Under nitrogen deprivation (-N), cyanobacterium Synechocystis sp. PCC 6803 exhibits growth arrest, reduced protein content, and remarkably increased glycogen accumulation. However, producing glycogen under this condition requires a two-step process with cell transfer from normal to -N medium. Metabolic engineering and chemical treatment for rapid glycogen accumulation can bypass the need for two-step cultivation. For example, recent studies indicate that individually disrupting hydrogen (H2) or poly(3-hydroxybutyrate) (PHB) synthesis, or treatment with methyl viologen (MV), effectively increases glycogen accumulation in Synechocystis. Here we explore the effects of disrupted H2 or poly(3-hydroxybutyrate) synthesis, together with MV treatment to on enhanced glycogen accumulation in Synechocystis grown in normal medium. Wild-type cells without MV treatment exhibited low glycogen content of less than 6% w/w dry weight (DW). Compared with wild type, disrupting PHB synthesis combined with MV treatment did not increase glycogen content. Disrupted H₂ production without MV treatment yielded up to 11% w/w DW glycogen content. Interestingly, when combined, disrupted H2 production with MV treatment synergistically enhanced glycogen accumulation to 51% and 59% w/w DW within 3 and 7 days, respectively. Metabolomic analysis suggests that MV treatment mediated the conversion of proteins into glycogen. Metabolomic and transcriptional-expression analysis suggests that disrupted H2 synthesis under MV treatment positively influenced glycogen synthesis. Disrupted H₂ synthesis under MV treatment significantly increased NADPH levels. This increased NADPH content potentially contributed to the observed enhancements in antioxidant activity against MV-induced oxidants, O2 evolution, and metabolite substrates levels for glycogen synthesis in normal medium, ultimately leading to enhanced glycogen accumulation in Synechocystis. KEY MESSAGE: Combining disrupted hydrogen-gas synthesis and the treatment by photosynthesis electron-transport inhibitor significantly enhance glycogen production in cyanobacteria.
{"title":"Disrupted H<sub>2</sub> synthesis combined with methyl viologen treatment inhibits photosynthetic electron flow to synergistically enhance glycogen accumulation in the cyanobacterium Synechocystis sp. PCC 6803.","authors":"Nannaphat Sukkasam, Janine Kaewbai-Ngam, Jidapa Leksingto, Pichaya In-Na, Kasidit Nootong, Aran Incharoensakdi, Steven J Hallam, Tanakarn Monshupanee","doi":"10.1007/s11103-024-01484-3","DOIUrl":"10.1007/s11103-024-01484-3","url":null,"abstract":"<p><p>Under nitrogen deprivation (-N), cyanobacterium Synechocystis sp. PCC 6803 exhibits growth arrest, reduced protein content, and remarkably increased glycogen accumulation. However, producing glycogen under this condition requires a two-step process with cell transfer from normal to -N medium. Metabolic engineering and chemical treatment for rapid glycogen accumulation can bypass the need for two-step cultivation. For example, recent studies indicate that individually disrupting hydrogen (H<sub>2</sub>) or poly(3-hydroxybutyrate) (PHB) synthesis, or treatment with methyl viologen (MV), effectively increases glycogen accumulation in Synechocystis. Here we explore the effects of disrupted H<sub>2</sub> or poly(3-hydroxybutyrate) synthesis, together with MV treatment to on enhanced glycogen accumulation in Synechocystis grown in normal medium. Wild-type cells without MV treatment exhibited low glycogen content of less than 6% w/w dry weight (DW). Compared with wild type, disrupting PHB synthesis combined with MV treatment did not increase glycogen content. Disrupted H₂ production without MV treatment yielded up to 11% w/w DW glycogen content. Interestingly, when combined, disrupted H<sub>2</sub> production with MV treatment synergistically enhanced glycogen accumulation to 51% and 59% w/w DW within 3 and 7 days, respectively. Metabolomic analysis suggests that MV treatment mediated the conversion of proteins into glycogen. Metabolomic and transcriptional-expression analysis suggests that disrupted H<sub>2</sub> synthesis under MV treatment positively influenced glycogen synthesis. Disrupted H₂ synthesis under MV treatment significantly increased NADPH levels. This increased NADPH content potentially contributed to the observed enhancements in antioxidant activity against MV-induced oxidants, O<sub>2</sub> evolution, and metabolite substrates levels for glycogen synthesis in normal medium, ultimately leading to enhanced glycogen accumulation in Synechocystis. KEY MESSAGE: Combining disrupted hydrogen-gas synthesis and the treatment by photosynthesis electron-transport inhibitor significantly enhance glycogen production in cyanobacteria.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 4","pages":"87"},"PeriodicalIF":3.9,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141634216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-12DOI: 10.1007/s11103-024-01481-6
Angela Méndez-Yáñez, Cristian Carrasco-Orellana, Patricio Ramos, Luis Morales-Quintana
Expansins are proteins without catalytic activity, but able to break hydrogen bonds between cell wall polysaccharides hemicellulose and cellulose. This proteins were reported for the first time in 1992, describing cell wall extension in cucumber hypocotyls caused particularly by alpha-expansins. Although these proteins have GH45 and CBM63 domains, characteristic of enzymes related with the cleavage of cell wall polysaccharides, demonstrating in vitro that they extend plant cell wall. Its participation has been associated to molecular processes such as development and growing, fruit ripening and softening, tolerance and resistance to biotic and abiotic stress and seed germination. Structural insights, facilitated by bioinformatics approaches, are highlighted, shedding light on the intricate interactions between alpha-expansins and cell wall polysaccharides. After more than thirty years of its discovery, we want to celebrate the knowledge of alpha-expansins and emphasize their importance to understand the phenomena of disassembly and loosening of the cell wall, specifically in the fruit ripening phenomena, with this state-of-the-art dedicated to them.
{"title":"Alpha-expansins: more than three decades of wall creep and loosening in fruits.","authors":"Angela Méndez-Yáñez, Cristian Carrasco-Orellana, Patricio Ramos, Luis Morales-Quintana","doi":"10.1007/s11103-024-01481-6","DOIUrl":"10.1007/s11103-024-01481-6","url":null,"abstract":"<p><p>Expansins are proteins without catalytic activity, but able to break hydrogen bonds between cell wall polysaccharides hemicellulose and cellulose. This proteins were reported for the first time in 1992, describing cell wall extension in cucumber hypocotyls caused particularly by alpha-expansins. Although these proteins have GH45 and CBM63 domains, characteristic of enzymes related with the cleavage of cell wall polysaccharides, demonstrating in vitro that they extend plant cell wall. Its participation has been associated to molecular processes such as development and growing, fruit ripening and softening, tolerance and resistance to biotic and abiotic stress and seed germination. Structural insights, facilitated by bioinformatics approaches, are highlighted, shedding light on the intricate interactions between alpha-expansins and cell wall polysaccharides. After more than thirty years of its discovery, we want to celebrate the knowledge of alpha-expansins and emphasize their importance to understand the phenomena of disassembly and loosening of the cell wall, specifically in the fruit ripening phenomena, with this state-of-the-art dedicated to them.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 4","pages":"84"},"PeriodicalIF":3.9,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141591021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-12DOI: 10.1007/s11103-024-01483-4
Doosan Shin, Keun Ho Cho, Ethan Tucker, Chan Yul Yoo, Jeongim Kim
Phenylpropanoids, a class of specialized metabolites, play crucial roles in plant growth and stress adaptation and include diverse phenolic compounds such as flavonoids. Phenylalanine ammonia-lyase (PAL) and chalcone synthase (CHS) are essential enzymes functioning at the entry points of general phenylpropanoid biosynthesis and flavonoid biosynthesis, respectively. In Arabidopsis, PAL and CHS are turned over through ubiquitination-dependent proteasomal degradation. Specific kelch domain-containing F-Box (KFB) proteins as components of ubiquitin E3 ligase directly interact with PAL or CHS, leading to polyubiquitinated PAL and CHS, which in turn influences phenylpropanoid and flavonoid production. Although phenylpropanoids are vital for tomato nutritional value and stress responses, the post-translational regulation of PAL and CHS in tomato remains unknown. We identified 31 putative KFB-encoding genes in the tomato genome. Our homology analysis and phylogenetic study predicted four PAL-interacting SlKFBs, while SlKFB18 was identified as the sole candidate for the CHS-interacting KFB. Consistent with their homolog function, the predicted four PAL-interacting SlKFBs function in PAL degradation. Surprisingly, SlKFB18 did not interact with tomato CHS and the overexpression or knocking out of SlKFB18 did not affect phenylpropanoid contents in tomato transgenic lines, suggesting its irreverence with flavonoid metabolism. Our study successfully discovered the post-translational regulatory machinery of PALs in tomato while highlighting the limitation of relying solely on a homology-based approach to predict interacting partners of F-box proteins.
苯丙类化合物是一类特殊的代谢产物,在植物生长和胁迫适应中发挥着至关重要的作用,其中包括黄酮类等多种酚类化合物。苯丙氨酸氨基转移酶(PAL)和查尔酮合成酶(CHS)是分别在一般苯丙类生物合成和类黄酮生物合成的切入点起作用的重要酶。在拟南芥中,PAL 和 CHS 都是通过泛素依赖性蛋白酶体降解的。特定的含 Kelch 结构域的 F-Box 蛋白(KFB)作为泛素 E3 连接酶的组成部分,直接与 PAL 或 CHS 相互作用,导致 PAL 和 CHS 多泛素化,进而影响苯丙酮和类黄酮的生成。虽然苯丙类化合物对番茄的营养价值和胁迫反应至关重要,但番茄中 PAL 和 CHS 的翻译后调控仍然未知。我们在番茄基因组中发现了 31 个推测的 KFB 编码基因。我们的同源分析和系统发育研究预测了四个与 PAL 相互作用的 SlKFB,而 SlKFB18 被确定为与 CHS 相互作用的 KFB 的唯一候选基因。与同源物的功能相一致,预测的四种与 PAL 有相互作用的 SlKFB 在 PAL 降解中发挥作用。令人惊讶的是,SlKFB18并不与番茄CHS相互作用,过表达或敲除SlKFB18并不影响番茄转基因品系中的苯丙类含量,表明其与类黄酮代谢无关。我们的研究成功地发现了番茄中PALs的翻译后调控机制,同时也强调了仅仅依靠基于同源性的方法来预测F-box蛋白相互作用伙伴的局限性。
{"title":"Identification of tomato F-box proteins functioning in phenylpropanoid metabolism.","authors":"Doosan Shin, Keun Ho Cho, Ethan Tucker, Chan Yul Yoo, Jeongim Kim","doi":"10.1007/s11103-024-01483-4","DOIUrl":"10.1007/s11103-024-01483-4","url":null,"abstract":"<p><p>Phenylpropanoids, a class of specialized metabolites, play crucial roles in plant growth and stress adaptation and include diverse phenolic compounds such as flavonoids. Phenylalanine ammonia-lyase (PAL) and chalcone synthase (CHS) are essential enzymes functioning at the entry points of general phenylpropanoid biosynthesis and flavonoid biosynthesis, respectively. In Arabidopsis, PAL and CHS are turned over through ubiquitination-dependent proteasomal degradation. Specific kelch domain-containing F-Box (KFB) proteins as components of ubiquitin E3 ligase directly interact with PAL or CHS, leading to polyubiquitinated PAL and CHS, which in turn influences phenylpropanoid and flavonoid production. Although phenylpropanoids are vital for tomato nutritional value and stress responses, the post-translational regulation of PAL and CHS in tomato remains unknown. We identified 31 putative KFB-encoding genes in the tomato genome. Our homology analysis and phylogenetic study predicted four PAL-interacting SlKFBs, while SlKFB18 was identified as the sole candidate for the CHS-interacting KFB. Consistent with their homolog function, the predicted four PAL-interacting SlKFBs function in PAL degradation. Surprisingly, SlKFB18 did not interact with tomato CHS and the overexpression or knocking out of SlKFB18 did not affect phenylpropanoid contents in tomato transgenic lines, suggesting its irreverence with flavonoid metabolism. Our study successfully discovered the post-translational regulatory machinery of PALs in tomato while highlighting the limitation of relying solely on a homology-based approach to predict interacting partners of F-box proteins.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 4","pages":"85"},"PeriodicalIF":3.9,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141591022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-08DOI: 10.1007/s11103-024-01480-7
Joshua Lomax, Rebecca Ford, Ido Bar
Consumer trends towards nutrient-rich foods are contributing to global increasing demand for tropical fruit. However, commercial cultivars in the breeding pipeline that are tailored to meet market demand are at risk of possessing reduced fruit flavour qualities. This stems from recurrent prioritised selection for superior agronomic traits and not fruit flavour, which may in turn reduce consumer satisfaction. There is realisation that fruit quality traits, inclusive of flavour, must be equally selected for; but currently, there are limited tools and resources available to select for fruit flavour traits, particularly in tropical fruit species. Although sugars, acids, and volatile organic compounds are known to define fruit flavour, the specific combinations of these, that result in defined consumer preferences, remain unknown for many tropical fruit species. To define and include fruit flavour preferences in selective breeding, it is vital to determine the metabolites that underpin them. Then, objective quantitative analysis may be implemented instead of solely relying on human sensory panels. This may lead to the development of selective genetic markers through integrated omics approaches that target biosynthetic pathways of flavour active compounds. In this review, we explore progress in the development of tools to be able to strategically define and select for consumer-preferred flavour profiles in the breeding of new cultivars of tropical fruit species.
{"title":"Multi-omic applications for understanding and enhancing tropical fruit flavour.","authors":"Joshua Lomax, Rebecca Ford, Ido Bar","doi":"10.1007/s11103-024-01480-7","DOIUrl":"10.1007/s11103-024-01480-7","url":null,"abstract":"<p><p>Consumer trends towards nutrient-rich foods are contributing to global increasing demand for tropical fruit. However, commercial cultivars in the breeding pipeline that are tailored to meet market demand are at risk of possessing reduced fruit flavour qualities. This stems from recurrent prioritised selection for superior agronomic traits and not fruit flavour, which may in turn reduce consumer satisfaction. There is realisation that fruit quality traits, inclusive of flavour, must be equally selected for; but currently, there are limited tools and resources available to select for fruit flavour traits, particularly in tropical fruit species. Although sugars, acids, and volatile organic compounds are known to define fruit flavour, the specific combinations of these, that result in defined consumer preferences, remain unknown for many tropical fruit species. To define and include fruit flavour preferences in selective breeding, it is vital to determine the metabolites that underpin them. Then, objective quantitative analysis may be implemented instead of solely relying on human sensory panels. This may lead to the development of selective genetic markers through integrated omics approaches that target biosynthetic pathways of flavour active compounds. In this review, we explore progress in the development of tools to be able to strategically define and select for consumer-preferred flavour profiles in the breeding of new cultivars of tropical fruit species.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 4","pages":"83"},"PeriodicalIF":3.9,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11228007/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141555253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.1007/s11103-024-01476-3
Nazma Anjum, Mrinal K Maiti
Transcription factors in coordination with phytohormones form an intricate regulatory network modulating vital cellular mechanisms like development, growth and senescence in plants. In this study, we have functionally characterized the transcription factor OsNAC121 by developing gene silencing and overexpressing transgenic rice plants, followed by detailed analyses of the plant architecture. Transgenic lines exhibited remodelling in crown root development, lateral root structure and density, tiller height and number, panicle and grain morphologies, underpinning the imbalanced auxin: cytokinin ratio due to perturbed auxin transportation. Application of cytokinin, auxin and abscisic acid increased OsNAC121 gene expression nearly 17-, 6- and 91-folds, respectively. qRT-PCR results showed differential expressions of auxin and cytokinin pathway genes, implying their altered levels. A 47-fold higher expression level of OsNAC121 during milky stage in untransformed rice, compared to 14-day old shoot tissue, suggests its crucial role in grain filling; as evidenced by a large number of undeveloped grains produced by the gene silenced lines. Crippled gravitropic response by the transgenic plants indicates their impaired auxin transport. Bioinformatics revealed that OsNAC121 interacts with co-repressor (TOPLESS) proteins and forms a part of the inhibitor complex OsIAA10, an essential core component of auxin signalling pathway. Therefore, OsNAC121 emerges as an important regulator of various aspects of plant architecture through modulation of crosstalk between auxin and cytokinin, altering their concentration gradient in the meristematic zones, and consequently modifying different plant organogenesis processes.
{"title":"OsNAC121 regulates root development, tillering, panicle morphology, and grain filling in rice plant.","authors":"Nazma Anjum, Mrinal K Maiti","doi":"10.1007/s11103-024-01476-3","DOIUrl":"10.1007/s11103-024-01476-3","url":null,"abstract":"<p><p>Transcription factors in coordination with phytohormones form an intricate regulatory network modulating vital cellular mechanisms like development, growth and senescence in plants. In this study, we have functionally characterized the transcription factor OsNAC121 by developing gene silencing and overexpressing transgenic rice plants, followed by detailed analyses of the plant architecture. Transgenic lines exhibited remodelling in crown root development, lateral root structure and density, tiller height and number, panicle and grain morphologies, underpinning the imbalanced auxin: cytokinin ratio due to perturbed auxin transportation. Application of cytokinin, auxin and abscisic acid increased OsNAC121 gene expression nearly 17-, 6- and 91-folds, respectively. qRT-PCR results showed differential expressions of auxin and cytokinin pathway genes, implying their altered levels. A 47-fold higher expression level of OsNAC121 during milky stage in untransformed rice, compared to 14-day old shoot tissue, suggests its crucial role in grain filling; as evidenced by a large number of undeveloped grains produced by the gene silenced lines. Crippled gravitropic response by the transgenic plants indicates their impaired auxin transport. Bioinformatics revealed that OsNAC121 interacts with co-repressor (TOPLESS) proteins and forms a part of the inhibitor complex OsIAA10, an essential core component of auxin signalling pathway. Therefore, OsNAC121 emerges as an important regulator of various aspects of plant architecture through modulation of crosstalk between auxin and cytokinin, altering their concentration gradient in the meristematic zones, and consequently modifying different plant organogenesis processes.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 4","pages":"82"},"PeriodicalIF":3.9,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141493022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-28DOI: 10.1007/s11103-024-01456-7
Liang Chen
Plant leaves consist of three layers, including epidermis, mesophyll and vascular tissues. Their development is meticulously orchestrated. Stomata are the specified structures on the epidermis for uptake of carbon dioxide (CO2) while release of water vapour and oxygen (O2), and thus play essential roles in regulation of plant photosynthesis and water use efficiency. To function efficiently, stomatal formation must coordinate with the development of other epidermal cell types, such as pavement cell and trichome, and tissues of other layers, such as mesophyll and leaf vein. This review summarizes the regulation of stomatal development in three dimensions (3D). In the epidermis, specific stomatal transcription factors determine cell fate transitions and also activate a ligand-receptor- MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) signaling for ensuring proper stomatal density and patterning. This forms the core regulation network of stomatal development, which integrates various environmental cues and phytohormone signals to modulate stomatal production. Under the epidermis, mesophyll, endodermis of hypocotyl and inflorescence stem, and veins in grasses secrete mobile signals to influence stomatal formation in the epidermis. In addition, long-distance signals which may include phytohormones, RNAs, peptides and proteins originated from other plant organs modulate stomatal development, enabling plants to systematically adapt to the ever changing environment.
{"title":"Regulation of stomatal development by epidermal, subepidermal and long-distance signals.","authors":"Liang Chen","doi":"10.1007/s11103-024-01456-7","DOIUrl":"10.1007/s11103-024-01456-7","url":null,"abstract":"<p><p>Plant leaves consist of three layers, including epidermis, mesophyll and vascular tissues. Their development is meticulously orchestrated. Stomata are the specified structures on the epidermis for uptake of carbon dioxide (CO<sub>2</sub>) while release of water vapour and oxygen (O<sub>2</sub>), and thus play essential roles in regulation of plant photosynthesis and water use efficiency. To function efficiently, stomatal formation must coordinate with the development of other epidermal cell types, such as pavement cell and trichome, and tissues of other layers, such as mesophyll and leaf vein. This review summarizes the regulation of stomatal development in three dimensions (3D). In the epidermis, specific stomatal transcription factors determine cell fate transitions and also activate a ligand-receptor- MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) signaling for ensuring proper stomatal density and patterning. This forms the core regulation network of stomatal development, which integrates various environmental cues and phytohormone signals to modulate stomatal production. Under the epidermis, mesophyll, endodermis of hypocotyl and inflorescence stem, and veins in grasses secrete mobile signals to influence stomatal formation in the epidermis. In addition, long-distance signals which may include phytohormones, RNAs, peptides and proteins originated from other plant organs modulate stomatal development, enabling plants to systematically adapt to the ever changing environment.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 4","pages":"80"},"PeriodicalIF":3.9,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141470144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-28DOI: 10.1007/s11103-024-01467-4
Rodrigo Machado, Sebastián Elias Muchut, Carlos Dezar, Andrea Guadalupe Reutemann, Carlos Agustín Alesso, María Margarita Günthardt, Abelardo Carlos Vegetti, John Vogel, Nora G Uberti Manassero
In higher plants, the shift from vegetative to reproductive development is governed by complex interplay of internal and external signals. TERMINALFLOWER1 (TFL1) plays a crucial role in the regulation of flowering time and inflorescence architecture in Arabidopsis thaliana. This study aimed to explore the function of BdRCN4, a homolog of TFL1 in Brachypodium distachyon, through functional analyses in mutant and transgenic plants. The results revealed that overexpression of BdRCN4 in B. distachyon leads to an extended vegetative phase and reduced production of spikelets. Similar results were found in A. thaliana, where constitutive expression of BdRCN4 promoted a delay in flowering time, followed by the development of hypervegetative shoots, with no flowers or siliques produced. Our results suggest that BdRCN4 acts as a flowering repressor analogous to TFL1, negatively regulating AP1, but no LFY expression. To further validate this hypothesis, a 35S::LFY-GR co-transformation approach on 35::BdRCN4 lines was performed. Remarkably, AP1 expression levels and flower formation were restored to normal in co-transformed plants when treated with dexamethasone. Although further molecular studies will be necessary, the evidence in B. distachyon support the idea that a balance between LFY and BdRCN4/TFL1 seems to be essential for activating AP1 expression and initiating floral organ identity gene expression. This study also demonstrates interesting conservation through the molecular pathways that regulate flowering meristem transition and identity across the evolution of monocot and dicot plants.
{"title":"BdRCN4, a Brachypodium distachyon TFL1 homologue, is involved in regulation of apical meristem fate.","authors":"Rodrigo Machado, Sebastián Elias Muchut, Carlos Dezar, Andrea Guadalupe Reutemann, Carlos Agustín Alesso, María Margarita Günthardt, Abelardo Carlos Vegetti, John Vogel, Nora G Uberti Manassero","doi":"10.1007/s11103-024-01467-4","DOIUrl":"10.1007/s11103-024-01467-4","url":null,"abstract":"<p><p>In higher plants, the shift from vegetative to reproductive development is governed by complex interplay of internal and external signals. TERMINALFLOWER1 (TFL1) plays a crucial role in the regulation of flowering time and inflorescence architecture in Arabidopsis thaliana. This study aimed to explore the function of BdRCN4, a homolog of TFL1 in Brachypodium distachyon, through functional analyses in mutant and transgenic plants. The results revealed that overexpression of BdRCN4 in B. distachyon leads to an extended vegetative phase and reduced production of spikelets. Similar results were found in A. thaliana, where constitutive expression of BdRCN4 promoted a delay in flowering time, followed by the development of hypervegetative shoots, with no flowers or siliques produced. Our results suggest that BdRCN4 acts as a flowering repressor analogous to TFL1, negatively regulating AP1, but no LFY expression. To further validate this hypothesis, a 35S::LFY-GR co-transformation approach on 35::BdRCN4 lines was performed. Remarkably, AP1 expression levels and flower formation were restored to normal in co-transformed plants when treated with dexamethasone. Although further molecular studies will be necessary, the evidence in B. distachyon support the idea that a balance between LFY and BdRCN4/TFL1 seems to be essential for activating AP1 expression and initiating floral organ identity gene expression. This study also demonstrates interesting conservation through the molecular pathways that regulate flowering meristem transition and identity across the evolution of monocot and dicot plants.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 4","pages":"81"},"PeriodicalIF":3.9,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141470143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-27DOI: 10.1007/s11103-024-01478-1
Mohammad Shahbazi, Lindsay A Rutter, Richard Barker
Plants are expected to play a critical role in the biological life support systems of crewed spaceflight missions, including in the context of upcoming missions targeting the Moon and Mars. Therefore, understanding the response of plants to spaceflight is essential for improving the selection and engineering of plants and spaceflight conditions. In particular, understanding the root-tip's response to spaceflight is of importance as it is the center of orchestrating the development of the root, the primary organ for the absorption of nutrients and anchorage. GLDS-120 is a pioneering study by Paul et al. that used transcriptomics to evaluate the spaceflight response of the root-tip of the model plant Arabidopsis thaliana in dark and light through separate analyses of three genotype groups (Wassilewskija, Columbia-0, and Columbia-0 PhyD) and comparison of genotype responses. Here, we provide a complementary analysis of this dataset through a combined analysis of all samples while controlling for the genotypes in a paired analysis. We identified a robust transcriptional response to spaceflight with 622 DEGs in light and 200 DEGs in dark conditions. Gene enrichment analysis identified 37 and 13 significantly enriched terms from biological processes in light and dark conditions, respectively. Prominent enrichment for hypoxia-related terms in both conditions suggests hypoxia is a key stressor for root development during spaceflight. Additional enriched terms in light conditions include the circadian cycle, light response, and terms for the metabolism of flavonoid and indole-containing compounds. These results further our understanding of plants' responses to the spaceflight environment.
{"title":"Transcriptional response of Arabidopsis thaliana's root-tip to spaceflight.","authors":"Mohammad Shahbazi, Lindsay A Rutter, Richard Barker","doi":"10.1007/s11103-024-01478-1","DOIUrl":"10.1007/s11103-024-01478-1","url":null,"abstract":"<p><p>Plants are expected to play a critical role in the biological life support systems of crewed spaceflight missions, including in the context of upcoming missions targeting the Moon and Mars. Therefore, understanding the response of plants to spaceflight is essential for improving the selection and engineering of plants and spaceflight conditions. In particular, understanding the root-tip's response to spaceflight is of importance as it is the center of orchestrating the development of the root, the primary organ for the absorption of nutrients and anchorage. GLDS-120 is a pioneering study by Paul et al. that used transcriptomics to evaluate the spaceflight response of the root-tip of the model plant Arabidopsis thaliana in dark and light through separate analyses of three genotype groups (Wassilewskija, Columbia-0, and Columbia-0 PhyD) and comparison of genotype responses. Here, we provide a complementary analysis of this dataset through a combined analysis of all samples while controlling for the genotypes in a paired analysis. We identified a robust transcriptional response to spaceflight with 622 DEGs in light and 200 DEGs in dark conditions. Gene enrichment analysis identified 37 and 13 significantly enriched terms from biological processes in light and dark conditions, respectively. Prominent enrichment for hypoxia-related terms in both conditions suggests hypoxia is a key stressor for root development during spaceflight. Additional enriched terms in light conditions include the circadian cycle, light response, and terms for the metabolism of flavonoid and indole-containing compounds. These results further our understanding of plants' responses to the spaceflight environment.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 4","pages":"79"},"PeriodicalIF":3.9,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141458648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-26DOI: 10.1007/s11103-024-01473-6
Joydeep Chakraborty
Both prokaryotic and eukaryotic organisms use the nucleotide-binding domain/leucine-rich repeat (NBD/LRR)-triggered immunity (NLR-triggered immunity) signaling pathway to defend against pathogens. Plant NLRs are intracellular immune receptors that can bind to effector proteins secreted by pathogens. Dicotyledonous plants express a type of NLR known as TIR domain-containing NLRs (TNLs). TIR domains are enzymes that catalyze the production of small molecules that are essential for immune signaling and lead to plant cell death. The activation of downstream TNL signaling components, such as enhanced disease susceptibility 1 (EDS1), phytoalexin deficient 4 (PAD4), and senescence-associated gene 101 (SAG101), is facilitated by these small molecules. Helper NLRs (hNLRs) and the EDS1-PAD4/SAG101 complex associate after activation, causing the hNLRs to oligomerize, translocate to the plasma membrane (PM), and produce cation-selective channels. According to a recent theory, cations enter cells through pores created by oligomeric hNLRs and trigger cell death. Occasionally, TNLs can self-associate to create higher-order oligomers. Here, we categorized soybean TNLs based on the protein domains that they possess. We believe that TNLs may help soybean plants effectively fight pathogens by acting as a source of genetic resistance. In summary, the purpose of this review is to elucidate the range of TNLs that are expressed in soybean.
{"title":"A comprehensive review of soybean RNL and TIR domain proteins.","authors":"Joydeep Chakraborty","doi":"10.1007/s11103-024-01473-6","DOIUrl":"10.1007/s11103-024-01473-6","url":null,"abstract":"<p><p>Both prokaryotic and eukaryotic organisms use the nucleotide-binding domain/leucine-rich repeat (NBD/LRR)-triggered immunity (NLR-triggered immunity) signaling pathway to defend against pathogens. Plant NLRs are intracellular immune receptors that can bind to effector proteins secreted by pathogens. Dicotyledonous plants express a type of NLR known as TIR domain-containing NLRs (TNLs). TIR domains are enzymes that catalyze the production of small molecules that are essential for immune signaling and lead to plant cell death. The activation of downstream TNL signaling components, such as enhanced disease susceptibility 1 (EDS1), phytoalexin deficient 4 (PAD4), and senescence-associated gene 101 (SAG101), is facilitated by these small molecules. Helper NLRs (hNLRs) and the EDS1-PAD4/SAG101 complex associate after activation, causing the hNLRs to oligomerize, translocate to the plasma membrane (PM), and produce cation-selective channels. According to a recent theory, cations enter cells through pores created by oligomeric hNLRs and trigger cell death. Occasionally, TNLs can self-associate to create higher-order oligomers. Here, we categorized soybean TNLs based on the protein domains that they possess. We believe that TNLs may help soybean plants effectively fight pathogens by acting as a source of genetic resistance. In summary, the purpose of this review is to elucidate the range of TNLs that are expressed in soybean.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 4","pages":"78"},"PeriodicalIF":3.9,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141451182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As self-incompatibility is a major issue in pummelo breeding and production, its mechanism in citrus was analyzed to improve breeding efficiency and reduce production costs. Rutaceae belongs to S-RNase type of gametophytic self-incompatibility. While the function of S-RNase/SLF and the mechanism of self-incompatibility have been studied extensively, the transcriptional regulation of S-RNase has been less studied. We performed transcriptome sequencing with the styles of 'Shatian' pummelo on the day of anthesis and 1-5 days before anthesis, and found that the transcript level of S-RNase gradually decreased with flower development. By analyzing differentially expressed genes and correlation with the expression trend of S-RNase, we identified a candidate gene, CgHSFB1, and utilized biochemical experiments such as yeast one-hybrid assay, electrophoretic mobility shift assay and dual-luciferase assay, as well as transient transformation of citrus calli and Citrus microcarpa and demonstrated that CgHSFB1 could directly bind to the S1-RNase promoter and repress the expression of S1-RNase, which is involved in the pummelo self-incompatibility response. In contrast, CgHSFB1 did not bind to the promoter of S2-RNase, and there was specificity in the regulation of S-RNase.
{"title":"Involvement of CgHSFB1 in the regulation of self-incompatibility in 'Shatian' pummelo.","authors":"Chenchen Liu, Xin Zheng, Jianbing Hu, Qiang Xu, Hao Wen, Zhezhong Zhang, Ran Liu, Xiangling Chen, Zongzhou Xie, Junli Ye, Xiuxin Deng, Lijun Chai","doi":"10.1007/s11103-024-01475-4","DOIUrl":"10.1007/s11103-024-01475-4","url":null,"abstract":"<p><p>As self-incompatibility is a major issue in pummelo breeding and production, its mechanism in citrus was analyzed to improve breeding efficiency and reduce production costs. Rutaceae belongs to S-RNase type of gametophytic self-incompatibility. While the function of S-RNase/SLF and the mechanism of self-incompatibility have been studied extensively, the transcriptional regulation of S-RNase has been less studied. We performed transcriptome sequencing with the styles of 'Shatian' pummelo on the day of anthesis and 1-5 days before anthesis, and found that the transcript level of S-RNase gradually decreased with flower development. By analyzing differentially expressed genes and correlation with the expression trend of S-RNase, we identified a candidate gene, CgHSFB1, and utilized biochemical experiments such as yeast one-hybrid assay, electrophoretic mobility shift assay and dual-luciferase assay, as well as transient transformation of citrus calli and Citrus microcarpa and demonstrated that CgHSFB1 could directly bind to the S<sub>1</sub>-RNase promoter and repress the expression of S<sub>1</sub>-RNase, which is involved in the pummelo self-incompatibility response. In contrast, CgHSFB1 did not bind to the promoter of S<sub>2</sub>-RNase, and there was specificity in the regulation of S-RNase.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 4","pages":"77"},"PeriodicalIF":3.9,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141440787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}