首页 > 最新文献

Plant Molecular Biology最新文献

英文 中文
OsIPK1 frameshift mutations disturb phosphorus homeostasis and impair starch synthesis during grain filling in rice. OsIPK1 易位突变扰乱了水稻谷粒灌浆期的磷平衡并影响淀粉合成。
IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-22 DOI: 10.1007/s11103-024-01488-z
Lina Wang, Jing Cui, Ning Zhang, Xueqin Wang, Jingping Su, María Pilar Vallés, Shian Wu, Wei Yao, Xiwen Chen, Defu Chen

Inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IPK1) catalyzes the final step in phytic acid (InsP6) synthesis. In this study, the effects of OsIPK1 mutations on InsP6 synthesis, grain filling and their underlying mechanisms were investigated. Seven gRNAs were designed to disrupt the OsIPK1 gene via CRISPR/CAS9 system. Only 4 of them generated 29 individual insertion or deletion T0 plants, in which nine biallelic or heterozygous genotypes were identified. Segregation analysis revealed that OsIPK1 frameshift mutants are homozygous lethality. The biallelic and heterozygous frameshift mutants exhibited significant reduction in yield-related traits, particularly in the seed-setting rate and yield per plant. Despite a notable decline in pollen viability, the male and female gametes had comparable transmission rates to their progenies in the mutants. A significant number of the filling-aborted (FA) grains was observed in mature grains of these heterozygous frameshift mutants. These grains exhibited a nearly complete blockage of InsP6 synthesis, resulting in a pronounced increase in Pi content. In contrast, a slight decline in InsP6 content was observed in the plump grains. During the filling stage, owing to the excessive accumulation of Pi, starch synthesis was significantly impaired, and the endosperm development-specific gene expression was nearly abolished. Consistently, the activity of whereas AGPase, a key enzyme in starch synthesis, was significantly decreased and Pi transporter gene expression was upregulated in the FA grains. Taken together, these results demonstrate that OsIPK1 frameshift mutations result in excessive Pi accumulation, decreased starch synthesis, and ultimately leading to lower yields in rice.

肌醇 1,3,4,5,6-五磷酸 2-激酶(IPK1)催化植酸(InsP6)合成的最后一步。本研究调查了 OsIPK1 突变对 InsP6 合成、谷粒灌浆的影响及其内在机制。通过 CRISPR/CAS9 系统设计了 7 个 gRNA 来破坏 OsIPK1 基因。其中只有4个基因产生了29株插入或缺失T0植株,在这些植株中发现了9个双杂合子或杂合子基因型。分离分析表明,OsIPK1缺框突变体具有同源致死性。双拷贝和杂合子缺框突变体的产量相关性状显著降低,尤其是结籽率和单株产量。尽管花粉活力明显下降,但在突变体中,雄配子和雌配子对后代的传播率相当。在这些杂合子缺框突变体的成熟谷粒中,观察到了大量的填充畸变(FA)谷粒。这些谷粒几乎完全阻断了 InsP6 的合成,导致 Pi 含量明显增加。相比之下,在丰满的谷粒中观察到 InsP6 含量略有下降。在灌浆阶段,由于 Pi 的过度积累,淀粉合成明显受阻,胚乳发育特异基因的表达几乎消失。同样,FA 谷粒中淀粉合成的关键酶--AGP 酶的活性明显降低,Pi 转运体基因表达上调。综上所述,这些结果表明 OsIPK1 易位突变会导致 Pi 积累过多、淀粉合成减少,最终导致水稻产量降低。
{"title":"OsIPK1 frameshift mutations disturb phosphorus homeostasis and impair starch synthesis during grain filling in rice.","authors":"Lina Wang, Jing Cui, Ning Zhang, Xueqin Wang, Jingping Su, María Pilar Vallés, Shian Wu, Wei Yao, Xiwen Chen, Defu Chen","doi":"10.1007/s11103-024-01488-z","DOIUrl":"10.1007/s11103-024-01488-z","url":null,"abstract":"<p><p>Inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IPK1) catalyzes the final step in phytic acid (InsP<sub>6</sub>) synthesis. In this study, the effects of OsIPK1 mutations on InsP<sub>6</sub> synthesis, grain filling and their underlying mechanisms were investigated. Seven gRNAs were designed to disrupt the OsIPK1 gene via CRISPR/CAS9 system. Only 4 of them generated 29 individual insertion or deletion T<sub>0</sub> plants, in which nine biallelic or heterozygous genotypes were identified. Segregation analysis revealed that OsIPK1 frameshift mutants are homozygous lethality. The biallelic and heterozygous frameshift mutants exhibited significant reduction in yield-related traits, particularly in the seed-setting rate and yield per plant. Despite a notable decline in pollen viability, the male and female gametes had comparable transmission rates to their progenies in the mutants. A significant number of the filling-aborted (FA) grains was observed in mature grains of these heterozygous frameshift mutants. These grains exhibited a nearly complete blockage of InsP<sub>6</sub> synthesis, resulting in a pronounced increase in Pi content. In contrast, a slight decline in InsP<sub>6</sub> content was observed in the plump grains. During the filling stage, owing to the excessive accumulation of Pi, starch synthesis was significantly impaired, and the endosperm development-specific gene expression was nearly abolished. Consistently, the activity of whereas AGPase, a key enzyme in starch synthesis, was significantly decreased and Pi transporter gene expression was upregulated in the FA grains. Taken together, these results demonstrate that OsIPK1 frameshift mutations result in excessive Pi accumulation, decreased starch synthesis, and ultimately leading to lower yields in rice.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142018283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptome analysis of Sesuvium portulacastrum L. uncovers key genes and pathways involved in root formation in response to low-temperature stress. Sesuvium portulacastrum L.的转录组分析揭示了低温胁迫下根系形成所涉及的关键基因和途径。
IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-21 DOI: 10.1007/s11103-024-01482-5
Jingyi Yang, Shiyu Lin, Yinghan Shen, Jingtao Ye, Xiamin Jiang, Sheng Li, Maowang Jiang

Sesuvium portulacastrum L., a perennial facultative halophyte, is extensively distributed across tropical and subtropical coastal regions. Its limited cold tolerance significantly impacts both the productivity and the geographical distribution of this species in higher-latitude areas. In this study, we employed RNA-Seq technology to delineate the transcriptomic alterations in Sesuvium plants exposed to low temperatures, thus advancing our comprehension of the molecular underpinnings of this physiological adaptation and root formation. Our findings demonstrated differential expression of 10,805, 16,389, and 10,503 genes in the low versus moderate temperature (LT vs. MT), moderate versus high temperature (MT vs. HT), and low versus high temperature (LT vs. HT) comparative analyses, respectively. Notably, the gene categories "structural molecule activity", "ribosome biogenesis", and "ribosome" were particularly enriched among the LT vs. HT-specific differentially expressed genes (DEGs). When synthesizing the insights from these three comparative studies, the principal pathways associated with the cold response mechanism were identified as "carbon fixation in photosynthetic organisms", "starch and sucrose metabolism", "plant hormone signal transduction", "glycolysis/gluconeogenesis", and "photosynthesis". In addition, we elucidated the involvement of auxin signaling pathways, adventitious root formation (ARF), lateral root formation (LRF), and novel genes associated with shoot system development in root formation. Subsequently, we constructed a network diagram to investigate the interplay between hormone levels and pivotal genes, thereby clarifying the regulatory pathways of plant root formation under low-temperature stress and isolating key genes instrumental in root development. This study has provided critical insights into the molecular mechanisms that facilitate the adaptation to cold stress and root formation in S. portulacastrum.

Sesuvium portulacastrum L.是一种多年生半生植物,广泛分布于热带和亚热带沿海地区。其有限的耐寒性严重影响了该物种在高纬度地区的生产力和地理分布。在这项研究中,我们采用 RNA-Seq 技术描述了暴露于低温环境中的 Sesuvium 植物的转录组变化,从而加深了我们对这种生理适应和根系形成的分子基础的理解。我们的研究结果表明,在低温与中温(LT vs. MT)、中温与高温(MT vs. HT)以及低温与高温(LT vs. HT)的比较分析中,分别有 10805、16389 和 10503 个基因的表达存在差异。值得注意的是,"结构分子活性"、"核糖体生物发生 "和 "核糖体 "等基因类别在低温与高温特异性差异表达基因(DEGs)中特别富集。综合上述三项比较研究的结果,与低温响应机制相关的主要途径被确定为 "光合生物的碳固定"、"淀粉和蔗糖代谢"、"植物激素信号转导"、"糖酵解/糖酮生成 "和 "光合作用"。此外,我们还阐明了参与根形成的辅助素信号通路、不定根形成(ARF)、侧根形成(LRF)以及与芽系统发育相关的新基因。随后,我们构建了一个网络图来研究激素水平与关键基因之间的相互作用,从而阐明了低温胁迫下植物根形成的调控途径,并分离出了根发育的关键基因。这项研究对促进 S. portulacastrum 适应低温胁迫和根形成的分子机制提供了重要启示。
{"title":"Transcriptome analysis of Sesuvium portulacastrum L. uncovers key genes and pathways involved in root formation in response to low-temperature stress.","authors":"Jingyi Yang, Shiyu Lin, Yinghan Shen, Jingtao Ye, Xiamin Jiang, Sheng Li, Maowang Jiang","doi":"10.1007/s11103-024-01482-5","DOIUrl":"https://doi.org/10.1007/s11103-024-01482-5","url":null,"abstract":"<p><p>Sesuvium portulacastrum L., a perennial facultative halophyte, is extensively distributed across tropical and subtropical coastal regions. Its limited cold tolerance significantly impacts both the productivity and the geographical distribution of this species in higher-latitude areas. In this study, we employed RNA-Seq technology to delineate the transcriptomic alterations in Sesuvium plants exposed to low temperatures, thus advancing our comprehension of the molecular underpinnings of this physiological adaptation and root formation. Our findings demonstrated differential expression of 10,805, 16,389, and 10,503 genes in the low versus moderate temperature (LT vs. MT), moderate versus high temperature (MT vs. HT), and low versus high temperature (LT vs. HT) comparative analyses, respectively. Notably, the gene categories \"structural molecule activity\", \"ribosome biogenesis\", and \"ribosome\" were particularly enriched among the LT vs. HT-specific differentially expressed genes (DEGs). When synthesizing the insights from these three comparative studies, the principal pathways associated with the cold response mechanism were identified as \"carbon fixation in photosynthetic organisms\", \"starch and sucrose metabolism\", \"plant hormone signal transduction\", \"glycolysis/gluconeogenesis\", and \"photosynthesis\". In addition, we elucidated the involvement of auxin signaling pathways, adventitious root formation (ARF), lateral root formation (LRF), and novel genes associated with shoot system development in root formation. Subsequently, we constructed a network diagram to investigate the interplay between hormone levels and pivotal genes, thereby clarifying the regulatory pathways of plant root formation under low-temperature stress and isolating key genes instrumental in root development. This study has provided critical insights into the molecular mechanisms that facilitate the adaptation to cold stress and root formation in S. portulacastrum.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142018285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The N-region sequence context impacts the chloroplast import efficiency of multi-TMD protein. N区序列上下文影响多TMD蛋白的叶绿体导入效率。
IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-02 DOI: 10.1007/s11103-024-01485-2
Namitha Nayak, Rajesh Mehrotra, Sandhya Mehrotra

Targeting heterologous multi-transmembrane domain (TMD) proteins to plant chloroplasts requires sequences in addition to the chloroplast transit peptide (cTP). The N-terminal domain (N-region), located C-terminal to the cTP in chloroplast inner envelope membrane proteins, is an essential region for import. However, it was unclear if the N-region functions solely as a spacer sequence to facilitate cTP access or if it plays an active role in the import process. This study addresses the N-region's role by using combinations of cTPs and N-regions from Arabidopsis chloroplast inner envelope membrane proteins to direct the cyanobacterial protein SbtA to the chloroplast. We find that the sequence context of the N-region affects the chloroplast import efficiency of SbtA, with particular sequences mis-targeting the protein to different cellular sub-compartments. Additionally, specific cTP and N-region pairs exhibit varying targeting efficiencies for different heterologous proteins. Substituting individual N-region motifs did not significantly alter the chloroplast targeting efficiency of a particular cTP and N-region pair. We conclude that the N-region exhibits contextual functioning and potentially functional redundancy in motifs.

将异源多跨膜结构域(TMD)蛋白质靶向植物叶绿体需要叶绿体转运肽(cTP)以外的序列。N-末端结构域(N-区域)位于叶绿体内包膜蛋白质 cTP 的 C-末端,是导入的重要区域。然而,目前还不清楚 N 区是仅仅作为一个间隔序列来促进 cTP 的进入,还是在导入过程中发挥着积极作用。本研究利用拟南芥叶绿体内包膜蛋白质中的 cTP 和 N 区的组合来引导蓝藻蛋白质 SbtA 进入叶绿体,从而探讨 N 区的作用。我们发现,N区的序列上下文会影响SbtA的叶绿体导入效率,特定的序列会将蛋白质错误地定向到不同的细胞亚区。此外,特定的 cTP 和 N 区对不同的异源蛋白表现出不同的靶向效率。替换单个 N 区主题并不会显著改变特定 cTP 和 N 区对的叶绿体靶向效率。我们的结论是,N-区域具有上下文功能和潜在的功能冗余。
{"title":"The N-region sequence context impacts the chloroplast import efficiency of multi-TMD protein.","authors":"Namitha Nayak, Rajesh Mehrotra, Sandhya Mehrotra","doi":"10.1007/s11103-024-01485-2","DOIUrl":"10.1007/s11103-024-01485-2","url":null,"abstract":"<p><p>Targeting heterologous multi-transmembrane domain (TMD) proteins to plant chloroplasts requires sequences in addition to the chloroplast transit peptide (cTP). The N-terminal domain (N-region), located C-terminal to the cTP in chloroplast inner envelope membrane proteins, is an essential region for import. However, it was unclear if the N-region functions solely as a spacer sequence to facilitate cTP access or if it plays an active role in the import process. This study addresses the N-region's role by using combinations of cTPs and N-regions from Arabidopsis chloroplast inner envelope membrane proteins to direct the cyanobacterial protein SbtA to the chloroplast. We find that the sequence context of the N-region affects the chloroplast import efficiency of SbtA, with particular sequences mis-targeting the protein to different cellular sub-compartments. Additionally, specific cTP and N-region pairs exhibit varying targeting efficiencies for different heterologous proteins. Substituting individual N-region motifs did not significantly alter the chloroplast targeting efficiency of a particular cTP and N-region pair. We conclude that the N-region exhibits contextual functioning and potentially functional redundancy in motifs.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141875605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
1-Butanol treatment enhances drought stress tolerance in Arabidopsis thaliana. 1-丁醇处理增强拟南芥对干旱胁迫的耐受性
IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-18 DOI: 10.1007/s11103-024-01479-0
Thi Nhu Quynh Do, Daisuke Todaka, Maho Tanaka, Satoshi Takahashi, Junko Ishida, Kaori Sako, Atsushi J Nagano, Yumiko Takebayashi, Yuri Kanno, Masanori Okamoto, Xuan Hoi Pham, Motoaki Seki

Abiotic stress is a major factor affecting crop productivity. Chemical priming is a promising strategy to enhance tolerance to abiotic stress. In this study, we evaluated the use of 1-butanol as an effectual strategy to enhance drought stress tolerance in Arabidopsis thaliana. We first demonstrated that, among isopropanol, methanol, 1-butanol, and 2-butanol, pretreatment with 1-butanol was the most effective for enhancing drought tolerance. We tested the plants with a range of 1-butanol concentrations (0, 10, 20, 30, 40, and 50 mM) and further determined that 20 mM was the optimal concentration of 1-butanol that enhanced drought tolerance without compromising plant growth. Physiological tests showed that the enhancement of drought tolerance by 1-butanol pretreatment was associated with its stimulation of stomatal closure and improvement of leaf water retention. RNA-sequencing analysis revealed the differentially expressed genes (DEGs) between water- and 1-butanol-pretreated plants. The DEGs included genes involved in oxidative stress response processes. The DEGs identified here partially overlapped with those of ethanol-treated plants. Taken together, the results show that 1-butanol is a novel chemical priming agent that effectively enhances drought stress tolerance in Arabidopsis plants, and provide insights into the molecular mechanisms of alcohol-mediated abiotic stress tolerance.

非生物胁迫是影响作物产量的一个主要因素。化学引诱是提高对非生物胁迫耐受性的一种有前途的策略。在本研究中,我们评估了使用 1-丁醇作为增强拟南芥干旱胁迫耐受性的有效策略。我们首先证明,在异丙醇、甲醇、1-丁醇和2-丁醇中,用1-丁醇预处理对提高抗旱性最有效。我们用一系列 1-丁醇浓度(0、10、20、30、40 和 50 毫摩尔)对植物进行了测试,并进一步确定 20 毫摩尔是在不影响植物生长的情况下增强耐旱性的最佳 1-丁醇浓度。生理测试表明,1-丁醇预处理对耐旱性的增强与其刺激气孔关闭和改善叶片保水性有关。RNA 序列分析揭示了水处理植物和 1-丁醇预处理植物之间的差异表达基因(DEGs)。这些 DEGs 包括参与氧化应激反应过程的基因。所发现的 DEGs 与乙醇处理植物的 DEGs 部分重叠。综上所述,研究结果表明,1-丁醇是一种新型化学诱导剂,能有效增强拟南芥植物的干旱胁迫耐受性,并为了解酒精介导的非生物胁迫耐受性的分子机制提供了见解。
{"title":"1-Butanol treatment enhances drought stress tolerance in Arabidopsis thaliana.","authors":"Thi Nhu Quynh Do, Daisuke Todaka, Maho Tanaka, Satoshi Takahashi, Junko Ishida, Kaori Sako, Atsushi J Nagano, Yumiko Takebayashi, Yuri Kanno, Masanori Okamoto, Xuan Hoi Pham, Motoaki Seki","doi":"10.1007/s11103-024-01479-0","DOIUrl":"10.1007/s11103-024-01479-0","url":null,"abstract":"<p><p>Abiotic stress is a major factor affecting crop productivity. Chemical priming is a promising strategy to enhance tolerance to abiotic stress. In this study, we evaluated the use of 1-butanol as an effectual strategy to enhance drought stress tolerance in Arabidopsis thaliana. We first demonstrated that, among isopropanol, methanol, 1-butanol, and 2-butanol, pretreatment with 1-butanol was the most effective for enhancing drought tolerance. We tested the plants with a range of 1-butanol concentrations (0, 10, 20, 30, 40, and 50 mM) and further determined that 20 mM was the optimal concentration of 1-butanol that enhanced drought tolerance without compromising plant growth. Physiological tests showed that the enhancement of drought tolerance by 1-butanol pretreatment was associated with its stimulation of stomatal closure and improvement of leaf water retention. RNA-sequencing analysis revealed the differentially expressed genes (DEGs) between water- and 1-butanol-pretreated plants. The DEGs included genes involved in oxidative stress response processes. The DEGs identified here partially overlapped with those of ethanol-treated plants. Taken together, the results show that 1-butanol is a novel chemical priming agent that effectively enhances drought stress tolerance in Arabidopsis plants, and provide insights into the molecular mechanisms of alcohol-mediated abiotic stress tolerance.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141634215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disrupted H2 synthesis combined with methyl viologen treatment inhibits photosynthetic electron flow to synergistically enhance glycogen accumulation in the cyanobacterium Synechocystis sp. PCC 6803. 中断 H2 合成与甲基紫精处理相结合,可抑制光合电子流,从而协同促进蓝藻 Synechocystis sp.
IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-18 DOI: 10.1007/s11103-024-01484-3
Nannaphat Sukkasam, Janine Kaewbai-Ngam, Jidapa Leksingto, Pichaya In-Na, Kasidit Nootong, Aran Incharoensakdi, Steven J Hallam, Tanakarn Monshupanee

Under nitrogen deprivation (-N), cyanobacterium Synechocystis sp. PCC 6803 exhibits growth arrest, reduced protein content, and remarkably increased glycogen accumulation. However, producing glycogen under this condition requires a two-step process with cell transfer from normal to -N medium. Metabolic engineering and chemical treatment for rapid glycogen accumulation can bypass the need for two-step cultivation. For example, recent studies indicate that individually disrupting hydrogen (H2) or poly(3-hydroxybutyrate) (PHB) synthesis, or treatment with methyl viologen (MV), effectively increases glycogen accumulation in Synechocystis. Here we explore the effects of disrupted H2 or poly(3-hydroxybutyrate) synthesis, together with MV treatment to on enhanced glycogen accumulation in Synechocystis grown in normal medium. Wild-type cells without MV treatment exhibited low glycogen content of less than 6% w/w dry weight (DW). Compared with wild type, disrupting PHB synthesis combined with MV treatment did not increase glycogen content. Disrupted H₂ production without MV treatment yielded up to 11% w/w DW glycogen content. Interestingly, when combined, disrupted H2 production with MV treatment synergistically enhanced glycogen accumulation to 51% and 59% w/w DW within 3 and 7 days, respectively. Metabolomic analysis suggests that MV treatment mediated the conversion of proteins into glycogen. Metabolomic and transcriptional-expression analysis suggests that disrupted H2 synthesis under MV treatment positively influenced glycogen synthesis. Disrupted H₂ synthesis under MV treatment significantly increased NADPH levels. This increased NADPH content potentially contributed to the observed enhancements in antioxidant activity against MV-induced oxidants, O2 evolution, and metabolite substrates levels for glycogen synthesis in normal medium, ultimately leading to enhanced glycogen accumulation in Synechocystis. KEY MESSAGE: Combining disrupted hydrogen-gas synthesis and the treatment by photosynthesis electron-transport inhibitor significantly enhance glycogen production in cyanobacteria.

在缺氮(-N)条件下,蓝藻 Synechocystis sp. PCC 6803 表现出生长停滞、蛋白质含量降低以及糖原积累显著增加。然而,在这种条件下产生糖原需要两个步骤,即细胞从正常培养基转移到-N培养基。通过代谢工程和化学处理来实现糖原的快速积累,可以避免两步培养的需要。例如,最近的研究表明,单独破坏氢(H2)或聚(3-羟基丁酸)(PHB)的合成,或用甲基紫精(MV)处理,都能有效增加糖原在 Synechocystis 中的积累。在此,我们探讨了中断 H2 或聚(3-羟基丁酸)合成以及 MV 处理对增强正常培养基中生长的 Synechocystis 糖原累积的影响。未经过 MV 处理的野生型细胞糖原含量较低,干重(DW)不足 6%。与野生型相比,干扰 PHB 合成并结合 MV 处理不会增加糖原含量。在不进行 MV 处理的情况下,中断 H₂ 的产生可使糖原含量高达 11% w/w DW。有趣的是,在 3 天和 7 天内,将中断的 H2 生产与 MV 处理结合起来,可协同提高糖原积累,分别达到 51% 和 59% w/w DW。代谢组分析表明,MV 处理介导了蛋白质向糖原的转化。代谢组和转录表达分析表明,MV 处理中断 H2 合成会对糖原合成产生积极影响。在 MV 处理下中断的 H₂ 合成显著增加了 NADPH 含量。NADPH 含量的增加可能有助于提高对 MV 诱导的氧化剂的抗氧化活性、氧气进化以及正常培养基中糖原合成的代谢物底物水平,最终导致糖原在 Synechocystis 中积累增加。关键信息:破坏氢气合成和使用光合作用电子传递抑制剂能显著提高蓝藻糖原的产生。
{"title":"Disrupted H<sub>2</sub> synthesis combined with methyl viologen treatment inhibits photosynthetic electron flow to synergistically enhance glycogen accumulation in the cyanobacterium Synechocystis sp. PCC 6803.","authors":"Nannaphat Sukkasam, Janine Kaewbai-Ngam, Jidapa Leksingto, Pichaya In-Na, Kasidit Nootong, Aran Incharoensakdi, Steven J Hallam, Tanakarn Monshupanee","doi":"10.1007/s11103-024-01484-3","DOIUrl":"10.1007/s11103-024-01484-3","url":null,"abstract":"<p><p>Under nitrogen deprivation (-N), cyanobacterium Synechocystis sp. PCC 6803 exhibits growth arrest, reduced protein content, and remarkably increased glycogen accumulation. However, producing glycogen under this condition requires a two-step process with cell transfer from normal to -N medium. Metabolic engineering and chemical treatment for rapid glycogen accumulation can bypass the need for two-step cultivation. For example, recent studies indicate that individually disrupting hydrogen (H<sub>2</sub>) or poly(3-hydroxybutyrate) (PHB) synthesis, or treatment with methyl viologen (MV), effectively increases glycogen accumulation in Synechocystis. Here we explore the effects of disrupted H<sub>2</sub> or poly(3-hydroxybutyrate) synthesis, together with MV treatment to on enhanced glycogen accumulation in Synechocystis grown in normal medium. Wild-type cells without MV treatment exhibited low glycogen content of less than 6% w/w dry weight (DW). Compared with wild type, disrupting PHB synthesis combined with MV treatment did not increase glycogen content. Disrupted H₂ production without MV treatment yielded up to 11% w/w DW glycogen content. Interestingly, when combined, disrupted H<sub>2</sub> production with MV treatment synergistically enhanced glycogen accumulation to 51% and 59% w/w DW within 3 and 7 days, respectively. Metabolomic analysis suggests that MV treatment mediated the conversion of proteins into glycogen. Metabolomic and transcriptional-expression analysis suggests that disrupted H<sub>2</sub> synthesis under MV treatment positively influenced glycogen synthesis. Disrupted H₂ synthesis under MV treatment significantly increased NADPH levels. This increased NADPH content potentially contributed to the observed enhancements in antioxidant activity against MV-induced oxidants, O<sub>2</sub> evolution, and metabolite substrates levels for glycogen synthesis in normal medium, ultimately leading to enhanced glycogen accumulation in Synechocystis. KEY MESSAGE: Combining disrupted hydrogen-gas synthesis and the treatment by photosynthesis electron-transport inhibitor significantly enhance glycogen production in cyanobacteria.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141634216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alpha-expansins: more than three decades of wall creep and loosening in fruits. α-外显子蛋白:三十多年来果实壁的蠕变和松动。
IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-12 DOI: 10.1007/s11103-024-01481-6
Angela Méndez-Yáñez, Cristian Carrasco-Orellana, Patricio Ramos, Luis Morales-Quintana

Expansins are proteins without catalytic activity, but able to break hydrogen bonds between cell wall polysaccharides hemicellulose and cellulose. This proteins were reported for the first time in 1992, describing cell wall extension in cucumber hypocotyls caused particularly by alpha-expansins. Although these proteins have GH45 and CBM63 domains, characteristic of enzymes related with the cleavage of cell wall polysaccharides, demonstrating in vitro that they extend plant cell wall. Its participation has been associated to molecular processes such as development and growing, fruit ripening and softening, tolerance and resistance to biotic and abiotic stress and seed germination. Structural insights, facilitated by bioinformatics approaches, are highlighted, shedding light on the intricate interactions between alpha-expansins and cell wall polysaccharides. After more than thirty years of its discovery, we want to celebrate the knowledge of alpha-expansins and emphasize their importance to understand the phenomena of disassembly and loosening of the cell wall, specifically in the fruit ripening phenomena, with this state-of-the-art dedicated to them.

膨胀蛋白是一种没有催化活性的蛋白质,但能够打破细胞壁多糖半纤维素和纤维素之间的氢键。1992 年首次报道了这种蛋白质,描述了黄瓜下胚轴细胞壁的延伸,特别是由α-扩张素引起的。尽管这些蛋白具有 GH45 和 CBM63 结构域,与细胞壁多糖裂解酶的特征有关,但体外实验证明它们能延长植物细胞壁。它的参与与分子过程有关,如发育和生长、果实成熟和软化、对生物和非生物胁迫的耐受性和抗性以及种子萌发。生物信息学方法促进了对结构的深入研究,揭示了α-外显子蛋白与细胞壁多糖之间错综复杂的相互作用。在发现α-外显子蛋白三十多年后,我们希望通过这本最新专著来庆祝对α-外显子蛋白的认识,并强调其对理解细胞壁的分解和松动现象,特别是水果成熟现象的重要性。
{"title":"Alpha-expansins: more than three decades of wall creep and loosening in fruits.","authors":"Angela Méndez-Yáñez, Cristian Carrasco-Orellana, Patricio Ramos, Luis Morales-Quintana","doi":"10.1007/s11103-024-01481-6","DOIUrl":"10.1007/s11103-024-01481-6","url":null,"abstract":"<p><p>Expansins are proteins without catalytic activity, but able to break hydrogen bonds between cell wall polysaccharides hemicellulose and cellulose. This proteins were reported for the first time in 1992, describing cell wall extension in cucumber hypocotyls caused particularly by alpha-expansins. Although these proteins have GH45 and CBM63 domains, characteristic of enzymes related with the cleavage of cell wall polysaccharides, demonstrating in vitro that they extend plant cell wall. Its participation has been associated to molecular processes such as development and growing, fruit ripening and softening, tolerance and resistance to biotic and abiotic stress and seed germination. Structural insights, facilitated by bioinformatics approaches, are highlighted, shedding light on the intricate interactions between alpha-expansins and cell wall polysaccharides. After more than thirty years of its discovery, we want to celebrate the knowledge of alpha-expansins and emphasize their importance to understand the phenomena of disassembly and loosening of the cell wall, specifically in the fruit ripening phenomena, with this state-of-the-art dedicated to them.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141591021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of tomato F-box proteins functioning in phenylpropanoid metabolism. 鉴定在苯丙类代谢中发挥作用的番茄 F-box 蛋白。
IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-12 DOI: 10.1007/s11103-024-01483-4
Doosan Shin, Keun Ho Cho, Ethan Tucker, Chan Yul Yoo, Jeongim Kim

Phenylpropanoids, a class of specialized metabolites, play crucial roles in plant growth and stress adaptation and include diverse phenolic compounds such as flavonoids. Phenylalanine ammonia-lyase (PAL) and chalcone synthase (CHS) are essential enzymes functioning at the entry points of general phenylpropanoid biosynthesis and flavonoid biosynthesis, respectively. In Arabidopsis, PAL and CHS are turned over through ubiquitination-dependent proteasomal degradation. Specific kelch domain-containing F-Box (KFB) proteins as components of ubiquitin E3 ligase directly interact with PAL or CHS, leading to polyubiquitinated PAL and CHS, which in turn influences phenylpropanoid and flavonoid production. Although phenylpropanoids are vital for tomato nutritional value and stress responses, the post-translational regulation of PAL and CHS in tomato remains unknown. We identified 31 putative KFB-encoding genes in the tomato genome. Our homology analysis and phylogenetic study predicted four PAL-interacting SlKFBs, while SlKFB18 was identified as the sole candidate for the CHS-interacting KFB. Consistent with their homolog function, the predicted four PAL-interacting SlKFBs function in PAL degradation. Surprisingly, SlKFB18 did not interact with tomato CHS and the overexpression or knocking out of SlKFB18 did not affect phenylpropanoid contents in tomato transgenic lines, suggesting its irreverence with flavonoid metabolism. Our study successfully discovered the post-translational regulatory machinery of PALs in tomato while highlighting the limitation of relying solely on a homology-based approach to predict interacting partners of F-box proteins.

苯丙类化合物是一类特殊的代谢产物,在植物生长和胁迫适应中发挥着至关重要的作用,其中包括黄酮类等多种酚类化合物。苯丙氨酸氨基转移酶(PAL)和查尔酮合成酶(CHS)是分别在一般苯丙类生物合成和类黄酮生物合成的切入点起作用的重要酶。在拟南芥中,PAL 和 CHS 都是通过泛素依赖性蛋白酶体降解的。特定的含 Kelch 结构域的 F-Box 蛋白(KFB)作为泛素 E3 连接酶的组成部分,直接与 PAL 或 CHS 相互作用,导致 PAL 和 CHS 多泛素化,进而影响苯丙酮和类黄酮的生成。虽然苯丙类化合物对番茄的营养价值和胁迫反应至关重要,但番茄中 PAL 和 CHS 的翻译后调控仍然未知。我们在番茄基因组中发现了 31 个推测的 KFB 编码基因。我们的同源分析和系统发育研究预测了四个与 PAL 相互作用的 SlKFB,而 SlKFB18 被确定为与 CHS 相互作用的 KFB 的唯一候选基因。与同源物的功能相一致,预测的四种与 PAL 有相互作用的 SlKFB 在 PAL 降解中发挥作用。令人惊讶的是,SlKFB18并不与番茄CHS相互作用,过表达或敲除SlKFB18并不影响番茄转基因品系中的苯丙类含量,表明其与类黄酮代谢无关。我们的研究成功地发现了番茄中PALs的翻译后调控机制,同时也强调了仅仅依靠基于同源性的方法来预测F-box蛋白相互作用伙伴的局限性。
{"title":"Identification of tomato F-box proteins functioning in phenylpropanoid metabolism.","authors":"Doosan Shin, Keun Ho Cho, Ethan Tucker, Chan Yul Yoo, Jeongim Kim","doi":"10.1007/s11103-024-01483-4","DOIUrl":"10.1007/s11103-024-01483-4","url":null,"abstract":"<p><p>Phenylpropanoids, a class of specialized metabolites, play crucial roles in plant growth and stress adaptation and include diverse phenolic compounds such as flavonoids. Phenylalanine ammonia-lyase (PAL) and chalcone synthase (CHS) are essential enzymes functioning at the entry points of general phenylpropanoid biosynthesis and flavonoid biosynthesis, respectively. In Arabidopsis, PAL and CHS are turned over through ubiquitination-dependent proteasomal degradation. Specific kelch domain-containing F-Box (KFB) proteins as components of ubiquitin E3 ligase directly interact with PAL or CHS, leading to polyubiquitinated PAL and CHS, which in turn influences phenylpropanoid and flavonoid production. Although phenylpropanoids are vital for tomato nutritional value and stress responses, the post-translational regulation of PAL and CHS in tomato remains unknown. We identified 31 putative KFB-encoding genes in the tomato genome. Our homology analysis and phylogenetic study predicted four PAL-interacting SlKFBs, while SlKFB18 was identified as the sole candidate for the CHS-interacting KFB. Consistent with their homolog function, the predicted four PAL-interacting SlKFBs function in PAL degradation. Surprisingly, SlKFB18 did not interact with tomato CHS and the overexpression or knocking out of SlKFB18 did not affect phenylpropanoid contents in tomato transgenic lines, suggesting its irreverence with flavonoid metabolism. Our study successfully discovered the post-translational regulatory machinery of PALs in tomato while highlighting the limitation of relying solely on a homology-based approach to predict interacting partners of F-box proteins.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141591022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-omic applications for understanding and enhancing tropical fruit flavour. 应用多原子技术了解和提升热带水果风味。
IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-08 DOI: 10.1007/s11103-024-01480-7
Joshua Lomax, Rebecca Ford, Ido Bar

Consumer trends towards nutrient-rich foods are contributing to global increasing demand for tropical fruit. However, commercial cultivars in the breeding pipeline that are tailored to meet market demand are at risk of possessing reduced fruit flavour qualities. This stems from recurrent prioritised selection for superior agronomic traits and not fruit flavour, which may in turn reduce consumer satisfaction. There is realisation that fruit quality traits, inclusive of flavour, must be equally selected for; but currently, there are limited tools and resources available to select for fruit flavour traits, particularly in tropical fruit species. Although sugars, acids, and volatile organic compounds are known to define fruit flavour, the specific combinations of these, that result in defined consumer preferences, remain unknown for many tropical fruit species. To define and include fruit flavour preferences in selective breeding, it is vital to determine the metabolites that underpin them. Then, objective quantitative analysis may be implemented instead of solely relying on human sensory panels. This may lead to the development of selective genetic markers through integrated omics approaches that target biosynthetic pathways of flavour active compounds. In this review, we explore progress in the development of tools to be able to strategically define and select for consumer-preferred flavour profiles in the breeding of new cultivars of tropical fruit species.

消费者对营养丰富的食品的需求趋势促使全球对热带水果的需求不断增加。然而,为满足市场需求而量身定制的商业栽培品种在育种过程中却面临着果味品质下降的风险。这是因为经常优先选择优良的农艺性状,而不是水果风味,这反过来可能会降低消费者的满意度。人们意识到,必须对包括风味在内的果实品质性状进行同样的选择;但目前可用于选择果实风味性状的工具和资源有限,尤其是在热带水果品种中。虽然已知糖、酸和挥发性有机化合物可确定水果风味,但对于许多热带水果品种来说,这些物质的具体组合可产生明确的消费者偏好,但这些组合仍是未知数。要确定水果风味偏好并将其纳入选择性育种,必须确定支撑这些偏好的代谢物。然后,就可以进行客观的定量分析,而不是仅仅依靠人类感官面板。这可能会通过针对风味活性化合物生物合成途径的综合组学方法,开发出选择性遗传标记。在这篇综述中,我们探讨了在热带水果新品种培育过程中,为战略性地定义和选择消费者偏好的风味特征而开发工具方面取得的进展。
{"title":"Multi-omic applications for understanding and enhancing tropical fruit flavour.","authors":"Joshua Lomax, Rebecca Ford, Ido Bar","doi":"10.1007/s11103-024-01480-7","DOIUrl":"10.1007/s11103-024-01480-7","url":null,"abstract":"<p><p>Consumer trends towards nutrient-rich foods are contributing to global increasing demand for tropical fruit. However, commercial cultivars in the breeding pipeline that are tailored to meet market demand are at risk of possessing reduced fruit flavour qualities. This stems from recurrent prioritised selection for superior agronomic traits and not fruit flavour, which may in turn reduce consumer satisfaction. There is realisation that fruit quality traits, inclusive of flavour, must be equally selected for; but currently, there are limited tools and resources available to select for fruit flavour traits, particularly in tropical fruit species. Although sugars, acids, and volatile organic compounds are known to define fruit flavour, the specific combinations of these, that result in defined consumer preferences, remain unknown for many tropical fruit species. To define and include fruit flavour preferences in selective breeding, it is vital to determine the metabolites that underpin them. Then, objective quantitative analysis may be implemented instead of solely relying on human sensory panels. This may lead to the development of selective genetic markers through integrated omics approaches that target biosynthetic pathways of flavour active compounds. In this review, we explore progress in the development of tools to be able to strategically define and select for consumer-preferred flavour profiles in the breeding of new cultivars of tropical fruit species.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11228007/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141555253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
OsNAC121 regulates root development, tillering, panicle morphology, and grain filling in rice plant. OsNAC121 调节水稻植株的根系发育、分蘖、圆锥花序形态和籽粒灌浆。
IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-02 DOI: 10.1007/s11103-024-01476-3
Nazma Anjum, Mrinal K Maiti

Transcription factors in coordination with phytohormones form an intricate regulatory network modulating vital cellular mechanisms like development, growth and senescence in plants. In this study, we have functionally characterized the transcription factor OsNAC121 by developing gene silencing and overexpressing transgenic rice plants, followed by detailed analyses of the plant architecture. Transgenic lines exhibited remodelling in crown root development, lateral root structure and density, tiller height and number, panicle and grain morphologies, underpinning the imbalanced auxin: cytokinin ratio due to perturbed auxin transportation. Application of cytokinin, auxin and abscisic acid increased OsNAC121 gene expression nearly 17-, 6- and 91-folds, respectively. qRT-PCR results showed differential expressions of auxin and cytokinin pathway genes, implying their altered levels. A 47-fold higher expression level of OsNAC121 during milky stage in untransformed rice, compared to 14-day old shoot tissue, suggests its crucial role in grain filling; as evidenced by a large number of undeveloped grains produced by the gene silenced lines. Crippled gravitropic response by the transgenic plants indicates their impaired auxin transport. Bioinformatics revealed that OsNAC121 interacts with co-repressor (TOPLESS) proteins and forms a part of the inhibitor complex OsIAA10, an essential core component of auxin signalling pathway. Therefore, OsNAC121 emerges as an important regulator of various aspects of plant architecture through modulation of crosstalk between auxin and cytokinin, altering their concentration gradient in the meristematic zones, and consequently modifying different plant organogenesis processes.

转录因子与植物激素配合形成了一个复杂的调控网络,调节着植物的发育、生长和衰老等重要细胞机制。在这项研究中,我们通过培育基因沉默和过表达转基因水稻植株,对转录因子 OsNAC121 进行了功能表征,随后对植株结构进行了详细分析。转基因品系在冠根发育、侧根结构和密度、分蘖高度和数量、圆锥花序和谷粒形态等方面都表现出了重塑,这也是由于扰乱了辅素运输而导致的辅素:细胞分裂素比例失调的基础。细胞分裂素、辅助素和赤霉酸的应用分别使 OsNAC121 基因的表达量提高了近 17 倍、6 倍和 91 倍。与 14 天的嫩枝组织相比,未转化水稻在乳熟期的 OsNAC121 表达水平高出 47 倍,这表明它在谷粒充实过程中起着关键作用;基因沉默株产生的大量未发育谷粒就是证明。转基因植株的重力反应减弱表明它们的辅素运输功能受损。生物信息学发现,OsNAC121 与共抑制蛋白(TOPLESS)相互作用,并构成抑制复合体 OsIAA10 的一部分,而 OsIAA10 是辅助素信号通路的重要核心成分。因此,OsNAC121通过调节植物生长素和细胞分裂素之间的相互作用,改变它们在分生区的浓度梯度,进而改变植物器官发生的不同过程,成为植物结构各方面的重要调节因子。
{"title":"OsNAC121 regulates root development, tillering, panicle morphology, and grain filling in rice plant.","authors":"Nazma Anjum, Mrinal K Maiti","doi":"10.1007/s11103-024-01476-3","DOIUrl":"10.1007/s11103-024-01476-3","url":null,"abstract":"<p><p>Transcription factors in coordination with phytohormones form an intricate regulatory network modulating vital cellular mechanisms like development, growth and senescence in plants. In this study, we have functionally characterized the transcription factor OsNAC121 by developing gene silencing and overexpressing transgenic rice plants, followed by detailed analyses of the plant architecture. Transgenic lines exhibited remodelling in crown root development, lateral root structure and density, tiller height and number, panicle and grain morphologies, underpinning the imbalanced auxin: cytokinin ratio due to perturbed auxin transportation. Application of cytokinin, auxin and abscisic acid increased OsNAC121 gene expression nearly 17-, 6- and 91-folds, respectively. qRT-PCR results showed differential expressions of auxin and cytokinin pathway genes, implying their altered levels. A 47-fold higher expression level of OsNAC121 during milky stage in untransformed rice, compared to 14-day old shoot tissue, suggests its crucial role in grain filling; as evidenced by a large number of undeveloped grains produced by the gene silenced lines. Crippled gravitropic response by the transgenic plants indicates their impaired auxin transport. Bioinformatics revealed that OsNAC121 interacts with co-repressor (TOPLESS) proteins and forms a part of the inhibitor complex OsIAA10, an essential core component of auxin signalling pathway. Therefore, OsNAC121 emerges as an important regulator of various aspects of plant architecture through modulation of crosstalk between auxin and cytokinin, altering their concentration gradient in the meristematic zones, and consequently modifying different plant organogenesis processes.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141493022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of stomatal development by epidermal, subepidermal and long-distance signals. 表皮、亚表皮和远距离信号对气孔发育的调控。
IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-28 DOI: 10.1007/s11103-024-01456-7
Liang Chen

Plant leaves consist of three layers, including epidermis, mesophyll and vascular tissues. Their development is meticulously orchestrated. Stomata are the specified structures on the epidermis for uptake of carbon dioxide (CO2) while release of water vapour and oxygen (O2), and thus play essential roles in regulation of plant photosynthesis and water use efficiency. To function efficiently, stomatal formation must coordinate with the development of other epidermal cell types, such as pavement cell and trichome, and tissues of other layers, such as mesophyll and leaf vein. This review summarizes the regulation of stomatal development in three dimensions (3D). In the epidermis, specific stomatal transcription factors determine cell fate transitions and also activate a ligand-receptor- MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) signaling for ensuring proper stomatal density and patterning. This forms the core regulation network of stomatal development, which integrates various environmental cues and phytohormone signals to modulate stomatal production. Under the epidermis, mesophyll, endodermis of hypocotyl and inflorescence stem, and veins in grasses secrete mobile signals to influence stomatal formation in the epidermis. In addition, long-distance signals which may include phytohormones, RNAs, peptides and proteins originated from other plant organs modulate stomatal development, enabling plants to systematically adapt to the ever changing environment.

植物叶片由三层组成,包括表皮、叶肉和维管组织。它们的生长发育都是经过精心安排的。气孔是表皮上吸收二氧化碳(CO2)、释放水蒸气和氧气(O2)的特定结构,因此在调节植物光合作用和水分利用效率方面起着至关重要的作用。气孔的形成必须与铺层细胞和毛状体等其他表皮细胞类型以及叶肉和叶脉等其他层组织的发育相协调,才能有效发挥作用。本综述总结了气孔发育的三维调控。在表皮中,特定的气孔转录因子决定着细胞命运的转变,并激活配体-受体-MITOGEN-活性蛋白激酶(MAPK)信号,以确保适当的气孔密度和形态。这就形成了气孔发育的核心调控网络,它整合了各种环境线索和植物激素信号,以调节气孔的生成。在表皮下,叶肉、下胚轴和花序茎的内皮以及禾本科植物的叶脉会分泌移动信号,影响表皮的气孔形成。此外,来自植物其他器官的远距离信号(可能包括植物激素、核糖核酸、肽和蛋白质)也会调节气孔的发育,使植物能够系统地适应不断变化的环境。
{"title":"Regulation of stomatal development by epidermal, subepidermal and long-distance signals.","authors":"Liang Chen","doi":"10.1007/s11103-024-01456-7","DOIUrl":"10.1007/s11103-024-01456-7","url":null,"abstract":"<p><p>Plant leaves consist of three layers, including epidermis, mesophyll and vascular tissues. Their development is meticulously orchestrated. Stomata are the specified structures on the epidermis for uptake of carbon dioxide (CO<sub>2</sub>) while release of water vapour and oxygen (O<sub>2</sub>), and thus play essential roles in regulation of plant photosynthesis and water use efficiency. To function efficiently, stomatal formation must coordinate with the development of other epidermal cell types, such as pavement cell and trichome, and tissues of other layers, such as mesophyll and leaf vein. This review summarizes the regulation of stomatal development in three dimensions (3D). In the epidermis, specific stomatal transcription factors determine cell fate transitions and also activate a ligand-receptor- MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) signaling for ensuring proper stomatal density and patterning. This forms the core regulation network of stomatal development, which integrates various environmental cues and phytohormone signals to modulate stomatal production. Under the epidermis, mesophyll, endodermis of hypocotyl and inflorescence stem, and veins in grasses secrete mobile signals to influence stomatal formation in the epidermis. In addition, long-distance signals which may include phytohormones, RNAs, peptides and proteins originated from other plant organs modulate stomatal development, enabling plants to systematically adapt to the ever changing environment.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141470144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Plant Molecular Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1