首页 > 最新文献

Physiological genomics最新文献

英文 中文
Genetic mapping of electrocardiographic parameters in BXD strains reveals Chromosome 3 loci to be associated with cardiac repolarization abnormalities. BXD菌株心电图参数的遗传图谱显示3号染色体位点与心脏复极异常有关。
IF 2.5 4区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-08-01 Epub Date: 2025-05-19 DOI: 10.1152/physiolgenomics.00183.2024
Buyan-Ochir Orgil, Fuyi Xu, Ning Li, Akhilesh K Bajpai, Neely R Alberson, Jason N Johnson, Qingqing Gu, Glenn T Wetzel, Jeffrey A Towbin, Lu Lu, Enkhsaikhan Purevjav

Risk factors for cardiac arrhythmias that can cause sudden death and heart failure include genetics, age, lifestyle, and other environmental factors. The study assessed electrocardiography (ECG) traits in BXD mice and explored associated quantitative trait loci (QTLs). Five-minute electrocardiograms were recorded in 44 BXD strains at 4-5 mo of age (n ≥ 5 mice/sex/strain). ECG and arrhythmia traits were associated with echocardiography, blood pressure, genome, and heart transcriptome data followed by expression QTL mapping. A significant variability in ECG parameters and arrhythmias was recorded among BXDs. Among male BXDs, QRS duration was significantly associated with increased left ventricular internal diameter (LVID) and reduced ejection fraction and fractional shortening, whereas premature ventricular contractions (PVCs) were correlated with LVID, left ventricular (LV) volumes, and pulmonary vein peak pressure. In female BXDs, PVCs and premature atrial contractions (PACs) were significantly related with right ventricular ID and cardiac output. One significant QTL associated with QTc and JT durations was identified on Chromosome (Chr) 3 in male BXDs, whereas Chr 9 locus was suggestive for association with QTc and QT intervals in female mice. Gon4l was predicted as a strong candidate gene associated with repolarization abnormalities including short or long QT syndromes in humans. Study results suggested an influence of genetic background on expression of ECG parameters and arrhythmias based on significant variations of those traits between mouse strains of the BXD family. We conclude that murine BXD family can serve as a valuable reference for systems biology and comparative predictions of arrhythmia disorders.NEW & NOTEWORTHY Our study identified significant variances in ECG phenotypes and arrhythmias segregation in BXD mice. A significant quantitative trait locus (QTL) on Chromosome (Chr) 3 in the mouse genome was associated with increased QTc and JT intervals in male BXD mice. A suggestive QTL on Chr 9 associated with QT and QTc intervals was determined in female BXD mice. We identified a strong candidate gene, Gon4l, that may underlie cardiac repolarization abnormalities such as long and short QT syndromes.

背景:可导致猝死和心力衰竭的心律失常的危险因素包括遗传、年龄、生活方式和其他环境因素。目的:研究BXD小鼠的心电图(ECG)特征,并探索相关的数量性状位点(qtl)。方法:4 ~ 5月龄44只BXD鼠(n≥5只/性别/品系),记录5分钟心电图。心电图和心律失常特征与超声心动图、血压、基因组和心脏转录组数据相关,随后进行表达QTL定位。结果:bxd患者在心电图参数和心律失常方面存在显著差异。在男性bxd患者中,QRS持续时间与左室内径(LVID)增加、射血分数和分数缩短显著相关,而室性早搏(PVCs)与LVID、左室容积和肺静脉峰值压相关。在女性bxd中,室性早搏和房性早搏(PACs)与右心室ID和心输出量显著相关。在雄性BXDs中,在染色体(Chr) 3上发现了一个与QTc和JT持续时间相关的显著QTL,而在雌性BXDs中,Chr 9位点提示与QTc和QT间期相关。Gon4l被预测为与复极异常相关的强候选基因,包括人类短QT间期综合征或长QT间期综合征。结论:基于BXD家族小鼠品系之间的显著差异,研究结果提示遗传背景对心电参数和心律失常的表达有影响。我们认为,小鼠BXD家族可以作为系统生物学和心律失常比较预测的有价值的参考。
{"title":"Genetic mapping of electrocardiographic parameters in BXD strains reveals Chromosome 3 loci to be associated with cardiac repolarization abnormalities.","authors":"Buyan-Ochir Orgil, Fuyi Xu, Ning Li, Akhilesh K Bajpai, Neely R Alberson, Jason N Johnson, Qingqing Gu, Glenn T Wetzel, Jeffrey A Towbin, Lu Lu, Enkhsaikhan Purevjav","doi":"10.1152/physiolgenomics.00183.2024","DOIUrl":"10.1152/physiolgenomics.00183.2024","url":null,"abstract":"<p><p>Risk factors for cardiac arrhythmias that can cause sudden death and heart failure include genetics, age, lifestyle, and other environmental factors. The study assessed electrocardiography (ECG) traits in BXD mice and explored associated quantitative trait loci (QTLs). Five-minute electrocardiograms were recorded in 44 BXD strains at 4-5 mo of age (<i>n</i> ≥ 5 mice/sex/strain). ECG and arrhythmia traits were associated with echocardiography, blood pressure, genome, and heart transcriptome data followed by expression QTL mapping. A significant variability in ECG parameters and arrhythmias was recorded among BXDs. Among male BXDs, QRS duration was significantly associated with increased left ventricular internal diameter (LVID) and reduced ejection fraction and fractional shortening, whereas premature ventricular contractions (PVCs) were correlated with LVID, left ventricular (LV) volumes, and pulmonary vein peak pressure. In female BXDs, PVCs and premature atrial contractions (PACs) were significantly related with right ventricular ID and cardiac output. One significant QTL associated with QTc and JT durations was identified on Chromosome (Chr) 3 in male BXDs, whereas Chr 9 locus was suggestive for association with QTc and QT intervals in female mice. <i>Gon4l</i> was predicted as a strong candidate gene associated with repolarization abnormalities including short or long QT syndromes in humans. Study results suggested an influence of genetic background on expression of ECG parameters and arrhythmias based on significant variations of those traits between mouse strains of the BXD family. We conclude that murine BXD family can serve as a valuable reference for systems biology and comparative predictions of arrhythmia disorders.<b>NEW & NOTEWORTHY</b> Our study identified significant variances in ECG phenotypes and arrhythmias segregation in BXD mice. A significant quantitative trait locus (QTL) on Chromosome (Chr) 3 in the mouse genome was associated with increased QTc and JT intervals in male BXD mice. A suggestive QTL on Chr 9 associated with QT and QTc intervals was determined in female BXD mice. We identified a strong candidate gene, <i>Gon4l</i>, that may underlie cardiac repolarization abnormalities such as long and short QT syndromes.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":"456-469"},"PeriodicalIF":2.5,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144102361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vacuole membrane protein 1 and miRNA-21: are they reliable partners to rescue acute kidney injury? 液泡膜蛋白1和miRNA-21:它们是抢救急性肾损伤的可靠伙伴吗?
IF 2.5 4区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-07-01 Epub Date: 2025-04-04 DOI: 10.1152/physiolgenomics.00050.2025
Utpal Sen
{"title":"Vacuole membrane protein 1 and miRNA-21: are they reliable partners to rescue acute kidney injury?","authors":"Utpal Sen","doi":"10.1152/physiolgenomics.00050.2025","DOIUrl":"10.1152/physiolgenomics.00050.2025","url":null,"abstract":"","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":"406-408"},"PeriodicalIF":2.5,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143780594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Myocardial transcriptomic and proteomic landscapes across the menopausal continuum in a murine model of chemically induced accelerated ovarian failure. 在化学诱导的加速卵巢衰竭小鼠模型中,心肌转录组学和蛋白质组学景观贯穿绝经连续体。
IF 2.5 4区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-07-01 Epub Date: 2025-04-23 DOI: 10.1152/physiolgenomics.00133.2024
Marissa A Lopez-Pier, Vito A Marino, Andrea C Vazquez-Loreto, Rinku S Skaria, Danielle K Cannon, Christina H Hoyer-Kimura, Alice E Solomon, Yulia Lipovka, Kevin Doubleday, Maricela Pier, Meinsung Chu, Rachel Mayfield, Samantha M Behunin, Tianjing Hu, Paul R Langlais, Timothy A McKinsey, John P Konhilas

Risk of cardiovascular disease (CVD) in women increases with the menopausal transition. Using a chemical model (4-vinylcyclohexene diepoxide; VCD) of accelerated ovarian failure, we previously demonstrated that menopausal females are more susceptible to CVD compared with peri- or premenopausal females like humans. Yet, the cellular and molecular mechanisms underlying this shift in CVD susceptibility across the pre- to peri- to menopause continuum remain understudied. In this work using the VCD mouse model, we phenotyped cellular and molecular signatures from hearts at each hormonally distinct stage that included transcriptomic, proteomic, and cell biological analyses. The transcriptional profile of premenopausal hearts clustered separately from perimenopausal and menopausal hearts, which clustered more similarly. Proteomics also revealed hormonal clustering; perimenopausal hearts grouped more closely with premenopausal than menopausal hearts. Both proteomes and transcriptomes showed similar trends in genes associated with atherothrombosis, contractility, and impaired nuclear signaling between pre-, peri-, and menopausal murine hearts. Further analysis of posttranslational modifications (PTMs) showed hormone-dependent shifts in the phosphoproteome and acetylome. To further interrogate these findings, we triggered pathological remodeling using angiotensin II (Ang II). Phosphorylation of AMP-activated protein kinase (AMPK) signaling and histone deacetylase (HDAC) activity were found to be dependent on hormonal status and Ang II stimulation. Finally, knockdown of anti-inflammatory regulatory T cells (Treg) exacerbated Ang II-dependent fibrosis implicating HDAC-mediated epigenetic suppression of Treg activity. Taken together, we demonstrated unique cellular and molecular profiles underlying the cardiac phenotype of pre-, peri-, and menopausal mice supporting the necessity to study CVD in females across the hormonal transition.NEW & NOTEWORTHY Cycling and perimenopausal females are protected from cardiovascular disease (CVD) whereas menopausal females are more susceptible to CVD and other pathological sequalae. The cellular and molecular mechanisms underlying loss of CVD protection across the pre- to peri- to menopause transition remain understudied. Using the murine 4-vinylcyclohexene diepoxide (VCD) model of menopause we highlight cellular and molecular signatures from hearts at each hormonally distinct stage that included transcriptomic, proteomic, and cell biological analyses.

妇女患心血管疾病(CVD)的风险随着绝经期的过渡而增加。使用化学模型(4-乙烯基环己烯二氧化物;VCD)加速卵巢功能衰竭,我们之前证明更年期女性比绝经前后的女性更容易患心血管疾病。然而,在绝经前至绝经期至绝经期期间CVD易感性转变背后的细胞和分子机制仍未得到充分研究。在这项利用VCD小鼠模型的工作中,我们对心脏在每个激素不同阶段的细胞和分子特征进行了表型分析,包括转录组学、蛋白质组学和细胞生物学分析。绝经前心脏的转录谱与围绝经期和绝经期心脏的转录谱不同,围绝经期和绝经期心脏的转录谱更相似。蛋白质组学还揭示了激素聚类;与绝经期心脏相比,围绝经期心脏与绝经前心脏更接近。在绝经前、围绝经期和绝经期小鼠心脏中,蛋白质组和转录组都显示出与动脉粥样硬化血栓形成、收缩性和核信号受损相关的基因的相似趋势。进一步的翻译后修饰分析显示,磷酸化蛋白质组和乙酰基组发生了激素依赖性的变化。为了进一步探究这些发现,我们使用血管紧张素II (Ang II)触发病理性重塑。发现amp活化蛋白激酶(AMPK)信号的磷酸化和组蛋白去乙酰化酶(HDAC)活性依赖于激素状态和Ang II刺激。最后,抗炎调节性T细胞(Treg)的下调加重了Ang ii依赖性纤维化,这可能与hdac介导的Treg活性的表观遗传抑制有关。综上所述,我们证明了绝经前、绝经期和绝经期小鼠心脏表型的独特细胞和分子特征,支持了在激素过渡期间研究雌性心血管疾病的必要性。
{"title":"Myocardial transcriptomic and proteomic landscapes across the menopausal continuum in a murine model of chemically induced accelerated ovarian failure.","authors":"Marissa A Lopez-Pier, Vito A Marino, Andrea C Vazquez-Loreto, Rinku S Skaria, Danielle K Cannon, Christina H Hoyer-Kimura, Alice E Solomon, Yulia Lipovka, Kevin Doubleday, Maricela Pier, Meinsung Chu, Rachel Mayfield, Samantha M Behunin, Tianjing Hu, Paul R Langlais, Timothy A McKinsey, John P Konhilas","doi":"10.1152/physiolgenomics.00133.2024","DOIUrl":"10.1152/physiolgenomics.00133.2024","url":null,"abstract":"<p><p>Risk of cardiovascular disease (CVD) in women increases with the menopausal transition. Using a chemical model (4-vinylcyclohexene diepoxide; VCD) of accelerated ovarian failure, we previously demonstrated that menopausal females are more susceptible to CVD compared with peri- or premenopausal females like humans. Yet, the cellular and molecular mechanisms underlying this shift in CVD susceptibility across the pre- to peri- to menopause continuum remain understudied. In this work using the VCD mouse model, we phenotyped cellular and molecular signatures from hearts at each hormonally distinct stage that included transcriptomic, proteomic, and cell biological analyses. The transcriptional profile of premenopausal hearts clustered separately from perimenopausal and menopausal hearts, which clustered more similarly. Proteomics also revealed hormonal clustering; perimenopausal hearts grouped more closely with premenopausal than menopausal hearts. Both proteomes and transcriptomes showed similar trends in genes associated with atherothrombosis, contractility, and impaired nuclear signaling between pre-, peri-, and menopausal murine hearts. Further analysis of posttranslational modifications (PTMs) showed hormone-dependent shifts in the phosphoproteome and acetylome. To further interrogate these findings, we triggered pathological remodeling using angiotensin II (Ang II). Phosphorylation of AMP-activated protein kinase (AMPK) signaling and histone deacetylase (HDAC) activity were found to be dependent on hormonal status and Ang II stimulation. Finally, knockdown of anti-inflammatory regulatory T cells (Treg) exacerbated Ang II-dependent fibrosis implicating HDAC-mediated epigenetic suppression of Treg activity. Taken together, we demonstrated unique cellular and molecular profiles underlying the cardiac phenotype of pre-, peri-, and menopausal mice supporting the necessity to study CVD in females across the hormonal transition.<b>NEW & NOTEWORTHY</b> Cycling and perimenopausal females are protected from cardiovascular disease (CVD) whereas menopausal females are more susceptible to CVD and other pathological sequalae. The cellular and molecular mechanisms underlying loss of CVD protection across the pre- to peri- to menopause transition remain understudied. Using the murine 4-vinylcyclohexene diepoxide (VCD) model of menopause we highlight cellular and molecular signatures from hearts at each hormonally distinct stage that included transcriptomic, proteomic, and cell biological analyses.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":"409-430"},"PeriodicalIF":2.5,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12212010/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144050053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptional dynamics of sleep deprivation and subsequent recovery sleep in the male mouse cortex. 睡眠剥夺和随后恢复睡眠在雄性小鼠皮层的转录动力学。
IF 2.5 4区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-07-01 Epub Date: 2025-05-02 DOI: 10.1152/physiolgenomics.00128.2024
Alexander Popescu, Caitlin Ottaway, Kaitlyn Ford, Elizabeth Medina, Taylor Wintler Patterson, Ashley Ingiosi, Stephanie C Hicks, Kristan Singletary, Lucia Peixoto

Sleep is an essential, tightly regulated biological function. Sleep is also a homeostatic process, with the need to sleep increasing as a function of being awake. Acute sleep deprivation (SD) increases sleep need, and subsequent recovery sleep (RS) discharges it. SD is known to alter brain gene expression in rodents, but it remains unclear which changes are linked to sleep homeostasis. To investigate this question, we analyzed RNA-seq data from adult male mice subjected to 3 and 5-6 h of SD and 2 and 6 h of subsequent RS. We hypothesized that molecular changes associated with sleep homeostasis would mirror sleep pressure dynamics as defined by brain electrical activity, peaking at 5-6 h of SD and no longer differentially expressed after 2 h of RS. We report that 5-6 h of SD produces the largest effect on gene expression, and the majority of differentially expressed genes normalize after 2 h of RS. These genes are involved in cellular redox homeostasis, DNA damage/repair, and chromatin regulation and may underlie the molecular basis of sleep homeostasis. Genes associated with cellular stress do not normalize within 6 h of RS and may underlie non-sleep-specific effects of SD. In addition, RS affects gene expression related to energy metabolism and Wnt-signaling, potentially contributing to its restorative effects. Finally, our study also points to the regulation of expression of a subset of circadian transcription factors as a function of sleep need. Overall, our results offer novel insights into the molecular mechanisms underlying sleep homeostasis and the broader effects of SD.NEW & NOTEWORTHY This study investigates different time points of sleep deprivation and recovery sleep to better understand the molecular processes influenced by sleep and lack of sleep. This study highlights redox metabolism, chromatin regulation, and DNA damage/repair as molecular mechanisms linked to sleep homeostasis while showing the effects of stress are probably non-sleep-specific based on transcriptional dynamics.

睡眠是一种重要的、受到严格调节的生物功能。睡眠也是一个自我平衡的过程,随着清醒,对睡眠的需求也在增加。急性睡眠剥夺(SD)会增加睡眠需求,随后的恢复性睡眠(RS)会消除这种需求。SD可以改变啮齿动物的大脑基因表达,但目前尚不清楚哪些变化与睡眠稳态有关。为了研究这个问题,我们分析了接受3小时和5-6小时SD以及随后2小时和6小时RS的成年雄性小鼠的RNA-seq数据。我们假设与睡眠稳态相关的分子变化反映了由脑电活动定义的睡眠压力动态。我们报告说,5-6小时的睡眠对基因表达的影响最大,大多数deg在2小时后恢复正常,这些基因参与细胞氧化还原稳态、DNA损伤/修复和染色质调节,可能是睡眠稳态的分子基础。与细胞应激相关的基因在睡眠后6小时内不会恢复正常,这可能是睡眠障碍非睡眠特异性效应的基础。此外,RS影响与能量代谢和wnt信号相关的基因表达,可能有助于其恢复作用。最后,我们的研究还指出了昼夜节律转录因子子集的表达调节作为睡眠需求的功能。总的来说,我们的研究结果为睡眠稳态的分子机制和SD的更广泛影响提供了新的见解。
{"title":"Transcriptional dynamics of sleep deprivation and subsequent recovery sleep in the male mouse cortex.","authors":"Alexander Popescu, Caitlin Ottaway, Kaitlyn Ford, Elizabeth Medina, Taylor Wintler Patterson, Ashley Ingiosi, Stephanie C Hicks, Kristan Singletary, Lucia Peixoto","doi":"10.1152/physiolgenomics.00128.2024","DOIUrl":"10.1152/physiolgenomics.00128.2024","url":null,"abstract":"<p><p>Sleep is an essential, tightly regulated biological function. Sleep is also a homeostatic process, with the need to sleep increasing as a function of being awake. Acute sleep deprivation (SD) increases sleep need, and subsequent recovery sleep (RS) discharges it. SD is known to alter brain gene expression in rodents, but it remains unclear which changes are linked to sleep homeostasis. To investigate this question, we analyzed RNA-seq data from adult male mice subjected to 3 and 5-6 h of SD and 2 and 6 h of subsequent RS. We hypothesized that molecular changes associated with sleep homeostasis would mirror sleep pressure dynamics as defined by brain electrical activity, peaking at 5-6 h of SD and no longer differentially expressed after 2 h of RS. We report that 5-6 h of SD produces the largest effect on gene expression, and the majority of differentially expressed genes normalize after 2 h of RS. These genes are involved in cellular redox homeostasis, DNA damage/repair, and chromatin regulation and may underlie the molecular basis of sleep homeostasis. Genes associated with cellular stress do not normalize within 6 h of RS and may underlie non-sleep-specific effects of SD. In addition, RS affects gene expression related to energy metabolism and Wnt-signaling, potentially contributing to its restorative effects. Finally, our study also points to the regulation of expression of a subset of circadian transcription factors as a function of sleep need. Overall, our results offer novel insights into the molecular mechanisms underlying sleep homeostasis and the broader effects of SD.<b>NEW & NOTEWORTHY</b> This study investigates different time points of sleep deprivation and recovery sleep to better understand the molecular processes influenced by sleep and lack of sleep. This study highlights redox metabolism, chromatin regulation, and DNA damage/repair as molecular mechanisms linked to sleep homeostasis while showing the effects of stress are probably non-sleep-specific based on transcriptional dynamics.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":"431-445"},"PeriodicalIF":2.5,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12140865/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143974390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alternative splicing of CADM1 in preeclampsia: implications for endothelial dysfunction and offspring cardiovascular risk. 子痫前期CADM1的选择性剪接:内皮功能障碍和后代心血管风险的影响
IF 2.5 4区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-07-01 Epub Date: 2025-04-04 DOI: 10.1152/physiolgenomics.00047.2025
Brandon M Schickling, Mark K Santillan, Donna A Santillan
{"title":"Alternative splicing of CADM1 in preeclampsia: implications for endothelial dysfunction and offspring cardiovascular risk.","authors":"Brandon M Schickling, Mark K Santillan, Donna A Santillan","doi":"10.1152/physiolgenomics.00047.2025","DOIUrl":"10.1152/physiolgenomics.00047.2025","url":null,"abstract":"","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":"403-405"},"PeriodicalIF":2.5,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143780590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The acute effects of neuromuscular electrical stimulation on coagulation and cardiovascular factors. 神经肌肉电刺激对凝血和心血管因子的急性影响。
IF 2.5 4区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-06-01 Epub Date: 2025-04-16 DOI: 10.1152/physiolgenomics.00172.2024
Johanna Flodin, Stefan M Reitzner, Nida Mahmoud Hourani Soutari, Aisha S Ahmed, Li Guo, Nils-Krister Persson, Jovan P Antovic, Paul W Ackermann

Neuromuscular electrical stimulation (NMES) can potentially be used to prevent venous thromboembolism; however, its impact on coagulation-related factors remains poorly understood. We aimed to investigate the acute effects on coagulation- and cardiovascular factors immediately after a 2-h NMES session. Levels of overall hemostatic potential (OHP), fibrinogen, factor VIII, and Olink proteomic cardiovascular factors were assessed before and after the NMES session in 36 healthy participants (20 males and 16 females) with a mean age of 31.9 yr. NMES was administered using integrated textile electrodes in pants (NMES pants). Mean intensities during the quadriceps, hamstrings, and gluteus muscle stimulation were 16.5, 20.5, and 25.4 mA, respectively, corresponding to submaximal intensity levels with acceptable discomfort (just below 4 on the visual analogue scale [VAS], 0-10). The NMES session resulted in a significant increase in mean (SD) OHP [94.4 (28.3) to 103 (31.0)], and overall coagulation potential [292 (50.4) to 307(49.8)], and a decrease in overall fibrinolytic potential [68.2 (5.46) to 67.1 (5.20)]. These changes were highly correlated with the increase in fibrinogen (all R > 0.7, P ≤ 0.001), but not with the increase in factor VIII. In addition, 18 of 92 cardiovascular proteins, specifically those involved in regulating inflammation and extracellular matrix remodeling, were influenced by NMES; however, low correlations were found between the changes in these proteins and OHP analyses. In conclusion, the NMES session resulted in a slight increase in the coagulative state, mirroring that seen after a bout of regular exercise. The changes observed in cardiovascular factors, which are mostly not directly related to coagulation, suggest that NMES may subsequently modulate inflammatory responses, warranting further investigation.NEW & NOTEWORTHY The immediate response to a 2-h neuromuscular electrical stimulation (NMES) session, delivered at an acceptable level of discomfort using NMES-pants, marginally increases the coagulative state, similar to what is observed after regular physical exercise. This change is not expected to significantly increase the risk of blood clotting, as all factors remain within the normal reference range. Interestingly, NMES simultaneously appears to affect proteins that regulate the transition of inflammation into an anti-inflammatory response.

神经肌肉电刺激(NMES)可以潜在地用于预防静脉血栓栓塞;然而,其对凝血相关因素的影响仍然知之甚少。我们的目的是研究NMES 2小时后对凝血和心血管因子的急性影响。36名平均年龄为31.9岁的健康参与者(20名男性和16名女性)在NMES治疗前后评估了总止血电位(OHP)、纤维蛋白原、因子VIII和Olink蛋白质组心血管因子的水平。NMES使用集成的纺织品电极植入裤子(NMES裤子)。股四头肌、腘绳肌和臀肌刺激的平均强度分别为16.5、20.5和25.4 mA,对应于可接受不适的次最大强度水平(视觉模拟评分[VAS] 0-10略低于4)。NMES组的平均(SD) OHP从94.4(28.3)上升到103(31.0),总凝血电位从292(50.4)上升到307(49.8),总纤溶电位从68.2(5.46)下降到67.1(5.20)。这些变化与纤维蛋白原升高高度相关(均R < 0.7, P≤0.001),但与因子VIII升高无关。此外,92种心血管蛋白中的18种,特别是那些参与调节炎症和细胞外基质重塑的蛋白,受到NMES的影响;然而,在这些蛋白质的变化和OHP分析之间发现了低相关性。综上所述,NMES疗程导致凝血状态略有增加,与常规锻炼后的结果一致。观察到的心血管因素的变化,大多与凝血没有直接关系,表明NMES可能随后调节炎症反应,值得进一步研究。新的和值得注意的是,在可接受的不适水平下,使用神经肌肉电刺激(NMES)裤进行2小时的神经肌肉电刺激(NMES)的即时反应,会略微增加凝血状态,类似于常规体育锻炼后观察到的结果。这一变化预计不会显著增加凝血风险,因为所有因素仍在正常参考范围内。有趣的是,NMES似乎同时影响调节炎症向抗炎反应转变的蛋白质。
{"title":"The acute effects of neuromuscular electrical stimulation on coagulation and cardiovascular factors.","authors":"Johanna Flodin, Stefan M Reitzner, Nida Mahmoud Hourani Soutari, Aisha S Ahmed, Li Guo, Nils-Krister Persson, Jovan P Antovic, Paul W Ackermann","doi":"10.1152/physiolgenomics.00172.2024","DOIUrl":"https://doi.org/10.1152/physiolgenomics.00172.2024","url":null,"abstract":"<p><p>Neuromuscular electrical stimulation (NMES) can potentially be used to prevent venous thromboembolism; however, its impact on coagulation-related factors remains poorly understood. We aimed to investigate the acute effects on coagulation- and cardiovascular factors immediately after a 2-h NMES session. Levels of overall hemostatic potential (OHP), fibrinogen, factor VIII, and Olink proteomic cardiovascular factors were assessed before and after the NMES session in 36 healthy participants (20 males and 16 females) with a mean age of 31.9 yr. NMES was administered using integrated textile electrodes in pants (NMES pants). Mean intensities during the quadriceps, hamstrings, and gluteus muscle stimulation were 16.5, 20.5, and 25.4 mA, respectively, corresponding to submaximal intensity levels with acceptable discomfort (just below 4 on the visual analogue scale [VAS], 0-10). The NMES session resulted in a significant increase in mean (SD) OHP [94.4 (28.3) to 103 (31.0)], and overall coagulation potential [292 (50.4) to 307(49.8)], and a decrease in overall fibrinolytic potential [68.2 (5.46) to 67.1 (5.20)]. These changes were highly correlated with the increase in fibrinogen (all <i>R</i> > 0.7, <i>P</i> ≤ 0.001), but not with the increase in factor VIII. In addition, 18 of 92 cardiovascular proteins, specifically those involved in regulating inflammation and extracellular matrix remodeling, were influenced by NMES; however, low correlations were found between the changes in these proteins and OHP analyses. In conclusion, the NMES session resulted in a slight increase in the coagulative state, mirroring that seen after a bout of regular exercise. The changes observed in cardiovascular factors, which are mostly not directly related to coagulation, suggest that NMES may subsequently modulate inflammatory responses, warranting further investigation.<b>NEW & NOTEWORTHY</b> The immediate response to a 2-h neuromuscular electrical stimulation (NMES) session, delivered at an acceptable level of discomfort using NMES-pants, marginally increases the coagulative state, similar to what is observed after regular physical exercise. This change is not expected to significantly increase the risk of blood clotting, as all factors remain within the normal reference range. Interestingly, NMES simultaneously appears to affect proteins that regulate the transition of inflammation into an anti-inflammatory response.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":"57 6","pages":"391-402"},"PeriodicalIF":2.5,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144040593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Colonic responses to aspirin treatment: transcriptome effects by dose, time, and ancestry. 阿司匹林治疗的结肠应答——剂量、时间和祖先的转录组效应。
IF 2.5 4区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-06-01 Epub Date: 2025-03-25 DOI: 10.1152/physiolgenomics.00043.2025
Victor Guryev
{"title":"Colonic responses to aspirin treatment: transcriptome effects by dose, time, and ancestry.","authors":"Victor Guryev","doi":"10.1152/physiolgenomics.00043.2025","DOIUrl":"10.1152/physiolgenomics.00043.2025","url":null,"abstract":"","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":"383-384"},"PeriodicalIF":2.5,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143701284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A genetic variant associated with aquaporin 3 expression is correlated to in-hospital death in COVID-19 patients with extracellular hyperosmolality. 一种与水通道蛋白3表达相关的基因变异与细胞外高渗COVID-19患者的院内死亡相关。
IF 2.5 4区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-06-01 Epub Date: 2025-04-21 DOI: 10.1152/physiolgenomics.00174.2024
Michael Marks-Hultström, Amanda M Marks, Guillaume Butler-Laporte, Satoshi Yoshiji, Tianyuan Lu, Dave R Morrison, Tomoko Nakanishi, Yiheng Chen, Vincenzo Forgetta, Yossi Farjoun, Robert Frithiof, Miklos Lipcsey, Hugo Zeberg, J Brent Richards

Hyperosmolality is increasingly recognized as a factor contributing to severe COVID-19. Recently, a genetic variant near the aquaporin 3 (AQP3) water channel was associated with severe COVID-19 [rs60840586:G; odds ratio (OR): 1.07, P = 2.5 × 10-9]. The variant is known to increase gene expression of AQP3 in several organs, including the lung [normalized expression scores (NES) = 0.33, P = 4.1 × 10-20] in GTEx. In this study, we investigated 576 patients in the Biobanque Quebecoise de la COVID-19 (BQC-19) with both genetic and clinical data available. We estimated plasma osmolality using the formula: eOSM = 2 × [Na+] + 2 × [K+] + [Urea] + [Glucose]. Using a logistic regression of mortality against eOSM, genotype at rs60840586, sex, age, and the first 10 genetic principal components, we confirm that hyperosmolality is associated with COVID-19 mortality (OR = 2.06 [95% CI = 1.62-2.65], P = 9.13 × 10-9). Interestingly, we found that the risk of death linked to hyperosmolality is influenced by the AQP3 variant rs60840586:G genotype (OR = 1.95 [95% CI = 1.22-3.28], P = 0.0075). However, the rs60840586 genotype did not independently affect mortality in this cohort. These findings suggest that the body's ability to regulate and accommodate hyperosmolality may be disrupted by overexpression of AQP3, potentially worsening outcomes in COVID-19. Given the role of AQP3 in water transport and homeostasis, further defining the functionality of its variants may provide key insights into COVID-19 severity and guide clinical management strategies, particularly in critically ill patients with hyperosmolality.NEW & NOTEWORTHY A genetic variant near water channel AQP3, linked to severe COVID-19, amplifies the risk of death in patients with elevated plasma osmolality. In patients hospitalized with COVID-19, we show that although the variant does not affect systemic osmolality directly, it interacts with hyperosmolality to increase mortality risk. These findings highlight a potential mechanism where AQP3 overexpression disrupts cellular water handling during critical illness, offering new insight into the role of water balance in COVID-19 pathophysiology.

高渗透压越来越被认为是导致严重COVID-19的一个因素。最近,一种靠近水通道蛋白3 (AQP3)水通道的遗传变异与严重的COVID-19有关[rs60840586:G;优势比(OR): 1.07, P = 2.5 × 10-9]。已知该变异可增加包括肺在内的多个器官AQP3的基因表达[标准化表达评分(normalized expression scores, NES) = 0.33, P = 4.1 × 10-20]。在这项研究中,我们调查了576名在魁北克生物银行(BQC-19)获得遗传和临床数据的患者。我们使用公式估算血浆渗透压:eOSM = 2 × [Na+] + 2 × [K+] +[尿素]+[葡萄糖]。通过对eOSM、rs60840586基因型、性别、年龄和前10个遗传主成分的死亡率进行logistic回归,我们证实高渗透压与COVID-19死亡率相关(OR = 2.06 [95% CI = 1.62-2.65], P = 9.13 × 10-9)。有趣的是,我们发现与高渗透压相关的死亡风险受AQP3变异rs60840586:G基因型的影响(OR = 1.95 [95% CI = 1.22-3.28], P = 0.0075)。然而,rs60840586基因型并没有独立影响该队列的死亡率。这些发现表明,身体调节和适应高渗的能力可能会因AQP3的过度表达而中断,从而可能恶化COVID-19的预后。鉴于AQP3在水转运和体内平衡中的作用,进一步确定其变异的功能可能为了解COVID-19严重程度提供关键见解,并指导临床管理策略,特别是对高渗危重患者。水通道AQP3附近的一种基因变异与严重的COVID-19有关,可增加血浆渗透压升高患者的死亡风险。在因COVID-19住院的患者中,我们发现尽管该变异不直接影响全身渗透压,但它与高渗透压相互作用,增加死亡风险。这些发现突出了AQP3过表达在危重疾病期间破坏细胞水处理的潜在机制,为水平衡在COVID-19病理生理中的作用提供了新的见解。
{"title":"A genetic variant associated with aquaporin 3 expression is correlated to in-hospital death in COVID-19 patients with extracellular hyperosmolality.","authors":"Michael Marks-Hultström, Amanda M Marks, Guillaume Butler-Laporte, Satoshi Yoshiji, Tianyuan Lu, Dave R Morrison, Tomoko Nakanishi, Yiheng Chen, Vincenzo Forgetta, Yossi Farjoun, Robert Frithiof, Miklos Lipcsey, Hugo Zeberg, J Brent Richards","doi":"10.1152/physiolgenomics.00174.2024","DOIUrl":"https://doi.org/10.1152/physiolgenomics.00174.2024","url":null,"abstract":"<p><p>Hyperosmolality is increasingly recognized as a factor contributing to severe COVID-19. Recently, a genetic variant near the aquaporin 3 (<i>AQP3</i>) water channel was associated with severe COVID-19 [rs60840586:G; odds ratio (OR): 1.07, <i>P</i> = 2.5 × 10<sup>-9</sup>]. The variant is known to increase gene expression of AQP3 in several organs, including the lung [normalized expression scores (NES) = 0.33, <i>P</i> = 4.1 × 10<sup>-20</sup>] in GTEx. In this study, we investigated 576 patients in the Biobanque Quebecoise de la COVID-19 (BQC-19) with both genetic and clinical data available. We estimated plasma osmolality using the formula: eOSM = 2 × [Na<sup>+</sup>] + 2 × [K<sup>+</sup>] + [Urea] + [Glucose]. Using a logistic regression of mortality against eOSM, genotype at rs60840586, sex, age, and the first 10 genetic principal components, we confirm that hyperosmolality is associated with COVID-19 mortality (OR = 2.06 [95% CI = 1.62-2.65], <i>P</i> = 9.13 × 10<sup>-9</sup>). Interestingly, we found that the risk of death linked to hyperosmolality is influenced by the <i>AQP3</i> variant rs60840586:G genotype (OR = 1.95 [95% CI = 1.22-3.28], <i>P</i> = 0.0075). However, the rs60840586 genotype did not independently affect mortality in this cohort. These findings suggest that the body's ability to regulate and accommodate hyperosmolality may be disrupted by overexpression of <i>AQP3</i>, potentially worsening outcomes in COVID-19. Given the role of AQP3 in water transport and homeostasis, further defining the functionality of its variants may provide key insights into COVID-19 severity and guide clinical management strategies, particularly in critically ill patients with hyperosmolality.<b>NEW & NOTEWORTHY</b> A genetic variant near water channel <i>AQP3</i>, linked to severe COVID-19, amplifies the risk of death in patients with elevated plasma osmolality. In patients hospitalized with COVID-19, we show that although the variant does not affect systemic osmolality directly, it interacts with hyperosmolality to increase mortality risk. These findings highlight a potential mechanism where AQP3 overexpression disrupts cellular water handling during critical illness, offering new insight into the role of water balance in COVID-19 pathophysiology.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":"57 6","pages":"385-390"},"PeriodicalIF":2.5,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144009586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular insights into human soleus muscle atrophy development: long-term dry immersion effects on the transcriptomic profile and posttranslational signaling. 人类比目鱼肌萎缩发展的分子洞察:长期干浸泡对转录组学特征和翻译后信号传导的影响。
IF 2.5 4区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-06-01 Epub Date: 2025-03-12 DOI: 10.1152/physiolgenomics.00196.2024
Roman O Bokov, Kristina A Sharlo, Natalia A Vilchinskaya, Sergey A Tyganov, Olga V Turtikova, Sergey V Rozhkov, Ruslan M Deviatiiarov, Oleg A Gusev, Elena S Tomilovskaya, Boris S Shenkman, Oleg I Orlov

Muscle disuse results in complex signaling alterations followed by structural and functional changes, such as atrophy, force decrease, and slow-to-fast fiber-type shift. Little is known about human skeletal muscle signaling alterations under long-term muscle disuse. In this study, we describe the effects of 21-day dry immersion on human postural soleus muscle. We performed both transcriptomic analysis and Western blots to describe the states of the key signaling pathways regulating soleus muscle fiber size, fiber type, and metabolism. Twenty-one-day dry immersion resulted in both slow-type and fast-type myofibers atrophy, downregulation of rRNA content, and mTOR signaling. Twenty-one-day dry immersion also leads to slow-to-fast fiber-type and gene expression shift, upregulation of p-eEF2, p-CaMKII, p-ACC content and downregulation of NFATc1 nuclear content. It also caused massive gene expression alterations associated with calcium signaling, cytoskeletal parameters, and downregulated mitochondrial signaling (including fusion, fission, and marker of mitochondrial density).NEW & NOTEWORTHY The main findings of our study are as follows: 1) The soleus slow fibers atrophy after 21-day dry immersion (DI) does not exceed that after 7-day DI; 2) The soleus ubiquitin ligases expression after 21-day DI returns to its initial level; 3) The soleus slow fibers atrophy after 21-day DI is accompanied by a mitochondrial apparatus structural markers decrease; 4) The soleus fibers signaling pathways restructuring process during 21-day DI is carried out in a complex manner.

背景:肌肉废用导致复杂的信号改变,随后是结构和功能的改变,如萎缩、力下降和纤维类型从慢到快的转变。在长期肌肉不使用的情况下,人类骨骼肌信号的改变知之甚少。方法:在这项研究中,我们描述了21天的干浸泡对人体体位比目鱼肌的影响。我们进行了转录组学分析和Western blots来描述调节比目鱼肌纤维大小、纤维类型和代谢的关键信号通路的状态。结果:21天的干浸泡导致慢型和快型肌纤维萎缩,rRNA含量下调,mTOR信号传导下调。干浸21 d还会导致纤维类型和基因表达从慢到快的转变,p-eEF2、p-CaMKII、p-ACC含量上调,NFATc1核含量下调。它还引起与钙信号、细胞骨架参数和下调线粒体信号(包括融合、裂变和线粒体密度标记)相关的大量基因表达改变。
{"title":"Molecular insights into human soleus muscle atrophy development: long-term dry immersion effects on the transcriptomic profile and posttranslational signaling.","authors":"Roman O Bokov, Kristina A Sharlo, Natalia A Vilchinskaya, Sergey A Tyganov, Olga V Turtikova, Sergey V Rozhkov, Ruslan M Deviatiiarov, Oleg A Gusev, Elena S Tomilovskaya, Boris S Shenkman, Oleg I Orlov","doi":"10.1152/physiolgenomics.00196.2024","DOIUrl":"10.1152/physiolgenomics.00196.2024","url":null,"abstract":"<p><p>Muscle disuse results in complex signaling alterations followed by structural and functional changes, such as atrophy, force decrease, and slow-to-fast fiber-type shift. Little is known about human skeletal muscle signaling alterations under long-term muscle disuse. In this study, we describe the effects of 21-day dry immersion on human postural soleus muscle. We performed both transcriptomic analysis and Western blots to describe the states of the key signaling pathways regulating soleus muscle fiber size, fiber type, and metabolism. Twenty-one-day dry immersion resulted in both slow-type and fast-type myofibers atrophy, downregulation of rRNA content, and mTOR signaling. Twenty-one-day dry immersion also leads to slow-to-fast fiber-type and gene expression shift, upregulation of p-eEF2, p-CaMKII, p-ACC content and downregulation of NFATc1 nuclear content. It also caused massive gene expression alterations associated with calcium signaling, cytoskeletal parameters, and downregulated mitochondrial signaling (including fusion, fission, and marker of mitochondrial density).<b>NEW & NOTEWORTHY</b> The main findings of our study are as follows: <i>1</i>) The soleus slow fibers atrophy after 21-day dry immersion (DI) does not exceed that after 7-day DI; <i>2</i>) The soleus ubiquitin ligases expression after 21-day DI returns to its initial level; <i>3</i>) The soleus slow fibers atrophy after 21-day DI is accompanied by a mitochondrial apparatus structural markers decrease; <i>4</i>) The soleus fibers signaling pathways restructuring process during 21-day DI is carried out in a complex manner.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":"357-382"},"PeriodicalIF":2.5,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143615994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Divergent multiomic acute exercise responses reveal the impact of sex as a biological variable. 不同的多组急性运动反应揭示性别作为一个生物学变量的影响。
IF 2.5 4区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-05-01 Epub Date: 2025-02-27 DOI: 10.1152/physiolgenomics.00055.2024
Kaleen M Lavin, Samia M O'Bryan, Khyatiben V Pathak, Krystine Garcia-Mansfield, Zachary A Graham, Jeremy S McAdam, Devin J Drummer, Margaret B Bell, Christian J Kelley, Manoel E Lixandrão, Brandon Peoples, Regina S Seay, Anakaren R Torres, Rebecca Reiman, Eric Alsop, Elizabeth Hutchins, Anna Bonfitto, Jerry Antone, Joanna Palade, Kendall Van Keuren-Jensen, Matthew J Huentelman, Patrick Pirrotte, Timothy Broderick, Marcas M Bamman

The majority of exercise physiology research has been conducted in males, resulting in a skewed biological representation of how exercise impacts the physiological system. Extrapolating male-centric physiological findings to females is not universally appropriate and may even be detrimental. Thus, addressing this imbalance and taking into consideration sex as a biological variable is mandatory for optimization of precision exercise interventions and/or regimens. Our present analysis focused on establishing multiomic profiles in young, exercise-naïve males (n = 23) and females (n = 17) at rest and following acute exercise. Sex differences were characterized at baseline and following exercise using skeletal muscle and extracellular vesicle transcriptomics, whole blood methylomics, and serum metabolomics. Sex-by-time analysis of the acute exercise response revealed notable overlap, and divergent molecular responses between males and females. An exploratory comparison of two combined exercise regimens [high-intensity tactical training (HITT) and traditional (TRAD)] was then performed using singular value decomposition, revealing latent data structures that suggest a complex dose-by-sex interaction response to exercise. These findings lay the groundwork for an understanding of key differences in responses to acute exercise exposure between sexes. This may be leveraged in designing optimal training strategies, understanding common and divergent molecular interplay guiding exercise responses, and elucidating the role of sex hormones and/or other sex-specific attributes in responses to acute and chronic exercise.NEW & NOTEWORTHY This study examined methylomics, transcriptomics, and metabolomics in circulation and/or skeletal muscle of young, healthy, exercise-naïve males and females before and after exposure to either traditional combined exercise (TRAD) and high-intensity tactical training (HITT). Across 40 young adults, we found an overlapping yet considerably sex-divergent response in the molecular mechanisms activated by exercise. These findings may provide insight into optimal training strategies for adaptation when considering sex as a biological variable.

大多数运动生理学研究都是在男性中进行的,这导致了运动如何影响生理系统的生物学表征的扭曲。将以男性为中心的生理发现外推到女性身上并不普遍适用,甚至可能是有害的。因此,解决这种不平衡,并考虑性别作为一个生物学变量,是优化精确运动干预和/或方案的必要条件。我们目前的分析侧重于建立年轻的exercise-naïve男性(n=23)和女性(n=17)在休息和剧烈运动后的多组谱。在基线和运动后,使用骨骼肌和细胞外囊泡转录组学、全血甲基组学和血清代谢组学对性别差异进行了表征。对急性运动反应的性别时间分析显示,男性和女性的分子反应有明显的重叠,也有不同。然后使用奇异值分解对两种联合运动方案(高强度:HITT和传统:TRAD)进行探索性比较,揭示了潜在的数据结构,表明运动具有复杂的按性别剂量相互作用反应。这些发现为理解两性对急性运动暴露反应的关键差异奠定了基础。这可能有助于设计最佳训练策略,理解指导运动反应的共同和不同的分子相互作用,并阐明性激素和/或其他性别特异性属性在急性和慢性运动反应中的作用。
{"title":"Divergent multiomic acute exercise responses reveal the impact of sex as a biological variable.","authors":"Kaleen M Lavin, Samia M O'Bryan, Khyatiben V Pathak, Krystine Garcia-Mansfield, Zachary A Graham, Jeremy S McAdam, Devin J Drummer, Margaret B Bell, Christian J Kelley, Manoel E Lixandrão, Brandon Peoples, Regina S Seay, Anakaren R Torres, Rebecca Reiman, Eric Alsop, Elizabeth Hutchins, Anna Bonfitto, Jerry Antone, Joanna Palade, Kendall Van Keuren-Jensen, Matthew J Huentelman, Patrick Pirrotte, Timothy Broderick, Marcas M Bamman","doi":"10.1152/physiolgenomics.00055.2024","DOIUrl":"10.1152/physiolgenomics.00055.2024","url":null,"abstract":"<p><p>The majority of exercise physiology research has been conducted in males, resulting in a skewed biological representation of how exercise impacts the physiological system. Extrapolating male-centric physiological findings to females is not universally appropriate and may even be detrimental. Thus, addressing this imbalance and taking into consideration sex as a biological variable is mandatory for optimization of precision exercise interventions and/or regimens. Our present analysis focused on establishing multiomic profiles in young, exercise-naïve males (<i>n</i> = 23) and females (<i>n</i> = 17) at rest and following acute exercise. Sex differences were characterized at baseline and following exercise using skeletal muscle and extracellular vesicle transcriptomics, whole blood methylomics, and serum metabolomics. Sex-by-time analysis of the acute exercise response revealed notable overlap, and divergent molecular responses between males and females. An exploratory comparison of two combined exercise regimens [high-intensity tactical training (HITT) and traditional (TRAD)] was then performed using singular value decomposition, revealing latent data structures that suggest a complex dose-by-sex interaction response to exercise. These findings lay the groundwork for an understanding of key differences in responses to acute exercise exposure between sexes. This may be leveraged in designing optimal training strategies, understanding common and divergent molecular interplay guiding exercise responses, and elucidating the role of sex hormones and/or other sex-specific attributes in responses to acute and chronic exercise.<b>NEW & NOTEWORTHY</b> This study examined methylomics, transcriptomics, and metabolomics in circulation and/or skeletal muscle of young, healthy, exercise-naïve males and females before and after exposure to either traditional combined exercise (TRAD) and high-intensity tactical training (HITT). Across 40 young adults, we found an overlapping yet considerably sex-divergent response in the molecular mechanisms activated by exercise. These findings may provide insight into optimal training strategies for adaptation when considering sex as a biological variable.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":"321-342"},"PeriodicalIF":2.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143516404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physiological genomics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1