Pub Date : 2023-11-01Epub Date: 2023-09-18DOI: 10.1152/physiolgenomics.00064.2023
Quinn Hoorn, Maria Belen Rabaglino, Tatiane Silva Maia, Masroor Sagheer, Dailin Fuego, Zongliang Jiang, Peter James Hansen
The objectives of the present study were to characterize the expression of genes encoding for cell signaling ligands in the bovine endosalpinx and endometrium and analyze spatial changes in gene expression. RNA sequencing was performed for the endosalpinx from the ampulla of the oviduct and endometrium from the upper and middle uterine horn and uterine body at day 2 after ovulation from ipsilateral and contralateral sides relative to the ovulatory ovary. Of the 17,827 unique mRNA transcripts mapped, 2,072 were affected by cranial-caudal position in the reproductive tract and 818 were affected by side (false discovery rate < 0.05). There were 334 genes encoding for cell signaling ligands, with 128 genes having greater than two transcripts per million on average. A total of 81 cell signaling ligand genes were affected by position and 24 were affected by side. A data set of the transcriptome of two to four cell embryos was used to identify cell signaling ligand genes that were highly expressed in the ampulla for which there was high expression of the receptor in the embryo. The most expressed ligand-receptor pairs were PSAP/SORT1, MIF/CXCR4, GPI/AMFR, and KITLG/KIT. These cell signaling ligands, as well as others whose gene is expressed in the endosalpinx and endometrium, may influence early embryonic development. Spatial changes throughout the reproductive tract highlight the distinctive expression profile of the oviduct versus the endometrium, including a set of the identified genes encoding for cell signaling ligands, and highlight the local influence of the ovary. The results also show the continuity of expression for large numbers of genes in the reproductive tract.NEW & NOTEWORTHY Examination of the transcriptome of the endosalpinx and endometrium revealed the degree to which gene expression in the reproductive tract varies spatially. The expression of genes encoding cell signaling molecules that could potentially regulate embryonic development was also identified.
{"title":"Transcriptomic profiling of the bovine endosalpinx and endometrium to identify putative embryokines.","authors":"Quinn Hoorn, Maria Belen Rabaglino, Tatiane Silva Maia, Masroor Sagheer, Dailin Fuego, Zongliang Jiang, Peter James Hansen","doi":"10.1152/physiolgenomics.00064.2023","DOIUrl":"10.1152/physiolgenomics.00064.2023","url":null,"abstract":"<p><p>The objectives of the present study were to characterize the expression of genes encoding for cell signaling ligands in the bovine endosalpinx and endometrium and analyze spatial changes in gene expression. RNA sequencing was performed for the endosalpinx from the ampulla of the oviduct and endometrium from the upper and middle uterine horn and uterine body at <i>day 2</i> after ovulation from ipsilateral and contralateral sides relative to the ovulatory ovary. Of the 17,827 unique mRNA transcripts mapped, 2,072 were affected by cranial-caudal position in the reproductive tract and 818 were affected by side (false discovery rate < 0.05). There were 334 genes encoding for cell signaling ligands, with 128 genes having greater than two transcripts per million on average. A total of 81 cell signaling ligand genes were affected by position and 24 were affected by side. A data set of the transcriptome of two to four cell embryos was used to identify cell signaling ligand genes that were highly expressed in the ampulla for which there was high expression of the receptor in the embryo. The most expressed ligand-receptor pairs were <i>PSAP/SORT1</i>, <i>MIF/CXCR4</i>, <i>GPI/AMFR</i>, and <i>KITLG/KIT</i>. These cell signaling ligands, as well as others whose gene is expressed in the endosalpinx and endometrium, may influence early embryonic development. Spatial changes throughout the reproductive tract highlight the distinctive expression profile of the oviduct versus the endometrium, including a set of the identified genes encoding for cell signaling ligands, and highlight the local influence of the ovary. The results also show the continuity of expression for large numbers of genes in the reproductive tract.<b>NEW & NOTEWORTHY</b> Examination of the transcriptome of the endosalpinx and endometrium revealed the degree to which gene expression in the reproductive tract varies spatially. The expression of genes encoding cell signaling molecules that could potentially regulate embryonic development was also identified.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":"557-564"},"PeriodicalIF":4.6,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10280436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01Epub Date: 2023-09-18DOI: 10.1152/physiolgenomics.00040.2023
Hyun Jun Jung, Eryn E Dixon, Richard Coleman, Terry Watnick, Jeremy F Reiter, Patricia Outeda, Valeriu Cebotaru, Owen M Woodward, Paul A Welling
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in polycystin genes, Pkd1 and Pkd2, but the underlying pathogenic mechanisms are poorly understood. To identify genes and pathways that operate downstream of polycystin-2 (PC2), a comprehensive gene expression database was created, cataloging changes in the transcriptome immediately following PC2 protein depletion. To explore cyst initiation processes, an immortalized mouse inner medullary collecting duct line was developed with the ability to knock out the Pkd2 gene conditionally. Genome-wide transcriptome profiling was performed using RNA sequencing in the cells immediately after PC2 was depleted and compared with isogenic control cells. Differentially expressed genes were identified, and a bioinformatic analysis pipeline was implemented. Altered expression of candidate cystogenic genes was validated in Pkd2 knockout mice. The expression of nearly 900 genes changed upon PC2 depletion. Differentially expressed genes were enriched for genes encoding components of the primary cilia, the canonical Wnt pathway, and MAPK signaling. Among the PC2-dependent ciliary genes, the transcription factor Glis3 was significantly downregulated. MAPK signaling formed a key node at the epicenter of PC2-dependent signaling networks. Activation of Wnt and MAPK signaling, concomitant with the downregulation of Glis3, was corroborated in Pkd2 knockout mice. The data identify a PC2 cilia-to-nucleus signaling axis and dysregulation of the Gli-similar subfamily of transcription factors as a potential initiator of cyst formation in ADPKD. The catalog of PC2-regulated genes should provide a valuable resource for future ADPKD research and new opportunities for drug development.NEW & NOTEWORTHY Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease. Mutations in polycystin genes cause the disease, but the underlying mechanisms of cystogenesis are unknown. To help fill this knowledge gap, we created an inducible cell model of ADPKD and assembled a catalog of genes that respond in immediate proximity to polycystin-2 depletion using transcriptomic profiling. The catalog unveils a ciliary signaling-to-nucleus axis proximal to polycystin-2 dysfunction, highlighting Glis, Wnt, and MAPK signaling.
{"title":"Polycystin-2-dependent transcriptome reveals early response of autosomal dominant polycystic kidney disease.","authors":"Hyun Jun Jung, Eryn E Dixon, Richard Coleman, Terry Watnick, Jeremy F Reiter, Patricia Outeda, Valeriu Cebotaru, Owen M Woodward, Paul A Welling","doi":"10.1152/physiolgenomics.00040.2023","DOIUrl":"10.1152/physiolgenomics.00040.2023","url":null,"abstract":"<p><p>Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in polycystin genes, <i>Pkd1</i> and <i>Pkd2</i>, but the underlying pathogenic mechanisms are poorly understood. To identify genes and pathways that operate downstream of polycystin-2 (PC2), a comprehensive gene expression database was created, cataloging changes in the transcriptome immediately following PC2 protein depletion. To explore cyst initiation processes, an immortalized mouse inner medullary collecting duct line was developed with the ability to knock out the <i>Pkd2</i> gene conditionally. Genome-wide transcriptome profiling was performed using RNA sequencing in the cells immediately after PC2 was depleted and compared with isogenic control cells. Differentially expressed genes were identified, and a bioinformatic analysis pipeline was implemented. Altered expression of candidate cystogenic genes was validated in <i>Pkd2</i> knockout mice. The expression of nearly 900 genes changed upon PC2 depletion. Differentially expressed genes were enriched for genes encoding components of the primary cilia, the canonical Wnt pathway, and MAPK signaling. Among the PC2-dependent ciliary genes, the transcription factor Glis3 was significantly downregulated. MAPK signaling formed a key node at the epicenter of PC2-dependent signaling networks. Activation of Wnt and MAPK signaling, concomitant with the downregulation of Glis3, was corroborated in <i>Pkd2</i> knockout mice. The data identify a PC2 cilia-to-nucleus signaling axis and dysregulation of the Gli-similar subfamily of transcription factors as a potential initiator of cyst formation in ADPKD. The catalog of PC2-regulated genes should provide a valuable resource for future ADPKD research and new opportunities for drug development.<b>NEW & NOTEWORTHY</b> Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease. Mutations in polycystin genes cause the disease, but the underlying mechanisms of cystogenesis are unknown. To help fill this knowledge gap, we created an inducible cell model of ADPKD and assembled a catalog of genes that respond in immediate proximity to polycystin-2 depletion using transcriptomic profiling. The catalog unveils a ciliary signaling-to-nucleus axis proximal to polycystin-2 dysfunction, highlighting Glis, Wnt, and MAPK signaling.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":"565-577"},"PeriodicalIF":2.5,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11178268/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10287070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-07-17DOI: 10.1152/physiolgenomics.00019.2023
Alexandria M Szalanczy, Gina Giorgio, Emily Goff, Osborne Seshie, Michael Grzybowski, Jason Klotz, Aron M Geurts, Eva E Redei, Leah C Solberg Woods
We previously identified keratinocyte-associated protein 3, Krtcap3, as an obesity-related gene in female rats where a whole body Krtcap3 knockout (KO) led to increased adiposity compared to wild-type (WT) controls when fed a high-fat diet (HFD). We sought to replicate this work to better understand the function of Krtcap3 but were unable to reproduce the adiposity phenotype. In the current work, WT female rats ate more compared to WT in the prior study, with corresponding increases in body weight and fat mass, while there were no changes in these measures in KO females between the studies. The prior study was conducted before the COVID-19 pandemic, while the current study started after initial lockdown orders and was completed during the pandemic in a generally less stressful environment. We hypothesize that the environmental changes impacted stress levels and may explain the failure to replicate our results. Analysis of corticosterone (CORT) at euthanasia showed a significant study-by-genotype interaction where WT had significantly higher CORT relative to KO in study 1, with no differences in study 2. These data suggest that decreasing Krtcap3 expression may alter the environmental stress response to influence adiposity. We also found that KO rats in both studies, but not WT, experienced a dramatic increase in CORT after their cage mate was removed, suggesting a separate connection to social behavioral stress. Future work is necessary to confirm and elucidate the finer mechanisms of these relationships, but these data indicate the possibility of Krtcap3 as a novel stress gene.NEW & NOTEWORTHY Obesity is linked to both genetics and environmental factors such as stress. Krtcap3 has previously been identified as a gene associated with adiposity, and our work here demonstrates that environmental stress may influence the role of Krtcap3 on both food intake and adiposity. Obesity is strongly influenced by stress in humans, so the identification of novel genes that link stress and obesity will greatly advance our understanding of the disease.
{"title":"Changes in environmental stress over COVID-19 pandemic likely contributed to failure to replicate adiposity phenotype associated with <i>Krtcap3</i>.","authors":"Alexandria M Szalanczy, Gina Giorgio, Emily Goff, Osborne Seshie, Michael Grzybowski, Jason Klotz, Aron M Geurts, Eva E Redei, Leah C Solberg Woods","doi":"10.1152/physiolgenomics.00019.2023","DOIUrl":"10.1152/physiolgenomics.00019.2023","url":null,"abstract":"<p><p>We previously identified keratinocyte-associated protein 3, <i>Krtcap3</i>, as an obesity-related gene in female rats where a whole body <i>Krtcap3</i> knockout (KO) led to increased adiposity compared to wild-type (WT) controls when fed a high-fat diet (HFD). We sought to replicate this work to better understand the function of <i>Krtcap3</i> but were unable to reproduce the adiposity phenotype. In the current work, WT female rats ate more compared to WT in the prior study, with corresponding increases in body weight and fat mass, while there were no changes in these measures in KO females between the studies. The prior study was conducted before the COVID-19 pandemic, while the current study started after initial lockdown orders and was completed during the pandemic in a generally less stressful environment. We hypothesize that the environmental changes impacted stress levels and may explain the failure to replicate our results. Analysis of corticosterone (CORT) at euthanasia showed a significant study-by-genotype interaction where WT had significantly higher CORT relative to KO in <i>study 1</i>, with no differences in <i>study 2</i>. These data suggest that decreasing <i>Krtcap3</i> expression may alter the environmental stress response to influence adiposity. We also found that KO rats in both studies, but not WT, experienced a dramatic increase in CORT after their cage mate was removed, suggesting a separate connection to social behavioral stress. Future work is necessary to confirm and elucidate the finer mechanisms of these relationships, but these data indicate the possibility of <i>Krtcap3</i> as a novel stress gene.<b>NEW & NOTEWORTHY</b> Obesity is linked to both genetics and environmental factors such as stress. <i>Krtcap3</i> has previously been identified as a gene associated with adiposity, and our work here demonstrates that environmental stress may influence the role of <i>Krtcap3</i> on both food intake and adiposity. Obesity is strongly influenced by stress in humans, so the identification of novel genes that link stress and obesity will greatly advance our understanding of the disease.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":"55 10","pages":"452-467"},"PeriodicalIF":2.5,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10642928/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41208983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-08-14DOI: 10.1152/physiolgenomics.00149.2022
Yongheng Wang, Yimin Liu, Rui Wang, Fuyuan Cao, Yi Guan, Yulu Chen, Binbin An, Sisi Qin, Sanqiao Yao
Lung squamous cell carcinoma (LUSC) is a non-small cell lung cancer with a poor prognosis owing to late diagnosis. New molecular markers are urgently needed to improve the diagnosis and prognosis of LUSC. 7-Methylguanosine (m7G) modifications, a tRNA modification, are common in eubacteria, eukaryotes, and a few archaea. These modifications promote the turnover and stability of some mRNAs to prevent mRNA decay, improve translation efficiency, and reduce ribosomal pausing but are associated with poor survival in human cancer cells. However, expression of m7G-related genes in LUSC and their association with prognosis remain unclear. In the present study, we identified nine differentially expressed genes related to prognosis by comparing the expression profiles of tumor tissues (502 LUSC reports) with normal tissues (49 adjacent nontumor lung tissue reports). The genes included six upregulated genes (KLK7, LCE3E, AREG, KLK6, ZBED2, and MAPK4) and three downregulated genes (ADH1C, NTS, and ERLIN2). Based on these nine genes, patients with LUSC were classified into low- and high-risk groups to analyze the trends in prognosis. We found that the nine m7G-related genes play important roles in immune regulation, hormone regulation, and drug sensitivity through pathways including antigen processing and presentation, adherent plaques, extracellular matrix receptor interactions, drug metabolism of cytochrome P-450, and metabolism of cytochrome P-450 to xenobiotics; the functions of these genes are likely accomplished in part by m6A modifications. The effect of m7G-related genes on the diagnosis and prognosis of LUSC was further indicated by population analysis.NEW & NOTEWORTHY Based on the differential expression of 7-methylguanosine (m7G) modification-associated genes between normal and lung squamous cell carcinoma (LUSC) tissues, and considering the performance of our m7G-related gene risk profiles as independent risk factors in predicting overall survival, we conclude that m7G modification is closely linked to the development of LUSC. In addition, this study offers a new genetic marker for predicting the prognosis of patients with LUSC and presents a crucial theoretical foundation for future investigations on the relationship between m7G modification-related genes, immunity, and drug sensitivity in LUSC.
{"title":"Establishment of a prognostic model toward lung squamous cell carcinoma based on m<sup>7</sup>G-related genes in the cancer genome atlas.","authors":"Yongheng Wang, Yimin Liu, Rui Wang, Fuyuan Cao, Yi Guan, Yulu Chen, Binbin An, Sisi Qin, Sanqiao Yao","doi":"10.1152/physiolgenomics.00149.2022","DOIUrl":"10.1152/physiolgenomics.00149.2022","url":null,"abstract":"<p><p>Lung squamous cell carcinoma (LUSC) is a non-small cell lung cancer with a poor prognosis owing to late diagnosis. New molecular markers are urgently needed to improve the diagnosis and prognosis of LUSC. 7-Methylguanosine (m<sup>7</sup>G) modifications, a tRNA modification, are common in eubacteria, eukaryotes, and a few archaea. These modifications promote the turnover and stability of some mRNAs to prevent mRNA decay, improve translation efficiency, and reduce ribosomal pausing but are associated with poor survival in human cancer cells. However, expression of m<sup>7</sup>G-related genes in LUSC and their association with prognosis remain unclear. In the present study, we identified nine differentially expressed genes related to prognosis by comparing the expression profiles of tumor tissues (502 LUSC reports) with normal tissues (49 adjacent nontumor lung tissue reports). The genes included six upregulated genes (<i>KLK7</i>, <i>LCE3E</i>, <i>AREG</i>, <i>KLK6</i>, <i>ZBED2</i>, and <i>MAPK4</i>) and three downregulated genes (<i>ADH1C</i>, <i>NTS</i>, and <i>ERLIN2</i>). Based on these nine genes, patients with LUSC were classified into low- and high-risk groups to analyze the trends in prognosis. We found that the nine m<sup>7</sup>G-related genes play important roles in immune regulation, hormone regulation, and drug sensitivity through pathways including antigen processing and presentation, adherent plaques, extracellular matrix receptor interactions, drug metabolism of cytochrome <i>P</i>-450, and metabolism of cytochrome <i>P</i>-450 to xenobiotics; the functions of these genes are likely accomplished in part by m<sup>6</sup>A modifications. The effect of m<sup>7</sup>G-related genes on the diagnosis and prognosis of LUSC was further indicated by population analysis.<b>NEW & NOTEWORTHY</b> Based on the differential expression of 7-methylguanosine (m<sup>7</sup>G) modification-associated genes between normal and lung squamous cell carcinoma (LUSC) tissues, and considering the performance of our m<sup>7</sup>G-related gene risk profiles as independent risk factors in predicting overall survival, we conclude that m<sup>7</sup>G modification is closely linked to the development of LUSC. In addition, this study offers a new genetic marker for predicting the prognosis of patients with LUSC and presents a crucial theoretical foundation for future investigations on the relationship between m<sup>7</sup>G modification-related genes, immunity, and drug sensitivity in LUSC.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":"55 10","pages":"427-439"},"PeriodicalIF":4.6,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10642926/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41208985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-08-14DOI: 10.1152/physiolgenomics.00026.2023
Ada N Nordeidet, Marie Klevjer, Ulrik Wisløff, Mette Langaas, Anja Bye
Low cardiorespiratory fitness, measured as maximal oxygen uptake (V̇o2max), is associated with all-cause mortality and disease-specific morbidity and mortality and is estimated to have a large genetic component (∼60%). However, the underlying mechanisms explaining the associations are not known, and no association study has assessed shared genetics between directly measured V̇o2max and disease. We believe that identifying the mechanisms explaining how low V̇o2max is related to increased disease risk can contribute to prevention and therapy. We used a phenome-wide association study approach to test for shared genetics. A total of 64,479 participants from the Trøndelag Health Study (HUNT) were included. Genetic variants previously linked to V̇o2max were tested for association with diseases related to the cardiovascular system, diabetes, dementia, mental disorders, and cancer as well as clinical measurements and biomarkers from HUNT. In the total population, three single-nucleotide polymorphisms (SNPs) in and near the follicle-stimulating hormone receptor gene (FSHR) were found to be associated (false discovery rate < 0.05) with serum creatinine levels and one intronic SNP in the Rap-associating DIL domain gene (RADIL) with diabetes type 1 with neurological manifestations. In males, four intronic SNPs in the PBX/knotted homeobox 2 gene (PKNOX2) were found to be associated with endocarditis. None of the association tests in the female population reached overall statistical significance; the associations with the lowest P values included other cardiac conduction disorders, subdural hemorrhage, and myocarditis. The results might suggest shared genetics between V̇o2max and disease. However, further effort should be put into investigating the potential shared genetics between inborn V̇o2max and disease in larger cohorts to increase statistical power.NEW & NOTEWORTHY To our knowledge, this is the first genetic association study exploring how genes linked to cardiorespiratory fitness (CRF) relate to disease risk. By investigating shared genetics, we found indications that genetic variants linked to directly measured CRF also affect the level of blood creatinine, risk of diabetes, and endocarditis. Less certain findings showed that genetic variants of high CRF might cause lower body mass index, healthier HDL cholesterol, and lower resting heart rate.
{"title":"Exploring shared genetics between maximal oxygen uptake and disease: the HUNT study.","authors":"Ada N Nordeidet, Marie Klevjer, Ulrik Wisløff, Mette Langaas, Anja Bye","doi":"10.1152/physiolgenomics.00026.2023","DOIUrl":"https://doi.org/10.1152/physiolgenomics.00026.2023","url":null,"abstract":"<p><p>Low cardiorespiratory fitness, measured as maximal oxygen uptake (V̇o<sub>2max</sub>), is associated with all-cause mortality and disease-specific morbidity and mortality and is estimated to have a large genetic component (∼60%). However, the underlying mechanisms explaining the associations are not known, and no association study has assessed shared genetics between directly measured V̇o<sub>2max</sub> and disease. We believe that identifying the mechanisms explaining how low V̇o<sub>2max</sub> is related to increased disease risk can contribute to prevention and therapy. We used a phenome-wide association study approach to test for shared genetics. A total of 64,479 participants from the Trøndelag Health Study (HUNT) were included. Genetic variants previously linked to V̇o<sub>2max</sub> were tested for association with diseases related to the cardiovascular system, diabetes, dementia, mental disorders, and cancer as well as clinical measurements and biomarkers from HUNT. In the total population, three single-nucleotide polymorphisms (SNPs) in and near the follicle-stimulating hormone receptor gene (<i>FSHR</i>) were found to be associated (false discovery rate < 0.05) with serum creatinine levels and one intronic SNP in the Rap-associating DIL domain gene (<i>RADIL</i>) with diabetes type 1 with neurological manifestations. In males, four intronic SNPs in the PBX/knotted homeobox 2 gene (<i>PKNOX2</i>) were found to be associated with endocarditis. None of the association tests in the female population reached overall statistical significance; the associations with the lowest <i>P</i> values included other cardiac conduction disorders, subdural hemorrhage, and myocarditis. The results might suggest shared genetics between V̇o<sub>2max</sub> and disease. However, further effort should be put into investigating the potential shared genetics between inborn V̇o<sub>2max</sub> and disease in larger cohorts to increase statistical power.<b>NEW & NOTEWORTHY</b> To our knowledge, this is the first genetic association study exploring how genes linked to cardiorespiratory fitness (CRF) relate to disease risk. By investigating shared genetics, we found indications that genetic variants linked to directly measured CRF also affect the level of blood creatinine, risk of diabetes, and endocarditis. Less certain findings showed that genetic variants of high CRF might cause lower body mass index, healthier HDL cholesterol, and lower resting heart rate.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":"55 10","pages":"440-451"},"PeriodicalIF":4.6,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41208986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Congenital heart disease is the most frequent congenital disorder, affecting a significant number of live births. Gaining insights into its genetic etiology could lead to a deeper understanding of this condition. Although the Nf1 gene has been identified as a potential causative gene, its role in congenital heart disease has not been thoroughly clarified. We searched and summarized evidence from cohort-based and experimental studies on the issue of Nf1 and heart development in congenital heart diseases from various databases. Available evidence demonstrates a correlation between Nf1 and congenital heart diseases, mainly pulmonary valvar stenosis. The mechanism underlying this correlation may involve dysregulation of epithelial-mesenchymal transition (EMT). The Nf1 gene affects the EMT process via multiple pathways, including directly regulating the expression of EMT-related transcription factors and indirectly regulating the EMT process by regulating the MAPK pathway. This narrative review provides a comprehensive account of the Nf1 involvement in heart development and congenital cardiovascular diseases in terms of epidemiology and potential mechanisms. RAS signaling may contribute to congenital heart disease independently or in cooperation with other signaling pathways. Efficient management of both NF1 and cardiovascular disease patients would benefit from further research into these issues.
{"title":"<i>Nf1</i> in heart development: a potential causative gene for congenital heart disease: a narrative review.","authors":"Dun Wang, Xue Wen, Li-Li Xu, Qing-Xing Chen, Tian-Xing Yan, Hai-Tao Xiao, Xue-Wen Xu","doi":"10.1152/physiolgenomics.00024.2023","DOIUrl":"https://doi.org/10.1152/physiolgenomics.00024.2023","url":null,"abstract":"<p><p>Congenital heart disease is the most frequent congenital disorder, affecting a significant number of live births. Gaining insights into its genetic etiology could lead to a deeper understanding of this condition. Although the <i>Nf1</i> gene has been identified as a potential causative gene, its role in congenital heart disease has not been thoroughly clarified. We searched and summarized evidence from cohort-based and experimental studies on the issue of <i>Nf1</i> and heart development in congenital heart diseases from various databases. Available evidence demonstrates a correlation between <i>Nf1</i> and congenital heart diseases, mainly pulmonary valvar stenosis. The mechanism underlying this correlation may involve dysregulation of epithelial-mesenchymal transition (EMT). The <i>Nf1</i> gene affects the EMT process via multiple pathways, including directly regulating the expression of EMT-related transcription factors and indirectly regulating the EMT process by regulating the MAPK pathway. This narrative review provides a comprehensive account of the <i>Nf1</i> involvement in heart development and congenital cardiovascular diseases in terms of epidemiology and potential mechanisms. RAS signaling may contribute to congenital heart disease independently or in cooperation with other signaling pathways. Efficient management of both NF1 and cardiovascular disease patients would benefit from further research into these issues.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":"55 10","pages":"415-426"},"PeriodicalIF":4.6,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41208982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-08-07DOI: 10.1152/physiolgenomics.00046.2023
Pavel A Makhnovskii, Egor M Lednev, Alina O Gavrilova, Nadia S Kurochkina, Tatiana F Vepkhvadze, Marina V Shestakova, Daniil V Popov
Obesity- and type 2 diabetes mellitus-induced changes in the expression of protein-coding genes in human skeletal muscle were extensively examined at baseline (after an overnight fast). We aimed to compare the early transcriptomic response to a typical single meal in skeletal muscle of metabolically healthy subjects and obese individuals without and with type 2 diabetes. Transcriptomic response (RNA-seq) to a mixed meal (nutritional drink, ∼25 kJ/kg of body mass) was examined in the vastus lateralis muscle (1 h after a meal) in 7 healthy subjects and 14 obese individuals without or with type 2 diabetes. In all obese individuals, the transcriptome response to a meal was dysregulated (suppressed and altered) and associated with different biological processes compared with healthy control. To search for potential transcription factors regulating transcriptomic response to a meal, the enrichment of transcription factor-binding sites in individual promoters of the human skeletal muscle was examined. In obese individuals, the transcriptomic response is associated with a different set of transcription factors than that in healthy subjects. In conclusion, metabolic disorders are associated with a defect in the regulation of mixed meal/insulin-mediated gene expression-insulin resistance in terms of gene expression. Importantly, this dysregulation occurs in obese individuals without type 2 diabetes, i.e., at the first stage of the development of metabolic disorders.NEW & NOTEWORTHY In skeletal muscle of metabolically healthy subjects, a typical single meal normalized to body mass induces activation of various transcription factors, expression of numerous receptor tyrosine kinases associated with the insulin signaling cascade, and transcription regulators. In skeletal muscle of obese individuals without and with type 2 diabetes, this signaling network is poorly regulated at the transcriptional level, indicating dysregulation of the early gene response to a mixed meal.
{"title":"Dysregulation of early gene response to a mixed meal in skeletal muscle in obesity and type 2 diabetes.","authors":"Pavel A Makhnovskii, Egor M Lednev, Alina O Gavrilova, Nadia S Kurochkina, Tatiana F Vepkhvadze, Marina V Shestakova, Daniil V Popov","doi":"10.1152/physiolgenomics.00046.2023","DOIUrl":"https://doi.org/10.1152/physiolgenomics.00046.2023","url":null,"abstract":"<p><p>Obesity- and type 2 diabetes mellitus-induced changes in the expression of protein-coding genes in human skeletal muscle were extensively examined at baseline (after an overnight fast). We aimed to compare the early transcriptomic response to a typical single meal in skeletal muscle of metabolically healthy subjects and obese individuals without and with type 2 diabetes. Transcriptomic response (RNA-seq) to a mixed meal (nutritional drink, ∼25 kJ/kg of body mass) was examined in the vastus lateralis muscle (1 h after a meal) in 7 healthy subjects and 14 obese individuals without or with type 2 diabetes. In all obese individuals, the transcriptome response to a meal was dysregulated (suppressed and altered) and associated with different biological processes compared with healthy control. To search for potential transcription factors regulating transcriptomic response to a meal, the enrichment of transcription factor-binding sites in individual promoters of the human skeletal muscle was examined. In obese individuals, the transcriptomic response is associated with a different set of transcription factors than that in healthy subjects. In conclusion, metabolic disorders are associated with a defect in the regulation of mixed meal/insulin-mediated gene expression-insulin resistance in terms of gene expression. Importantly, this dysregulation occurs in obese individuals without type 2 diabetes, i.e., at the first stage of the development of metabolic disorders.<b>NEW & NOTEWORTHY</b> In skeletal muscle of metabolically healthy subjects, a typical single meal normalized to body mass induces activation of various transcription factors, expression of numerous receptor tyrosine kinases associated with the insulin signaling cascade, and transcription regulators. In skeletal muscle of obese individuals without and with type 2 diabetes, this signaling network is poorly regulated at the transcriptional level, indicating dysregulation of the early gene response to a mixed meal.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":"55 10","pages":"468-477"},"PeriodicalIF":4.6,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41208984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01Epub Date: 2023-07-24DOI: 10.1152/physiolgenomics.00030.2023
Blair W Perry, Anna L McDonald, Shawn Trojahn, Michael W Saxton, Ellery P Vincent, Courtney Lowry, Brandon D Evans Hutzenbiler, Omar E Cornejo, Charles T Robbins, Heiko T Jansen, Joanna L Kelley
Hibernation in bears involves a suite of metabolical and physiological changes, including the onset of insulin resistance, that are driven in part by sweeping changes in gene expression in multiple tissues. Feeding bears glucose during hibernation partially restores active season physiological phenotypes, including partial resensitization to insulin, but the molecular mechanisms underlying this transition remain poorly understood. Here, we analyze tissue-level gene expression in adipose, liver, and muscle to identify genes that respond to midhibernation glucose feeding and thus potentially drive postfeeding metabolical and physiological shifts. We show that midhibernation feeding stimulates differential expression in all analyzed tissues of hibernating bears and that a subset of these genes responds specifically by shifting expression toward levels typical of the active season. Inferences of upstream regulatory molecules potentially driving these postfeeding responses implicate peroxisome proliferator-activated receptor gamma (PPARG) and other known regulators of insulin sensitivity, providing new insight into high-level regulatory mechanisms involved in shifting metabolic phenotypes between hibernation and active states.
{"title":"Feeding during hibernation shifts gene expression toward active season levels in brown bears (<i>Ursus arctos</i>).","authors":"Blair W Perry, Anna L McDonald, Shawn Trojahn, Michael W Saxton, Ellery P Vincent, Courtney Lowry, Brandon D Evans Hutzenbiler, Omar E Cornejo, Charles T Robbins, Heiko T Jansen, Joanna L Kelley","doi":"10.1152/physiolgenomics.00030.2023","DOIUrl":"10.1152/physiolgenomics.00030.2023","url":null,"abstract":"<p><p>Hibernation in bears involves a suite of metabolical and physiological changes, including the onset of insulin resistance, that are driven in part by sweeping changes in gene expression in multiple tissues. Feeding bears glucose during hibernation partially restores active season physiological phenotypes, including partial resensitization to insulin, but the molecular mechanisms underlying this transition remain poorly understood. Here, we analyze tissue-level gene expression in adipose, liver, and muscle to identify genes that respond to midhibernation glucose feeding and thus potentially drive postfeeding metabolical and physiological shifts. We show that midhibernation feeding stimulates differential expression in all analyzed tissues of hibernating bears and that a subset of these genes responds specifically by shifting expression toward levels typical of the active season. Inferences of upstream regulatory molecules potentially driving these postfeeding responses implicate peroxisome proliferator-activated receptor gamma (PPARG) and other known regulators of insulin sensitivity, providing new insight into high-level regulatory mechanisms involved in shifting metabolic phenotypes between hibernation and active states.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":"55 9","pages":"368-380"},"PeriodicalIF":2.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10642923/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10047108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01Epub Date: 2023-07-17DOI: 10.1152/physiolgenomics.00013.2023
Colleen G Julian, Julie A Houck, Sahand Fallahi, Litzi Lazo-Vega, Christopher J Matarazzo, Breea Diamond, Valquiria Miranda-Garrido, Bernardo J Krause, Lorna G Moore, Jonathan A Shortt, Lilian Toledo-Jaldin, Ramón A Lorca
High-altitude (>2,500 m) residence increases the risk of pregnancy vascular disorders such as fetal growth restriction and preeclampsia, each characterized by impaired placental function. Genetic attributes of highland ancestry confer relative protection against vascular disorders of pregnancy at high altitudes. Although ion channels have been implicated in placental function regulation, neither their expression in high-altitude placentas nor their relationship to high-altitude preeclampsia has been determined. Here, we measured the expression of 26 ion-channel genes in placentas from preeclampsia cases and normotensive controls in La Paz, Bolivia (3,850 m). In addition, we correlated gene transcription to maternal and infant ancestry proportions. Gene expression was assessed by PCR, genetic ancestry evaluated by ADMIXTURE, and ion channel proteins localized by immunofluorescence. In preeclamptic placentas, 11 genes were downregulated (ABCC9, ATP2A2, CACNA1C, KCNE1, KCNJ8, KCNK3, KCNMA1, KCNQ1, KCNQ4, PKD2, and TRPV6) and two were upregulated (KCNQ3 and SCNN1G). KCNE1 expression was positively correlated with high-altitude Amerindian ancestry and negatively correlated with non-high altitude. SCNN1G was negatively correlated with African ancestry, despite minimal African admixture. Most ion channels were localized in syncytiotrophoblasts (Cav1.2, TRPP2, TRPV6, and Kv7.1), whereas expression of Kv7.4 was primarily in microvillous membranes, Kir6.1 in chorionic plate and fetal vessels, and MinK in stromal cells. Our findings suggest a role for differential placental ion channel expression in the development of preeclampsia. Functional studies are needed to determine processes affected by these ion channels in the placenta and whether therapies directed at modulating their activity could influence the onset or severity of preeclampsia.
{"title":"Altered placental ion channel gene expression in preeclamptic high-altitude pregnancies.","authors":"Colleen G Julian, Julie A Houck, Sahand Fallahi, Litzi Lazo-Vega, Christopher J Matarazzo, Breea Diamond, Valquiria Miranda-Garrido, Bernardo J Krause, Lorna G Moore, Jonathan A Shortt, Lilian Toledo-Jaldin, Ramón A Lorca","doi":"10.1152/physiolgenomics.00013.2023","DOIUrl":"10.1152/physiolgenomics.00013.2023","url":null,"abstract":"<p><p>High-altitude (>2,500 m) residence increases the risk of pregnancy vascular disorders such as fetal growth restriction and preeclampsia, each characterized by impaired placental function. Genetic attributes of highland ancestry confer relative protection against vascular disorders of pregnancy at high altitudes. Although ion channels have been implicated in placental function regulation, neither their expression in high-altitude placentas nor their relationship to high-altitude preeclampsia has been determined. Here, we measured the expression of 26 ion-channel genes in placentas from preeclampsia cases and normotensive controls in La Paz, Bolivia (3,850 m). In addition, we correlated gene transcription to maternal and infant ancestry proportions. Gene expression was assessed by PCR, genetic ancestry evaluated by <i>ADMIXTURE</i>, and ion channel proteins localized by immunofluorescence. In preeclamptic placentas, 11 genes were downregulated (<i>ABCC9</i>, <i>ATP2A2</i>, <i>CACNA1C</i>, <i>KCNE1</i>, <i>KCNJ8</i>, <i>KCNK3</i>, <i>KCNMA1</i>, <i>KCNQ1</i>, <i>KCNQ4</i>, <i>PKD2</i>, and <i>TRPV6</i>) and two were upregulated (<i>KCNQ3</i> and <i>SCNN1G</i>). <i>KCNE1</i> expression was positively correlated with high-altitude Amerindian ancestry and negatively correlated with non-high altitude. <i>SCNN1G</i> was negatively correlated with African ancestry, despite minimal African admixture. Most ion channels were localized in syncytiotrophoblasts (Cav1.2, TRPP2, TRPV6, and Kv7.1), whereas expression of Kv7.4 was primarily in microvillous membranes, Kir6.1 in chorionic plate and fetal vessels, and MinK in stromal cells. Our findings suggest a role for differential placental ion channel expression in the development of preeclampsia. Functional studies are needed to determine processes affected by these ion channels in the placenta and whether therapies directed at modulating their activity could influence the onset or severity of preeclampsia.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":"55 9","pages":"357-367"},"PeriodicalIF":2.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10642922/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10057015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01Epub Date: 2023-07-17DOI: 10.1152/physiolgenomics.00032.2023
Brandon M Bauer, Supriyo Bhattacharya, Elizabeth Bloom-Saldana, Jose M Irimia-Dominguez, Patrick T Fueger
This study investigated the effects of different multiple low doses of streptozotocin (STZ), namely 35 and 55 mg/kg, on the onset and progression of diabetes in mice. Both doses are commonly used in research, and although both induced a loss of beta cell mass, they had distinct effects on whole glucose tolerance, beta cell function, and gene transcription. Mice treated with 55 mg/kg became rapidly glucose intolerant, whereas those treated with 35 mg/kg had a slower onset and remained glucose tolerant for up to a week before becoming equally glucose intolerant as the 55 mg/kg group. Beta cell mass loss was similar between the two groups, but the 35 mg/kg-treated mice had improved glucose-stimulated insulin secretion in gold-standard hyperglycemic clamp studies. Transcriptomic analysis revealed that the 55 mg/kg dose caused disruptions in nearly five times as many genes as the 35 mg/kg dose in isolated pancreatic islets. Pathways that were downregulated in both doses were more downregulated in the 55 mg/kg-treated mice, whereas pathways that were upregulated in both doses were more upregulated in the 35 mg/kg-treated mice. Moreover, we observed a differential downregulation in the 55 mg/kg-treated islets of beta cell characteristic pathways, such as exocytosis or hormone secretion. On the other hand, apoptosis was differentially upregulated in 35 mg/kg-treated islets, suggesting different transcriptional mechanisms in the onset of STZ-induced damage in the islets. This study demonstrates that the two STZ doses induce distinctly mechanistic progressions for the loss of functional beta cell mass.
{"title":"Dose-dependent progression of multiple low-dose streptozotocin-induced diabetes in mice.","authors":"Brandon M Bauer, Supriyo Bhattacharya, Elizabeth Bloom-Saldana, Jose M Irimia-Dominguez, Patrick T Fueger","doi":"10.1152/physiolgenomics.00032.2023","DOIUrl":"10.1152/physiolgenomics.00032.2023","url":null,"abstract":"<p><p>This study investigated the effects of different multiple low doses of streptozotocin (STZ), namely 35 and 55 mg/kg, on the onset and progression of diabetes in mice. Both doses are commonly used in research, and although both induced a loss of beta cell mass, they had distinct effects on whole glucose tolerance, beta cell function, and gene transcription. Mice treated with 55 mg/kg became rapidly glucose intolerant, whereas those treated with 35 mg/kg had a slower onset and remained glucose tolerant for up to a week before becoming equally glucose intolerant as the 55 mg/kg group. Beta cell mass loss was similar between the two groups, but the 35 mg/kg-treated mice had improved glucose-stimulated insulin secretion in gold-standard hyperglycemic clamp studies. Transcriptomic analysis revealed that the 55 mg/kg dose caused disruptions in nearly five times as many genes as the 35 mg/kg dose in isolated pancreatic islets. Pathways that were downregulated in both doses were more downregulated in the 55 mg/kg-treated mice, whereas pathways that were upregulated in both doses were more upregulated in the 35 mg/kg-treated mice. Moreover, we observed a differential downregulation in the 55 mg/kg-treated islets of beta cell characteristic pathways, such as exocytosis or hormone secretion. On the other hand, apoptosis was differentially upregulated in 35 mg/kg-treated islets, suggesting different transcriptional mechanisms in the onset of STZ-induced damage in the islets. This study demonstrates that the two STZ doses induce distinctly mechanistic progressions for the loss of functional beta cell mass.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":"55 9","pages":"381-391"},"PeriodicalIF":4.6,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10642924/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10112805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}