion of phytosiderophores, increased ferric-chelate reductase activity, and improved iron uptake and leaf greenness compared with non-transformants under iron-limiting conditions. Similar traits were also conferred to rice by introducing the four cassettes. Moreover, these rice lines showed similar or better tolerance in calcareous soils and increased grain iron accumulation compared with previous rice lines carrying two or three comparable cassettes. These results provide a molecular basis for the bioengineering of sorghum tolerant of low iron availability in calcareous soils.
{"title":"Molecular-based characterization and bioengineering of Sorghum bicolor to enhance iron deficiency tolerance in iron-limiting calcareous soils.","authors":"Takeshi Senoura, Tomoko Nozoye, Rintaro Yuki, Mayu Yamamoto, Keisuke Maeda, Kanna Sato-Izawa, Hiroshi Ezura, Reiko Nakanishi Itai, Khurram Bashir, Hiroshi Masuda, Takanori Kobayashi, Hiromi Nakanishi, Naoko K Nishizawa","doi":"10.1007/s11103-024-01508-y","DOIUrl":"10.1007/s11103-024-01508-y","url":null,"abstract":"<p><p>Plant biomass can significantly contribute to alternative energy sources. Sorghum bicolor is a promising plant for producing energy, but is susceptible to iron deficiency, which inhibits its cultivation in iron-limiting calcareous soils. The molecular basis for the susceptibility of sorghum to iron deficiency remains unclear. Here, we explored the sorghum genome to identify genes involved in iron uptake and translocation. Iron deficiency-responsive gene expression was comparable to that in other graminaceous plants. A nicotianamine synthase gene, SbNAS1, was induced in response to iron deficiency, and SbNAS1 showed enzyme activity. Sorghum secreted 2'-deoxymugineic acid and other phytosiderophores under iron deficiency, but their levels were relatively low. Intercropping of sorghum with barley or rice rescued iron deficiency symptoms of sorghum. To produce bioengineered sorghum with enhanced tolerance to iron deficiency, we introduced four cassettes into sorghum: 35S promoter-OsIRO2 for activation of iron acquisition-related gene expression, SbIRT1 promoter-Refre1/372 for enhanced ferric-chelate reductase activity, and barley IDS3, and HvNAS1 genomic fragments for enhanced production of phytosiderophores and nicotianamine. The resultant single sorghum line exhibited enhanced secretion of phytosiderophores, increased ferric-chelate reductase activity, and improved iron uptake and leaf greenness compared with non-transformants under iron-limiting conditions. Similar traits were also conferred to rice by introducing the four cassettes. Moreover, these rice lines showed similar or better tolerance in calcareous soils and increased grain iron accumulation compared with previous rice lines carrying two or three comparable cassettes. These results provide a molecular basis for the bioengineering of sorghum tolerant of low iron availability in calcareous soils.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 6","pages":"117"},"PeriodicalIF":3.9,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rice (Oryza sativa L.) is highly sensitive to low temperatures, which can significantly reduce its production. Cold tolerance in rice is a complex trait regulated by multiple mechanisms. OsTZF5, a member of the CCCH-type zinc finger gene family in rice, has been previously reported that overexpressing OsTZF5 under the stress-responsive promoter can confer drought resistance. In this study, we showed that the loss of function mutants of OsTZF5 decreased seed germination rate and chilling tolerance in rice, and influencing normal growth and development. OsTZF5 is expressed in various parts of the rice plant, including roots, stems, leaves and inflorescences, with the highest expression levels observed in leaves. Additionally, the expression of OsTZF5 gene was influenced by various stress conditions and hormone treatments. OsTZF5 knock-out mutants exhibited significantly lower survival rates compared to the wild type (Zhonghua11, ZH11) after cold stress, as well as fewer tillers, lower thousand-grain weight, and reduced grain yield under normal conditions. Transcriptomic analyses revealed that the expression of cold stress-related genes was significantly down-regulated in OsTZF5 knock-out mutants compared to ZH11 after cold stress. This down-regulation likely contributes to the reduced cold stress tolerance observed in OsTZF5 knock-out mutants. Our findings suggest that OsTZF5 is a multifunctional gene that plays a crucial role in regulating cold stress in rice.
{"title":"A loss-of-function mutation in OsTZF5 confers sensitivity to low temperature and effects the growth and development in rice.","authors":"Limin Wang, Ru Wang, Xin Cai, Huiqi Zheng, Yuxing Huang, Yuechen Li, Mingyue Cui, Mingli Lin, Huiwu Tang","doi":"10.1007/s11103-024-01513-1","DOIUrl":"10.1007/s11103-024-01513-1","url":null,"abstract":"<p><p>Rice (Oryza sativa L.) is highly sensitive to low temperatures, which can significantly reduce its production. Cold tolerance in rice is a complex trait regulated by multiple mechanisms. OsTZF5, a member of the CCCH-type zinc finger gene family in rice, has been previously reported that overexpressing OsTZF5 under the stress-responsive promoter can confer drought resistance. In this study, we showed that the loss of function mutants of OsTZF5 decreased seed germination rate and chilling tolerance in rice, and influencing normal growth and development. OsTZF5 is expressed in various parts of the rice plant, including roots, stems, leaves and inflorescences, with the highest expression levels observed in leaves. Additionally, the expression of OsTZF5 gene was influenced by various stress conditions and hormone treatments. OsTZF5 knock-out mutants exhibited significantly lower survival rates compared to the wild type (Zhonghua11, ZH11) after cold stress, as well as fewer tillers, lower thousand-grain weight, and reduced grain yield under normal conditions. Transcriptomic analyses revealed that the expression of cold stress-related genes was significantly down-regulated in OsTZF5 knock-out mutants compared to ZH11 after cold stress. This down-regulation likely contributes to the reduced cold stress tolerance observed in OsTZF5 knock-out mutants. Our findings suggest that OsTZF5 is a multifunctional gene that plays a crucial role in regulating cold stress in rice.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 6","pages":"116"},"PeriodicalIF":3.9,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-22DOI: 10.1007/s11103-024-01509-x
Agnieszka Kiełbowicz-Matuk, Cezary Smaczniak, Krzysztof Mikołajczak, Anetta Kuczyńska, Xiaocai Xu, Caroline Braeuning, Paweł Krajewski
Plant responses to stress caused by high temperatures involve changes occurring at the molecular, metabolic, and physiological levels. Understanding the mechanisms by which plants recognize signals to activate this response is a prerequisite for identifying key genes and signaling pathways and for obtaining heat-tolerant plants. We demonstrated the first implementation of an assay for transposase-accessible chromatin to identify open chromatin regions (OCRs) in crown tissues of barley using three genotypes carrying different allelic forms of the sdw1 gene encoding gibberellin 20-oxidase subjected to elevated temperatures. In parallel, we performed gene expression analysis, which allowed us to relate changes in chromatin state to changes in transcriptional activity. The obtained data revealed that the hypersensitive chromatin regions within the genes were more repeatable than those outside the gene intervals. We observed that prolonged exposure to high temperatures increased chromatin accessibility. Genes with OCRs in their regulatory regions were involved in stress signaling and tolerance, including calcium-dependent protein kinase, mitogen-activated protein kinase (MAPK3), receptor-like cytoplasmic kinase (RLK), TIFY domain-containing transcriptional regulator, bZIP transcription factor, and regulatory protein NPR1. The effect of genotype on gene expression was not as pronounced as that of temperature. By combining results from the differential analysis of chromatin accessibility and expression profiles, we identified genes with high temperature-induced changes in chromatin accessibility associated with expression alterations. Importantly, our data revealed a relationship between the loss of chromatin accessibility in response to heat and the downregulation of genes related to gibberellin signaling.
{"title":"Heat stress causes chromatin accessibility and related gene expression changes in crown tissues of barley (Hordeum vulgare).","authors":"Agnieszka Kiełbowicz-Matuk, Cezary Smaczniak, Krzysztof Mikołajczak, Anetta Kuczyńska, Xiaocai Xu, Caroline Braeuning, Paweł Krajewski","doi":"10.1007/s11103-024-01509-x","DOIUrl":"10.1007/s11103-024-01509-x","url":null,"abstract":"<p><p>Plant responses to stress caused by high temperatures involve changes occurring at the molecular, metabolic, and physiological levels. Understanding the mechanisms by which plants recognize signals to activate this response is a prerequisite for identifying key genes and signaling pathways and for obtaining heat-tolerant plants. We demonstrated the first implementation of an assay for transposase-accessible chromatin to identify open chromatin regions (OCRs) in crown tissues of barley using three genotypes carrying different allelic forms of the sdw1 gene encoding gibberellin 20-oxidase subjected to elevated temperatures. In parallel, we performed gene expression analysis, which allowed us to relate changes in chromatin state to changes in transcriptional activity. The obtained data revealed that the hypersensitive chromatin regions within the genes were more repeatable than those outside the gene intervals. We observed that prolonged exposure to high temperatures increased chromatin accessibility. Genes with OCRs in their regulatory regions were involved in stress signaling and tolerance, including calcium-dependent protein kinase, mitogen-activated protein kinase (MAPK3), receptor-like cytoplasmic kinase (RLK), TIFY domain-containing transcriptional regulator, bZIP transcription factor, and regulatory protein NPR1. The effect of genotype on gene expression was not as pronounced as that of temperature. By combining results from the differential analysis of chromatin accessibility and expression profiles, we identified genes with high temperature-induced changes in chromatin accessibility associated with expression alterations. Importantly, our data revealed a relationship between the loss of chromatin accessibility in response to heat and the downregulation of genes related to gibberellin signaling.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 6","pages":"115"},"PeriodicalIF":3.9,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496342/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-21DOI: 10.1007/s11103-024-01511-3
Lu Tang, Nora Fung-Yee Tam, Winnie Lam, Thomas Chun-Hung Lee, Steven Jing-Liang Xu, Chak-Lam Lee, Fred Wang-Fat Lee
Photosynthetic dinoflagellates play crucial roles in global primary production and carbon fixation. Despite their success in filling various ecological niches, numerous mysteries about their plastid evolution and plastid genomes remain unsolved. The plastid genome of dinoflagellates presents one of the most complex lineages in the biological realm, mainly due to multiple endosymbiotic plastid events in their evolutionary history. Peridinin-containing dinoflagellates possess the most reduced and fragmented genome, with only a few genes located on multiple "minicircles", whereas replacement plastids in dinoflagellate lineages have undergone different degrees of endosymbiotic gene transfer. Recent advancements in high-throughput sequencing have improved our understanding of plastid genomes and plastid-encoded gene expression in many dinoflagellate species. Plastid transcripts of dinoflagellates exhibit two unconventional processing pathways: the addition of a 3' poly(U) tail and substitutional RNA editing. These pathways are widely employed across dinoflagellate lineages, which are possibly retained from the ancestral peridinin plastid. This mini-review summarizes the developments in the plastid genomes of dinoflagellates and pinpoints the research areas that necessitate further exploration, aiming to provide valuable insights into plastid evolution in these fascinating and important organisms.
{"title":"Interpreting the complexities of the plastid genome in dinoflagellates: a mini-review of recent advances.","authors":"Lu Tang, Nora Fung-Yee Tam, Winnie Lam, Thomas Chun-Hung Lee, Steven Jing-Liang Xu, Chak-Lam Lee, Fred Wang-Fat Lee","doi":"10.1007/s11103-024-01511-3","DOIUrl":"10.1007/s11103-024-01511-3","url":null,"abstract":"<p><p>Photosynthetic dinoflagellates play crucial roles in global primary production and carbon fixation. Despite their success in filling various ecological niches, numerous mysteries about their plastid evolution and plastid genomes remain unsolved. The plastid genome of dinoflagellates presents one of the most complex lineages in the biological realm, mainly due to multiple endosymbiotic plastid events in their evolutionary history. Peridinin-containing dinoflagellates possess the most reduced and fragmented genome, with only a few genes located on multiple \"minicircles\", whereas replacement plastids in dinoflagellate lineages have undergone different degrees of endosymbiotic gene transfer. Recent advancements in high-throughput sequencing have improved our understanding of plastid genomes and plastid-encoded gene expression in many dinoflagellate species. Plastid transcripts of dinoflagellates exhibit two unconventional processing pathways: the addition of a 3' poly(U) tail and substitutional RNA editing. These pathways are widely employed across dinoflagellate lineages, which are possibly retained from the ancestral peridinin plastid. This mini-review summarizes the developments in the plastid genomes of dinoflagellates and pinpoints the research areas that necessitate further exploration, aiming to provide valuable insights into plastid evolution in these fascinating and important organisms.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 6","pages":"114"},"PeriodicalIF":3.9,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}