首页 > 最新文献

Plant Molecular Biology最新文献

英文 中文
PAP1 and PAP7 are required for association of plastid-encoded RNA polymerase with DNA. 质粒编码的 RNA 聚合酶与 DNA 的结合需要 PAP1 和 PAP7。
IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-20 DOI: 10.1007/s11103-024-01498-x
Joyful Wang, V Miguel Palomar, Ji-Hee Min, Andrzej T Wierzbicki

Plastid-encoded RNA polymerase (PEP) is a bacterial-type multisubunit RNA polymerase responsible for the majority of transcription in chloroplasts. PEP consists of four core subunits, which are orthologs of their cyanobacterial counterparts. In Arabidopsis thaliana, PEP is expected to interact with 14 PEP-associated proteins (PAPs), which serve as peripheral subunits of the RNA polymerase. The exact contributions of PAPs to PEP function are still poorly understood. We used ptChIP-seq to show that PAP1 (also known as pTAC3), a peripheral subunit of PEP, binds to the same genomic loci as RpoB, a core subunit of PEP. The pap1 mutant shows a complete loss of RpoB binding to DNA throughout the genome, indicating that PAP1 is necessary for RpoB binding to DNA. A similar loss of RpoB binding to DNA is observed in a mutant defective in PAP7 (also known as pTAC14), another peripheral PEP subunit. We propose that PAPs are required for the recruitment of core PEP subunits to DNA.

质体编码的 RNA 聚合酶(PEP)是一种细菌型多亚基 RNA 聚合酶,负责叶绿体中的大部分转录。PEP 由四个核心亚基组成,它们是蓝藻对应亚基的直向同源物。在拟南芥中,PEP 预计会与 14 个 PEP 相关蛋白(PAPs)相互作用,这些蛋白是 RNA 聚合酶的外围亚基。人们对 PAPs 对 PEP 功能的确切贡献仍知之甚少。我们利用ptChIP-seq技术表明,PEP的外围亚基PAP1(又称pTAC3)与PEP的核心亚基RpoB结合到相同的基因组位点。pap1 突变体在整个基因组中完全丧失了 RpoB 与 DNA 的结合,这表明 PAP1 是 RpoB 与 DNA 结合的必要条件。另一个外围 PEP 亚基 PAP7(又称 pTAC14)的缺陷突变体也观察到了类似的 RpoB 与 DNA 结合的缺失。我们认为,PAPs 是核心 PEP 亚基与 DNA 结合所必需的。
{"title":"PAP1 and PAP7 are required for association of plastid-encoded RNA polymerase with DNA.","authors":"Joyful Wang, V Miguel Palomar, Ji-Hee Min, Andrzej T Wierzbicki","doi":"10.1007/s11103-024-01498-x","DOIUrl":"https://doi.org/10.1007/s11103-024-01498-x","url":null,"abstract":"<p><p>Plastid-encoded RNA polymerase (PEP) is a bacterial-type multisubunit RNA polymerase responsible for the majority of transcription in chloroplasts. PEP consists of four core subunits, which are orthologs of their cyanobacterial counterparts. In Arabidopsis thaliana, PEP is expected to interact with 14 PEP-associated proteins (PAPs), which serve as peripheral subunits of the RNA polymerase. The exact contributions of PAPs to PEP function are still poorly understood. We used ptChIP-seq to show that PAP1 (also known as pTAC3), a peripheral subunit of PEP, binds to the same genomic loci as RpoB, a core subunit of PEP. The pap1 mutant shows a complete loss of RpoB binding to DNA throughout the genome, indicating that PAP1 is necessary for RpoB binding to DNA. A similar loss of RpoB binding to DNA is observed in a mutant defective in PAP7 (also known as pTAC14), another peripheral PEP subunit. We propose that PAPs are required for the recruitment of core PEP subunits to DNA.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142293158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dormancy regulator Prunus mume DAM6 promotes ethylene-mediated leaf senescence and abscission 休眠调节因子梅 DAM6 促进乙烯介导的叶片衰老和脱落
IF 5.1 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-16 DOI: 10.1007/s11103-024-01497-y
Tzu-Fan Hsiang, Yue-Yu Chen, Ryohei Nakano, Akira Oikawa, Takakazu Matsuura, Yoko Ikeda, Hisayo Yamane

Leaf senescence and abscission in autumn are critical phenological events in deciduous woody perennials. After leaf fall, dormant buds remain on deciduous woody perennials, which then enter a winter dormancy phase. Thus, leaf fall is widely believed to be linked to the onset of dormancy. In Rosaceae fruit trees, DORMANCY-ASSOCIATED MADS-box (DAM) transcription factors control bud dormancy. However, apart from their regulatory effects on bud dormancy, the biological functions of DAMs have not been thoroughly characterized. In this study, we revealed a novel DAM function influencing leaf senescence and abscission in autumn. In Prunus mume, PmDAM6 expression was gradually up-regulated in leaves during autumn toward leaf fall. Our comparative transcriptome analysis using two RNA-seq datasets for the leaves of transgenic plants overexpressing PmDAM6 and peach (Prunus persica) DAM6 (PpeDAM6) indicated Prunus DAM6 may up-regulate the expression of genes involved in ethylene biosynthesis and signaling as well as leaf abscission. Significant increases in 1-aminocyclopropane-1-carboxylate accumulation and ethylene emission in DEX-treated 35S:PmDAM6-GR leaves reflect the inductive effect of PmDAM6 on ethylene biosynthesis. Additionally, ethephon treatments promoted autumn leaf senescence and abscission in apple and P. mume, mirroring the changes due to PmDAM6 overexpression. Collectively, these findings suggest that PmDAM6 may induce ethylene emission from leaves, thereby promoting leaf senescence and abscission. This study clarified the effects of Prunus DAM6 on autumn leaf fall, which is associated with bud dormancy onset. Accordingly, in Rosaceae, DAMs may play multiple important roles affecting whole plant growth during the tree dormancy induction phase.

秋季叶片衰老和脱落是落叶多年生木本植物的关键物候期。落叶后,落叶多年生木本植物的休眠芽仍然存在,然后进入冬季休眠期。因此,人们普遍认为落叶与休眠的开始有关。在蔷薇科果树中,DORMANCY-ASSOCIATED MADS-box(DAM)转录因子控制着芽的休眠。然而,除了对花芽休眠的调控作用外,DAMs 的生物学功能还没有得到深入研究。在这项研究中,我们发现了一种新的影响秋季叶片衰老和脱落的 DAM 功能。在梅花中,PmDAM6的表达在秋季叶片衰老和落叶过程中逐渐上调。我们利用两个RNA-seq数据集对过表达PmDAM6和桃(Prunus persica)DAM6(PpeDAM6)的转基因植株的叶片进行了转录组比较分析,结果表明Prunus DAM6可能会上调参与乙烯生物合成和信号转导以及叶片脱落的基因的表达。经 DEX 处理的 35S:PmDAM6-GR 叶片中 1-aminocyclopropane-1-carboxylate 积累和乙烯释放量的显著增加反映了 PmDAM6 对乙烯生物合成的诱导作用。此外,乙硫磷处理促进了苹果和梅花秋季叶片的衰老和脱落,反映了 PmDAM6 过表达引起的变化。总之,这些研究结果表明,PmDAM6可能诱导叶片释放乙烯,从而促进叶片衰老和脱落。这项研究阐明了梅花 DAM6 对秋季落叶的影响,而秋季落叶与花蕾休眠的开始有关。因此,在蔷薇科植物中,DAMs 可能在树木休眠诱导阶段发挥多种重要作用,影响整个植株的生长。
{"title":"Dormancy regulator Prunus mume DAM6 promotes ethylene-mediated leaf senescence and abscission","authors":"Tzu-Fan Hsiang, Yue-Yu Chen, Ryohei Nakano, Akira Oikawa, Takakazu Matsuura, Yoko Ikeda, Hisayo Yamane","doi":"10.1007/s11103-024-01497-y","DOIUrl":"https://doi.org/10.1007/s11103-024-01497-y","url":null,"abstract":"<p>Leaf senescence and abscission in autumn are critical phenological events in deciduous woody perennials. After leaf fall, dormant buds remain on deciduous woody perennials, which then enter a winter dormancy phase. Thus, leaf fall is widely believed to be linked to the onset of dormancy. In Rosaceae fruit trees, DORMANCY-ASSOCIATED MADS-box (DAM) transcription factors control bud dormancy. However, apart from their regulatory effects on bud dormancy, the biological functions of DAMs have not been thoroughly characterized. In this study, we revealed a novel DAM function influencing leaf senescence and abscission in autumn. In <i>Prunus mume</i>, <i>PmDAM6</i> expression was gradually up-regulated in leaves during autumn toward leaf fall. Our comparative transcriptome analysis using two RNA-seq datasets for the leaves of transgenic plants overexpressing <i>PmDAM6</i> and peach (<i>Prunus persica</i>) <i>DAM6</i> (<i>PpeDAM6</i>) indicated <i>Prunus</i> DAM6 may up-regulate the expression of genes involved in ethylene biosynthesis and signaling as well as leaf abscission. Significant increases in 1-aminocyclopropane-1-carboxylate accumulation and ethylene emission in DEX-treated <i>35S:PmDAM6-GR</i> leaves reflect the inductive effect of PmDAM6 on ethylene biosynthesis. Additionally, ethephon treatments promoted autumn leaf senescence and abscission in apple and <i>P. mume</i>, mirroring the changes due to <i>PmDAM6</i> overexpression. Collectively, these findings suggest that PmDAM6 may induce ethylene emission from leaves, thereby promoting leaf senescence and abscission. This study clarified the effects of <i>Prunus</i> DAM6 on autumn leaf fall, which is associated with bud dormancy onset. Accordingly, in Rosaceae, DAMs may play multiple important roles affecting whole plant growth during the tree dormancy induction phase.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142251117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
l-Lactate dehydrogenase from Cyanidioschyzon merolae shows high catalytic efficiency for pyruvate reduction and is inhibited by ATP 来自 Merolae Cyanidioschyzon 的 l-乳酸脱氢酶对丙酮酸还原具有很高的催化效率,并受到 ATP 的抑制
IF 5.1 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-10 DOI: 10.1007/s11103-024-01495-0
Mai Yamamoto, Takashi Osanai, Shoki Ito

l-Lactate is a commodity chemical used in various fields. Microorganisms have produced l-lactate via lactic fermentation using saccharides derived from crops as carbon sources. Recently, l-lactate production using microalgae, whose carbon source is carbon dioxide, has been spotlighted because the prices of the crops have increased. A red alga Cyanidioschyzon merolae produce l-lactate via lactic fermentation under dark anaerobic conditions. The l-lactate titer of C. merolae is higher than those of other microalgae but lower than those of heterotrophic bacteria. Therefore, an increase in the l-lactate titer is required in C. merolae. l-Lactate dehydrogenase (l-LDH) catalyzes the reduction of pyruvate to l-lactate during lactic fermentation. C. merolae possesses five isozymes of l-LDH. The results of previous transcriptome analysis suggested that l-LDHs are the key enzymes in the lactic fermentation of C. merolae. However, their biochemical characteristics, such as catalytic efficiency and tolerance for metabolites, have not been revealed. We compared the amino acid sequences of C. merolae l-LDHs (CmLDHs) and characterized one of the isozymes, CmLDH1. BLAST analysis revealed that the sequence similarities of CmLDH1 and the other isozymes were above 99%. The catalytic efficiency of CmLDH1 under its optimum conditions was higher than those of l-LDHs of other organisms. ATP decreased the affinity and turnover number of CmLDH1 for NADH. These findings contribute to understanding the characteristics of l-LDHs of microalgae and the regulatory mechanisms of lactic fermentation in C. merolae.

乳酸是一种商品化学品,广泛应用于各个领域。微生物利用从农作物中提取的糖作为碳源,通过乳酸发酵生产乳酸。最近,由于农作物价格上涨,利用微藻(其碳源为二氧化碳)生产 l-乳酸成为焦点。一种红藻 Cyanidioschyzon merolae 在黑暗厌氧条件下通过乳酸发酵生产乳酸。C. merolae 的乳酸滴度高于其他微藻,但低于异养菌。乳酸脱氢酶(l-LDH)在乳酸发酵过程中催化丙酮酸还原为 l-乳酸。C. merolae 有五种 l-LDH 同工酶。之前的转录组分析结果表明,l-LDHs 是梅洛莱藻乳酸发酵过程中的关键酶。然而,它们的生化特性,如催化效率和对代谢物的耐受性,尚未被揭示。我们比较了梅洛藻l-LDHs(CmLDHs)的氨基酸序列,并鉴定了其中一种同工酶CmLDH1的特征。BLAST分析显示,CmLDH1与其他同工酶的序列相似度在99%以上。在最佳条件下,CmLDH1的催化效率高于其他生物的l-LDHs。ATP降低了CmLDH1对NADH的亲和力和周转次数。这些发现有助于了解微藻l-LDHs的特性以及美罗藻乳酸发酵的调节机制。
{"title":"l-Lactate dehydrogenase from Cyanidioschyzon merolae shows high catalytic efficiency for pyruvate reduction and is inhibited by ATP","authors":"Mai Yamamoto, Takashi Osanai, Shoki Ito","doi":"10.1007/s11103-024-01495-0","DOIUrl":"https://doi.org/10.1007/s11103-024-01495-0","url":null,"abstract":"<p><span>l</span>-Lactate is a commodity chemical used in various fields. Microorganisms have produced <span>l</span>-lactate via lactic fermentation using saccharides derived from crops as carbon sources. Recently, <span>l</span>-lactate production using microalgae, whose carbon source is carbon dioxide, has been spotlighted because the prices of the crops have increased. A red alga <i>Cyanidioschyzon merolae</i> produce <span>l</span>-lactate via lactic fermentation under dark anaerobic conditions. The <span>l</span>-lactate titer of <i>C. merolae</i> is higher than those of other microalgae but lower than those of heterotrophic bacteria. Therefore, an increase in the <span>l</span>-lactate titer is required in <i>C. merolae</i>. <span>l</span>-Lactate dehydrogenase (<span>l</span>-LDH) catalyzes the reduction of pyruvate to <span>l</span>-lactate during lactic fermentation. <i>C. merolae</i> possesses five isozymes of <span>l</span>-LDH. The results of previous transcriptome analysis suggested that <span>l</span>-LDHs are the key enzymes in the lactic fermentation of <i>C. merolae</i>. However, their biochemical characteristics, such as catalytic efficiency and tolerance for metabolites, have not been revealed. We compared the amino acid sequences of <i>C. merolae</i> <span>l</span>-LDHs (<i>Cm</i>LDHs) and characterized one of the isozymes, <i>Cm</i>LDH1. BLAST analysis revealed that the sequence similarities of <i>Cm</i>LDH1 and the other isozymes were above 99%. The catalytic efficiency of <i>Cm</i>LDH1 under its optimum conditions was higher than those of <span>l</span>-LDHs of other organisms. ATP decreased the affinity and turnover number of <i>Cm</i>LDH1 for NADH. These findings contribute to understanding the characteristics of <span>l</span>-LDHs of microalgae and the regulatory mechanisms of lactic fermentation in <i>C. merolae</i>.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142180312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome-wide association scan reveals the reinforcing effect of nano-potassium in improving the yield and quality of salt-stressed barley via enhancing the antioxidant defense system. 全基因组关联扫描揭示了纳米钾通过增强抗氧化防御系统在提高盐胁迫大麦产量和品质方面的强化作用。
IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-09 DOI: 10.1007/s11103-024-01489-y
Samar G Thabet, Fatmah Ahmed Safhi, Andreas Börner, Ahmad M Alqudah

Salinity is one of the major environmental factor that can greatly impact the growth, development, and productivity of barley. Our study aims to detect the natural phenotypic variation of morphological and physiological traits under both salinity and potassium nanoparticles (n-K) treatment. In addition to understanding the genetic basis of salt tolerance in barley is a critical aspect of plant breeding for stress resilience. Therefore, a foliar application of n-K was applied at the vegetative stage for 138 barley accessions to enhance salt stress resilience. Interestingly, barley accessions showed high significant increment under n-K treatment compared to saline soil. Based on genome-wide association studies (GWAS) analysis, causative alleles /reliable genomic regions were discovered underlying improved salt resilience through the application of potassium nanoparticles. On chromosome 2H, a highly significant QTN marker (A:C) was located at position 36,665,559 bp which is associated with APX, AsA, GSH, GS, WGS, and TKW under n-K treatment. Inside this region, our candidate gene is HORVU.MOREX.r3.2HG0111480 that annotated as NAC domain protein. Allelic variation detected that the accessions carrying C allele showed higher antioxidants (APX, AsA, and GSH) and barley yield traits (GS, WGS, and TKW) than the accessions carrying A allele, suggesting a positive selection of the accessions carrying C allele that could be used to develop barley varieties with improved salt stress resilience.

盐度是严重影响大麦生长、发育和产量的主要环境因素之一。我们的研究旨在检测大麦在盐度和纳米钾粒子(n-K)处理下形态和生理性状的自然表型变异。此外,了解大麦耐盐性的遗传基础也是植物抗逆育种的一个重要方面。因此,在 138 个大麦品种的无性期叶面喷施 n-K,以增强其抗盐胁迫能力。有趣的是,与盐碱土壤相比,大麦品种在 n-K 处理下表现出较高的显著增殖率。基于全基因组关联研究(GWAS)分析,发现了应用纳米钾粒子提高抗盐能力的致病等位基因/可靠基因组区域。在 2H 染色体上,一个高度显著的 QTN 标记(A:C)位于 36,665,559 bp 位置,它与 n-K 处理下的 APX、ASA、GSH、GS、WGS 和 TKW 相关。在该区域内,我们的候选基因是 HORVU.MOREX.r3.2HG0111480,其注释为 NAC 结构域蛋白。通过等位基因变异发现,携带 C 等位基因的品种比携带 A 等位基因的品种表现出更高的抗氧化剂(APX、AsA 和 GSH)和大麦产量性状(GS、WGS 和 TKW),这表明携带 C 等位基因的品种具有正向选择性,可用于培育抗盐胁迫能力更强的大麦品种。
{"title":"Genome-wide association scan reveals the reinforcing effect of nano-potassium in improving the yield and quality of salt-stressed barley via enhancing the antioxidant defense system.","authors":"Samar G Thabet, Fatmah Ahmed Safhi, Andreas Börner, Ahmad M Alqudah","doi":"10.1007/s11103-024-01489-y","DOIUrl":"https://doi.org/10.1007/s11103-024-01489-y","url":null,"abstract":"<p><p>Salinity is one of the major environmental factor that can greatly impact the growth, development, and productivity of barley. Our study aims to detect the natural phenotypic variation of morphological and physiological traits under both salinity and potassium nanoparticles (n-K) treatment. In addition to understanding the genetic basis of salt tolerance in barley is a critical aspect of plant breeding for stress resilience. Therefore, a foliar application of n-K was applied at the vegetative stage for 138 barley accessions to enhance salt stress resilience. Interestingly, barley accessions showed high significant increment under n-K treatment compared to saline soil. Based on genome-wide association studies (GWAS) analysis, causative alleles /reliable genomic regions were discovered underlying improved salt resilience through the application of potassium nanoparticles. On chromosome 2H, a highly significant QTN marker (A:C) was located at position 36,665,559 bp which is associated with APX, AsA, GSH, GS, WGS, and TKW under n-K treatment. Inside this region, our candidate gene is HORVU.MOREX.r3.2HG0111480 that annotated as NAC domain protein. Allelic variation detected that the accessions carrying C allele showed higher antioxidants (APX, AsA, and GSH) and barley yield traits (GS, WGS, and TKW) than the accessions carrying A allele, suggesting a positive selection of the accessions carrying C allele that could be used to develop barley varieties with improved salt stress resilience.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Molecular identification of GAPDHs in cassava highlights the antagonism of MeGAPCs and MeATG8s in plant disease resistance against cassava bacterial blight. 更正:木薯中 GAPDHs 的分子鉴定突显了 MeGAPCs 和 MeATG8s 在植物抗木薯细菌性枯萎病中的拮抗作用。
IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-05 DOI: 10.1007/s11103-024-01492-3
Hongqiu Zeng, Yanwei Xie, Guoyin Liu, Daozhe Lin, Chaozu He, Haitao Shi
{"title":"Correction to: Molecular identification of GAPDHs in cassava highlights the antagonism of MeGAPCs and MeATG8s in plant disease resistance against cassava bacterial blight.","authors":"Hongqiu Zeng, Yanwei Xie, Guoyin Liu, Daozhe Lin, Chaozu He, Haitao Shi","doi":"10.1007/s11103-024-01492-3","DOIUrl":"https://doi.org/10.1007/s11103-024-01492-3","url":null,"abstract":"","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142133456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A LBD transcription factor from moso bamboo, PheLBD12, regulates plant height in transgenic rice. 毛竹中的一种 LBD 转录因子 PheLBD12 可调节转基因水稻的株高。
IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-03 DOI: 10.1007/s11103-024-01487-0
Min Wu, Yufang Wang, Shunran Zhang, Yan Xiang

The regulation mechanism of bamboo height growth has always been one of the hotspots in developmental biology. In the preliminary work of this project, the function of LBD transcription factor regulating height growth was firstly studied. Here, a gene PheLBD12 regulating height growth was screened. PheLBD12-overexpressing transgenic rice had shorter internodes, less bioactive gibberellic acid (GA3), and were more sensitive to GA3 than wild-type (WT) plants, which implied that PheLBD12 involve in gibberellin (GA) pathway. The transcript levels of OsGA2ox3, that encoding GAs deactivated enzyme, was significantly enhanced in PheLBD12-overexpressing transgenic rice. The transcript levels of OsAP2-39, that directly regulating the expression of EUI1 to reduce GA levels, was also significantly enhanced in PheLBD12-overexpressing transgenic rice. Expectedly, yeast one-hybrid assays, Dual-luciferase reporter assay and EMSAs suggested that PheLBD12 directly interacted with the promoter of OsGA2ox3 and OsAP2-39. Together, our results reveal that PheLBD12 regulates plant height growth by modulating GA catabolism. Through the research of this topic, it enriches the research content of LBD transcription factors and it will theoretically enrich the research content of height growth regulation.

竹子身高生长的调控机制一直是发育生物学研究的热点之一。在本项目的前期工作中,首先研究了LBD转录因子调控竹子高度生长的功能。在此,我们筛选了一个调控高度生长的基因 PheLBD12。与野生型(WT)植株相比,PheLBD12过表达的转基因水稻节间更短,生物活性赤霉素(GA3)更低,对GA3更敏感,这意味着PheLBD12参与了赤霉素(GA)途径。在PheLBD12过表达的转基因水稻中,编码GA失活酶的OsGA2ox3的转录水平显著提高。直接调节 EUI1 表达以降低 GA 水平的 OsAP2-39 的转录水平在 PheLBD12 过表达的转基因水稻中也明显提高。酵母单杂交实验、双荧光素酶报告实验和 EMSAs 结果表明,PheLBD12 直接与 OsGA2ox3 和 OsAP2-39 的启动子相互作用。综上所述,我们的研究结果表明,PheLBD12通过调节GA的分解代谢来调控植物的高度生长。通过本课题的研究,丰富了LBD转录因子的研究内容,也将从理论上丰富高度生长调控的研究内容。
{"title":"A LBD transcription factor from moso bamboo, PheLBD12, regulates plant height in transgenic rice.","authors":"Min Wu, Yufang Wang, Shunran Zhang, Yan Xiang","doi":"10.1007/s11103-024-01487-0","DOIUrl":"10.1007/s11103-024-01487-0","url":null,"abstract":"<p><p>The regulation mechanism of bamboo height growth has always been one of the hotspots in developmental biology. In the preliminary work of this project, the function of LBD transcription factor regulating height growth was firstly studied. Here, a gene PheLBD12 regulating height growth was screened. PheLBD12-overexpressing transgenic rice had shorter internodes, less bioactive gibberellic acid (GA3), and were more sensitive to GA3 than wild-type (WT) plants, which implied that PheLBD12 involve in gibberellin (GA) pathway. The transcript levels of OsGA2ox3, that encoding GAs deactivated enzyme, was significantly enhanced in PheLBD12-overexpressing transgenic rice. The transcript levels of OsAP2-39, that directly regulating the expression of EUI1 to reduce GA levels, was also significantly enhanced in PheLBD12-overexpressing transgenic rice. Expectedly, yeast one-hybrid assays, Dual-luciferase reporter assay and EMSAs suggested that PheLBD12 directly interacted with the promoter of OsGA2ox3 and OsAP2-39. Together, our results reveal that PheLBD12 regulates plant height growth by modulating GA catabolism. Through the research of this topic, it enriches the research content of LBD transcription factors and it will theoretically enrich the research content of height growth regulation.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deciphering physiological and transcriptional mechanisms of maize seed germination. 破译玉米种子萌发的生理和转录机制
IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-30 DOI: 10.1007/s11103-024-01486-1
Yaqi Jie, Wei Wang, Zishan Wu, Zhaobin Ren, Lu Li, Yuyi Zhou, Mingcai Zhang, Zhaohu Li, Fei Yi, Liusheng Duan

Maize is a valuable raw material for feed and food production. Healthy seed germination is important for improving the yield and quality of maize. Seed aging occurs relatively fast in crops and it is a process that delays germination as well as reduces its rate and even causes total loss of seed viability. However, the physiological and transcriptional mechanisms that regulate maize seeds, especially aging seed germination remain unclear. Coronatine (COR) which is a phytotoxin produced by Pseudomonas syringae and a new type of plant growth regulator can effectively regulate plant growth and development, and regulate seed germination. In this study, the physiological and transcriptomic mechanisms of COR-induced maize seed germination under different aging degrees were analyzed. The results showed that 0.001-0.01 μmol/L COR could promote the germination of aging maize seed and the growth of primary roots and shoots. COR treatment increased the content of gibberellins (GA3) and decreased the content of abscisic acid (ABA) in B73 seeds before germination. The result of RNA-seq analysis showed 497 differentially expressed genes in COR treatment compared with the control. Three genes associated with GA biosynthesis (ZmCPPS2, ZmD3, and ZmGA2ox2), and two genes associated with GA signaling transduction (ZmGID1 and ZmBHLH158) were up-regulated. Three genes negatively regulating GA signaling transduction (ZmGRAS48, ZmGRAS54, and Zm00001d033369) and two genes involved in ABA biosynthesis (ZmVP14 and ZmPCO14472) were down-regulated. The physiological test results also showed that the effects of GA and ABA on seed germination were similar to those of high and low-concentration COR, respectively, which indicated that the effect of COR on seed germination may be carried out through GA and ABA pathways. In addition, GO and KEGG analysis suggested that COR is also highly involved in antioxidant enzyme systems and secondary metabolite synthesis to regulate maize seed germination processes. These findings provide a valuable reference for further research on the mechanisms of maize seed germination.

玉米是生产饲料和食品的重要原料。健康的种子萌发对提高玉米的产量和质量非常重要。农作物种子衰老的速度相对较快,这一过程会延迟萌发,降低萌发率,甚至导致种子活力完全丧失。然而,调控玉米种子,尤其是衰老种子萌发的生理和转录机制仍不清楚。冠突散囊菌毒素(COR)是由丁香假单胞菌(Pseudomonas syringae)产生的一种植物毒素,也是一种新型植物生长调节剂,能有效调节植物生长发育,调节种子萌发。本研究分析了不同老化程度下 COR 诱导玉米种子萌发的生理和转录组学机制。结果表明,0.001-0.01 μmol/L COR能促进老化玉米种子的萌发以及主根和芽的生长。COR处理可提高B73种子萌发前赤霉素(GA3)的含量,降低脱落酸(ABA)的含量。RNA-seq分析结果表明,与对照相比,COR处理中有497个差异表达基因。3个与GA生物合成相关的基因(ZmCPPS2、ZmD3和ZmGA2ox2)和2个与GA信号转导相关的基因(ZmGID1和ZmBHLH158)被上调。三个负调控 GA 信号转导的基因(ZmGRAS48、ZmGRAS54 和 Zm00001d033369)和两个参与 ABA 生物合成的基因(ZmVP14 和 ZmPCO14472)被下调。生理测试结果还表明,GA 和 ABA 对种子萌发的影响分别与高浓度和低浓度 COR 的影响相似,这表明 COR 对种子萌发的影响可能是通过 GA 和 ABA 途径进行的。此外,GO和KEGG分析表明,COR还高度参与抗氧化酶系统和次生代谢产物的合成,以调控玉米种子的萌发过程。这些发现为进一步研究玉米种子萌发机理提供了有价值的参考。
{"title":"Deciphering physiological and transcriptional mechanisms of maize seed germination.","authors":"Yaqi Jie, Wei Wang, Zishan Wu, Zhaobin Ren, Lu Li, Yuyi Zhou, Mingcai Zhang, Zhaohu Li, Fei Yi, Liusheng Duan","doi":"10.1007/s11103-024-01486-1","DOIUrl":"https://doi.org/10.1007/s11103-024-01486-1","url":null,"abstract":"<p><p>Maize is a valuable raw material for feed and food production. Healthy seed germination is important for improving the yield and quality of maize. Seed aging occurs relatively fast in crops and it is a process that delays germination as well as reduces its rate and even causes total loss of seed viability. However, the physiological and transcriptional mechanisms that regulate maize seeds, especially aging seed germination remain unclear. Coronatine (COR) which is a phytotoxin produced by Pseudomonas syringae and a new type of plant growth regulator can effectively regulate plant growth and development, and regulate seed germination. In this study, the physiological and transcriptomic mechanisms of COR-induced maize seed germination under different aging degrees were analyzed. The results showed that 0.001-0.01 μmol/L COR could promote the germination of aging maize seed and the growth of primary roots and shoots. COR treatment increased the content of gibberellins (GA<sub>3</sub>) and decreased the content of abscisic acid (ABA) in B73 seeds before germination. The result of RNA-seq analysis showed 497 differentially expressed genes in COR treatment compared with the control. Three genes associated with GA biosynthesis (ZmCPPS2, ZmD3, and ZmGA2ox2), and two genes associated with GA signaling transduction (ZmGID1 and ZmBHLH158) were up-regulated. Three genes negatively regulating GA signaling transduction (ZmGRAS48, ZmGRAS54, and Zm00001d033369) and two genes involved in ABA biosynthesis (ZmVP14 and ZmPCO14472) were down-regulated. The physiological test results also showed that the effects of GA and ABA on seed germination were similar to those of high and low-concentration COR, respectively, which indicated that the effect of COR on seed germination may be carried out through GA and ABA pathways. In addition, GO and KEGG analysis suggested that COR is also highly involved in antioxidant enzyme systems and secondary metabolite synthesis to regulate maize seed germination processes. These findings provide a valuable reference for further research on the mechanisms of maize seed germination.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142110790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decoding the plant clock: a review of mathematical models for the circadian regulatory network. 解码植物时钟:昼夜节律调控网络数学模型综述。
IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-29 DOI: 10.1007/s11103-024-01493-2
Shashank Kumar Singh, Ashutosh Srivastava

Most organisms have evolved specific mechanisms to respond to changes in environmental conditions such as light and temperature over the course of day. These periodic changes in the physiology and behaviour of organisms, referred to as circadian rhythms, are a consequence of intricate molecular mechanisms in the form of transcription and translational feedback loops. The plant circadian regulatory network is a complex web of interconnected feedback loops involving various transcription factors such as CCA1, LHY, PRRs, TOC1, LUX, ELF3, ELF4, RVE8, and more. This network enables plants to adapt and thrive in diverse environmental conditions. It responds to entrainment signals, including light, temperature, and nutrient concentrations and interacts with most of the physiological functions such as flowering, growth and stress response. Mathematical modelling of these gene regulatory networks enables a deeper understanding of not only the function but also the perturbations that may affect the plant growth and function with changing climate. Over the years, numerous mathematical models have been developed to understand the diverse aspects of plant circadian regulation. In this review, we have delved into the systematic development of these models, outlining the model components and refinements over time. We have also highlighted strengths and limitations of each of the models developed so far. Finally, we conclude the review by describing the prospects for investigation and advancement of these models for better understanding of plant circadian regulation.

大多数生物都进化出了特定的机制,以应对一天中光照和温度等环境条件的变化。生物体生理和行为的这些周期性变化被称为昼夜节律,是转录和翻译反馈回路形式的复杂分子机制的结果。植物昼夜节律调控网络是一个由相互关联的反馈回路组成的复杂网络,涉及各种转录因子,如 CCA1、LHY、PRRs、TOC1、LUX、ELF3、ELF4、RVE8 等等。这一网络使植物能够适应各种环境条件并茁壮成长。它对包括光照、温度和养分浓度在内的诱导信号做出反应,并与开花、生长和胁迫反应等大多数生理功能相互作用。通过对这些基因调控网络进行数学建模,不仅可以更深入地了解其功能,还可以了解随着气候的变化可能对植物生长和功能造成的干扰。多年来,人们开发了大量数学模型来理解植物昼夜节律调控的各个方面。在这篇综述中,我们深入探讨了这些模型的系统发展,概述了模型的组成部分和随时间推移的改进。我们还强调了迄今为止开发的每种模型的优势和局限性。最后,我们对这些模型的研究和发展前景进行了总结,以便更好地理解植物昼夜节律调控。
{"title":"Decoding the plant clock: a review of mathematical models for the circadian regulatory network.","authors":"Shashank Kumar Singh, Ashutosh Srivastava","doi":"10.1007/s11103-024-01493-2","DOIUrl":"https://doi.org/10.1007/s11103-024-01493-2","url":null,"abstract":"<p><p>Most organisms have evolved specific mechanisms to respond to changes in environmental conditions such as light and temperature over the course of day. These periodic changes in the physiology and behaviour of organisms, referred to as circadian rhythms, are a consequence of intricate molecular mechanisms in the form of transcription and translational feedback loops. The plant circadian regulatory network is a complex web of interconnected feedback loops involving various transcription factors such as CCA1, LHY, PRRs, TOC1, LUX, ELF3, ELF4, RVE8, and more. This network enables plants to adapt and thrive in diverse environmental conditions. It responds to entrainment signals, including light, temperature, and nutrient concentrations and interacts with most of the physiological functions such as flowering, growth and stress response. Mathematical modelling of these gene regulatory networks enables a deeper understanding of not only the function but also the perturbations that may affect the plant growth and function with changing climate. Over the years, numerous mathematical models have been developed to understand the diverse aspects of plant circadian regulation. In this review, we have delved into the systematic development of these models, outlining the model components and refinements over time. We have also highlighted strengths and limitations of each of the models developed so far. Finally, we conclude the review by describing the prospects for investigation and advancement of these models for better understanding of plant circadian regulation.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142110791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leaf rolling detection in maize under complex environments using an improved deep learning method. 利用改进的深度学习方法检测复杂环境下的玉米叶片卷动。
IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-23 DOI: 10.1007/s11103-024-01491-4
Yuanhao Wang, Xuebin Jing, Yonggang Gao, Xiaohong Han, Cheng Zhao, Weihua Pan

Leaf rolling is a common adaptive response that plants have evolved to counteract the detrimental effects of various environmental stresses. Gaining insight into the mechanisms underlying leaf rolling alterations presents researchers with a unique opportunity to enhance stress tolerance in crops exhibiting leaf rolling, such as maize. In order to achieve a more profound understanding of leaf rolling, it is imperative to ascertain the occurrence and extent of this phenotype. While traditional manual leaf rolling detection is slow and laborious, research into high-throughput methods for detecting leaf rolling within our investigation scope remains limited. In this study, we present an approach for detecting leaf rolling in maize using the YOLOv8 model. Our method, LRD-YOLO, integrates two significant improvements: a Convolutional Block Attention Module to augment feature extraction capabilities, and a Deformable ConvNets v2 to enhance adaptability to changes in target shape and scale. Through experiments on a dataset encompassing severe occlusion, variations in leaf scale and shape, and complex background scenarios, our approach achieves an impressive mean average precision of 81.6%, surpassing current state-of-the-art methods. Furthermore, the LRD-YOLO model demands only 8.0 G floating point operations and the parameters of 3.48 M. We have proposed an innovative method for leaf rolling detection in maize, and experimental outcomes showcase the efficacy of LRD-YOLO in precisely detecting leaf rolling in complex scenarios while maintaining real-time inference speed.

卷叶是植物进化出的一种常见的适应性反应,用于抵御各种环境胁迫的有害影响。深入了解卷叶变化的内在机制为研究人员提供了一个独特的机会,以提高玉米等表现出卷叶现象的作物的抗逆性。为了更深入地了解卷叶现象,必须确定这种表型的发生和程度。传统的人工卷叶检测既慢又费力,而在我们的调查范围内,对高通量卷叶检测方法的研究仍然有限。在本研究中,我们提出了一种利用 YOLOv8 模型检测玉米卷叶的方法。我们的方法(LRD-YOLO)集成了两项重大改进:卷积块注意力模块(Convolutional Block Attention Module)可增强特征提取能力;可变形 ConvNets v2 可增强对目标形状和尺度变化的适应性。通过对包含严重遮挡、叶片尺度和形状变化以及复杂背景情况的数据集进行实验,我们的方法达到了令人印象深刻的 81.6% 的平均精度,超过了目前最先进的方法。此外,LRD-YOLO 模型只需要 8.0 G 浮点运算和 3.48 M 的参数。我们提出了一种创新的玉米卷叶检测方法,实验结果展示了 LRD-YOLO 在复杂场景中精确检测卷叶的功效,同时保持了实时推理速度。
{"title":"Leaf rolling detection in maize under complex environments using an improved deep learning method.","authors":"Yuanhao Wang, Xuebin Jing, Yonggang Gao, Xiaohong Han, Cheng Zhao, Weihua Pan","doi":"10.1007/s11103-024-01491-4","DOIUrl":"10.1007/s11103-024-01491-4","url":null,"abstract":"<p><p>Leaf rolling is a common adaptive response that plants have evolved to counteract the detrimental effects of various environmental stresses. Gaining insight into the mechanisms underlying leaf rolling alterations presents researchers with a unique opportunity to enhance stress tolerance in crops exhibiting leaf rolling, such as maize. In order to achieve a more profound understanding of leaf rolling, it is imperative to ascertain the occurrence and extent of this phenotype. While traditional manual leaf rolling detection is slow and laborious, research into high-throughput methods for detecting leaf rolling within our investigation scope remains limited. In this study, we present an approach for detecting leaf rolling in maize using the YOLOv8 model. Our method, LRD-YOLO, integrates two significant improvements: a Convolutional Block Attention Module to augment feature extraction capabilities, and a Deformable ConvNets v2 to enhance adaptability to changes in target shape and scale. Through experiments on a dataset encompassing severe occlusion, variations in leaf scale and shape, and complex background scenarios, our approach achieves an impressive mean average precision of 81.6%, surpassing current state-of-the-art methods. Furthermore, the LRD-YOLO model demands only 8.0 G floating point operations and the parameters of 3.48 M. We have proposed an innovative method for leaf rolling detection in maize, and experimental outcomes showcase the efficacy of LRD-YOLO in precisely detecting leaf rolling in complex scenarios while maintaining real-time inference speed.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11343899/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural and functional analysis of plant ELO-like elongase for fatty acid elongation. 用于脂肪酸伸长的植物 ELO 样伸长酶的结构和功能分析。
IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-22 DOI: 10.1007/s11103-024-01490-5
Dauenpen Meesapyodsuk, Kaiwen Sun, Xiao Qiu

ELO-like elongase is a condensing enzyme elongating long chain fatty acids in eukaryotes. Eranthis hyemalis ELO-like elongase (EhELO1) is the first higher plant ELO-type elongase that is highly active in elongating a wide range of polyunsaturated fatty acids (PUFAs) and some monounsaturated fatty acids (MUFAs). This study attempted using domain swapping and site-directed mutagenesis of EhELO1 and EhELO2, a close homologue of EhELO1 but with no apparent elongase activity, to elucidate the structural determinants critical for catalytic activity and substrate specificity. Domain swapping analysis of the two showed that subdomain B in the C-terminal half of EhELO1 is essential for MUFA elongation while subdomain C in the C-terminal half of EhELO1 is essential for both PUFA and MUFA elongations, implying these regions are critical in defining the architecture of the substrate tunnel for substrate specificity. Site-directed mutagenesis showed that the glycine at position 220 in the subdomain C plays a key role in differentiating the function of the two elongases. In addition, valine at 161 and cysteine at 165 in subdomain A also play critical roles in defining the architecture of the deep substrate tunnel, thereby contributing significantly to the acceptance of, and interaction with primer substrates.

ELO 样伸长酶是真核生物中伸长长链脂肪酸的一种缩合酶。Eranthis hyemalis ELO 样伸长酶(EhELO1)是第一个高等植物 ELO 型伸长酶,在伸长多种多不饱和脂肪酸(PUFA)和一些单不饱和脂肪酸(MUFA)方面具有很高的活性。本研究试图通过对 EhELO1 和 EhELO2(EhELO1 的近源同源物,但没有明显的伸长酶活性)进行结构域交换和定点突变,来阐明对催化活性和底物特异性至关重要的结构决定因素。对二者进行的结构域交换分析表明,EhELO1 C端半部分的子域B对MUFA的伸长至关重要,而EhELO1 C端半部分的子域C对PUFA和MUFA的伸长都至关重要,这意味着这些区域对底物特异性底物隧道结构的确定至关重要。定点突变显示,亚域 C 中 220 位的甘氨酸在区分两种伸长酶的功能方面起着关键作用。此外,亚域 A 中 161 位的缬氨酸和 165 位的半胱氨酸在确定深层底物隧道的结构方面也起着关键作用,从而对底物的接受和与底物的相互作用做出了重要贡献。
{"title":"Structural and functional analysis of plant ELO-like elongase for fatty acid elongation.","authors":"Dauenpen Meesapyodsuk, Kaiwen Sun, Xiao Qiu","doi":"10.1007/s11103-024-01490-5","DOIUrl":"10.1007/s11103-024-01490-5","url":null,"abstract":"<p><p>ELO-like elongase is a condensing enzyme elongating long chain fatty acids in eukaryotes. Eranthis hyemalis ELO-like elongase (EhELO1) is the first higher plant ELO-type elongase that is highly active in elongating a wide range of polyunsaturated fatty acids (PUFAs) and some monounsaturated fatty acids (MUFAs). This study attempted using domain swapping and site-directed mutagenesis of EhELO1 and EhELO2, a close homologue of EhELO1 but with no apparent elongase activity, to elucidate the structural determinants critical for catalytic activity and substrate specificity. Domain swapping analysis of the two showed that subdomain B in the C-terminal half of EhELO1 is essential for MUFA elongation while subdomain C in the C-terminal half of EhELO1 is essential for both PUFA and MUFA elongations, implying these regions are critical in defining the architecture of the substrate tunnel for substrate specificity. Site-directed mutagenesis showed that the glycine at position 220 in the subdomain C plays a key role in differentiating the function of the two elongases. In addition, valine at 161 and cysteine at 165 in subdomain A also play critical roles in defining the architecture of the deep substrate tunnel, thereby contributing significantly to the acceptance of, and interaction with primer substrates.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142018284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Plant Molecular Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1