Pub Date : 2023-12-29DOI: 10.3390/photonics11010030
Vladimir Kamynin, S. Filatova, Timur I. Mullanurov, M. D. Cheban, Alexey A. Wolf, D. Korobko, A. Fotiadi, Vladimir B. Tsvetkov
We have demonstrated a simple all-fiber thulium (Tm) laser Q-switched by stimulated Brillouin scattering (SBS). The maximum output pulse energy was 80 μJ. This allowed us to generate a broadband spectrum directly at the laser outputs. For the first time, we measured the fine structure of the output pulses with a resolution of less than 100 ps. It was found that the SBS Q-switched laser is capable of generating bunches of picosecond pulses. The effect of modulation instability on the pulse decay is discussed. The potential application of the investigated laser radiation for producing destructive effects on soft biological tissues has been demonstrated.
{"title":"Fine Structure of High-Energy Pulses from a Stimulated Brillouin Scattering-Assisted Q-Switch Tm-Doped Fiber Laser","authors":"Vladimir Kamynin, S. Filatova, Timur I. Mullanurov, M. D. Cheban, Alexey A. Wolf, D. Korobko, A. Fotiadi, Vladimir B. Tsvetkov","doi":"10.3390/photonics11010030","DOIUrl":"https://doi.org/10.3390/photonics11010030","url":null,"abstract":"We have demonstrated a simple all-fiber thulium (Tm) laser Q-switched by stimulated Brillouin scattering (SBS). The maximum output pulse energy was 80 μJ. This allowed us to generate a broadband spectrum directly at the laser outputs. For the first time, we measured the fine structure of the output pulses with a resolution of less than 100 ps. It was found that the SBS Q-switched laser is capable of generating bunches of picosecond pulses. The effect of modulation instability on the pulse decay is discussed. The potential application of the investigated laser radiation for producing destructive effects on soft biological tissues has been demonstrated.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":"108 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139146426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-28DOI: 10.3390/photonics11010028
S. Kobtsev
Methods of output wavelength tuning in short-pulsed fibre lasers are analysed. Many of them rely on spectral selection principles long used in other types of lasers. For compatibility with the fibre-optical format, the corresponding elements are sealed in compact, airtight volumes with fibre-optical radiation input and output. A conclusion is presented about the relatively small number of inherently “fibre-optical” ways of tuning the wavelength of radiation. It is demonstrated that the range of output wavelength tuning in short-pulsed fibre lasers may span hundreds of nanometres (even without extension beyond the active medium gain contour through nonlinear effects). From the presented review results, it may be concluded that the search for the optimal tuning method complying with the user-preferred all-PM-fibre short-pulsed laser design is not yet complete.
{"title":"Methods of Radiation Wavelength Tuning in Short-Pulsed Fibre Lasers","authors":"S. Kobtsev","doi":"10.3390/photonics11010028","DOIUrl":"https://doi.org/10.3390/photonics11010028","url":null,"abstract":"Methods of output wavelength tuning in short-pulsed fibre lasers are analysed. Many of them rely on spectral selection principles long used in other types of lasers. For compatibility with the fibre-optical format, the corresponding elements are sealed in compact, airtight volumes with fibre-optical radiation input and output. A conclusion is presented about the relatively small number of inherently “fibre-optical” ways of tuning the wavelength of radiation. It is demonstrated that the range of output wavelength tuning in short-pulsed fibre lasers may span hundreds of nanometres (even without extension beyond the active medium gain contour through nonlinear effects). From the presented review results, it may be concluded that the search for the optimal tuning method complying with the user-preferred all-PM-fibre short-pulsed laser design is not yet complete.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":"29 6","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139152101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The correction of wavefront aberrations in wavefront sensorless (WFS-less) adaptive optical (AO) systems requires control algorithms that can ensure rapid convergence while maintaining effective correction capabilities. This paper proposes a novel control algorithm based on the RUNge Kutta optimizer (RUN) for WFS-less AO systems that enables the quick and efficient correction of small aberrations, as well as larger aberrations. To evaluate the convergence speed and correction capabilities of a WFS-less AO system based on the RUN control algorithm, we constructed a simulated AO system and an experimental setup with a 97-element deformable mirror (DM), respectively. Additionally, the results obtained with the Particle Swarm Optimization (PSO) algorithm, Differential Evolution Algorithm (DEA), and Genetic Algorithm (GA) are also provided for comparison and analysis. Both the simulated and experimental results consistently demonstrated that our proposed method outperformed several competing algorithms in terms of correction performance and convergence speed. Furthermore, the experimental results further validate the effectiveness of our control algorithm in scenarios involving significant aberrations.
在无波前传感器(WFS-less)自适应光学(AO)系统中校正波前像差需要既能确保快速收敛又能保持有效校正能力的控制算法。本文提出了一种基于 RUNge Kutta 优化器 (RUN) 的新型控制算法,适用于无波前传感器自适应光学(AO)系统,能够快速有效地校正小像差和大像差。为了评估基于 RUN 控制算法的无 WFS AO 系统的收敛速度和校正能力,我们分别构建了一个模拟 AO 系统和一个带有 97 元可变形镜 (DM) 的实验装置。此外,我们还提供了粒子群优化算法(PSO)、差分进化算法(DEA)和遗传算法(GA)的结果,以供比较和分析。模拟和实验结果一致表明,我们提出的方法在修正性能和收敛速度方面优于几种竞争算法。此外,实验结果进一步验证了我们的控制算法在涉及重大像差的情况下的有效性。
{"title":"An Efficient Method for Wavefront Aberration Correction Based on the RUN Optimizer","authors":"Huizhen Yang, Xiangdong Zang, Peng Chen, Xingliu Hu, Yongqiang Miao, Zhaojun Yan, Zhiguang Zhang","doi":"10.3390/photonics11010029","DOIUrl":"https://doi.org/10.3390/photonics11010029","url":null,"abstract":"The correction of wavefront aberrations in wavefront sensorless (WFS-less) adaptive optical (AO) systems requires control algorithms that can ensure rapid convergence while maintaining effective correction capabilities. This paper proposes a novel control algorithm based on the RUNge Kutta optimizer (RUN) for WFS-less AO systems that enables the quick and efficient correction of small aberrations, as well as larger aberrations. To evaluate the convergence speed and correction capabilities of a WFS-less AO system based on the RUN control algorithm, we constructed a simulated AO system and an experimental setup with a 97-element deformable mirror (DM), respectively. Additionally, the results obtained with the Particle Swarm Optimization (PSO) algorithm, Differential Evolution Algorithm (DEA), and Genetic Algorithm (GA) are also provided for comparison and analysis. Both the simulated and experimental results consistently demonstrated that our proposed method outperformed several competing algorithms in terms of correction performance and convergence speed. Furthermore, the experimental results further validate the effectiveness of our control algorithm in scenarios involving significant aberrations.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":"33 6","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139152059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-28DOI: 10.3390/photonics11010027
Jialong Zhu, Fucheng Zou, Le Wang, Shengmei Zhao
In this study, we introduce a novel approach for dynamic micro-vibration measurement, employing an Orbital Angular Momentum (OAM) interferometer, where the reference beam is Gaussian (GS) and the measurement beam is OAM. The OAM light reflected back from the target carries information about the target’s vibrations. The interference of the OAM light with Gaussian light generates petal-shaped patterns, and the target’s vibration information can be measured by detecting the rotation angle of these petals. Our proposed method demonstrates enhanced tolerance to misalignment and superior precision. The effects of vibration frequency, CCD frame rates, and Topological Charges (TCs) on measurement accuracy are analyzed thoroughly. Experimental results reveal that the proposed method offers a higher accuracy (up to 22.34 nm) and an extended measurement range of (0–800 cm). These capabilities render our technique highly suitable for applications demanding nanometer-scale resolution in various fields, including precision engineering and advanced optical systems.
{"title":"Dynamic Micro-Vibration Measurement Based on Orbital Angular Momentum","authors":"Jialong Zhu, Fucheng Zou, Le Wang, Shengmei Zhao","doi":"10.3390/photonics11010027","DOIUrl":"https://doi.org/10.3390/photonics11010027","url":null,"abstract":"In this study, we introduce a novel approach for dynamic micro-vibration measurement, employing an Orbital Angular Momentum (OAM) interferometer, where the reference beam is Gaussian (GS) and the measurement beam is OAM. The OAM light reflected back from the target carries information about the target’s vibrations. The interference of the OAM light with Gaussian light generates petal-shaped patterns, and the target’s vibration information can be measured by detecting the rotation angle of these petals. Our proposed method demonstrates enhanced tolerance to misalignment and superior precision. The effects of vibration frequency, CCD frame rates, and Topological Charges (TCs) on measurement accuracy are analyzed thoroughly. Experimental results reveal that the proposed method offers a higher accuracy (up to 22.34 nm) and an extended measurement range of (0–800 cm). These capabilities render our technique highly suitable for applications demanding nanometer-scale resolution in various fields, including precision engineering and advanced optical systems.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":"267 8","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139152820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-28DOI: 10.3390/photonics11010026
Ran Tao, Tao Zhang
This study proposes a Nipkow-based pinhole disk laser scanning confocal microscopic imaging system for ordinary optical microscopy, fluorescence microscopy, and confocal microscopy imaging of biological samples in order to realize the dynamic experimental monitoring of space-based life science experiments and the fine observation of biological samples. Confocal microscopic imaging is mainly completed by a scanning module that is composed of a spinning disk and other components. The parameters of the spinning disk directly determine the quality of the image. During the design process, the resolution and signal-to-noise ratios caused by different pinhole diameters in the spinning disk are the main considerations. Changes and image blurring caused by crosstalk due to the pinhole arrangement and different pinhole spacings are addressed. The high photon efficiency of the new EMCCD (electron-multiplying charge-coupled device) and CMOS (complementary metal-oxide-semiconductor) camera reduces the exposure time as much as possible, reduces damage to living cells, and achieves high-speed confocal imaging. It is shown in a confocal imaging experiment with a variable magnification of 1–40× that the imaging resolution of the system can reach a maximum of 2592 × 1944, the spatial resolution can reach 1 μm, and the highest sampling frequency is 10 fps, thus meeting the design requirements for high-speed live-cell imaging.
{"title":"Design of a Scanning Module in a Confocal Microscopic Imaging System for Live-Cell Imaging","authors":"Ran Tao, Tao Zhang","doi":"10.3390/photonics11010026","DOIUrl":"https://doi.org/10.3390/photonics11010026","url":null,"abstract":"This study proposes a Nipkow-based pinhole disk laser scanning confocal microscopic imaging system for ordinary optical microscopy, fluorescence microscopy, and confocal microscopy imaging of biological samples in order to realize the dynamic experimental monitoring of space-based life science experiments and the fine observation of biological samples. Confocal microscopic imaging is mainly completed by a scanning module that is composed of a spinning disk and other components. The parameters of the spinning disk directly determine the quality of the image. During the design process, the resolution and signal-to-noise ratios caused by different pinhole diameters in the spinning disk are the main considerations. Changes and image blurring caused by crosstalk due to the pinhole arrangement and different pinhole spacings are addressed. The high photon efficiency of the new EMCCD (electron-multiplying charge-coupled device) and CMOS (complementary metal-oxide-semiconductor) camera reduces the exposure time as much as possible, reduces damage to living cells, and achieves high-speed confocal imaging. It is shown in a confocal imaging experiment with a variable magnification of 1–40× that the imaging resolution of the system can reach a maximum of 2592 × 1944, the spatial resolution can reach 1 μm, and the highest sampling frequency is 10 fps, thus meeting the design requirements for high-speed live-cell imaging.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":"3 7","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139151659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-27DOI: 10.3390/photonics11010025
Yahui Li, Jing-yi Li, Hang Dong, Wei Zhang, Guangyong Jin
Laser paint removal is a new cleaning technology that mainly removes paint through thermal ablation and mechanical stripping mechanisms. This paper established a thermal-mechanical coupling laser removal model of paint based on the heat conduction equation, Newton’s second law, and Fabbro’s theory. The removal process of epoxy resin paint film on an aluminum alloy surface via a nanosecond pulsed laser was studied using finite element simulations and experimental measurements. The simulation and experimental results show that the nanosecond pulse laser’s primary paint removal mechanism is the mechanical stripping caused by thermal stress and plasma shock. The laser paint removal threshold is 1.4 J/cm2. In addition, due to the different generation times of plasma shock and thermal stress, the mutual superposition of stress waves occurs in the material. This results in a discrepancy between the actual and thermal stress differences. Moreover, the thermal stress difference causes the maximum actual stress difference to fluctuate. The simulation model established in this paper can provide a reference for studying the thermal-mechanical coupling process of laser paint removal.
{"title":"Simulation and Experimental Study of Nanosecond Pulse Laser Removal of Epoxy Paint on 6061 Aluminum Alloy Surface","authors":"Yahui Li, Jing-yi Li, Hang Dong, Wei Zhang, Guangyong Jin","doi":"10.3390/photonics11010025","DOIUrl":"https://doi.org/10.3390/photonics11010025","url":null,"abstract":"Laser paint removal is a new cleaning technology that mainly removes paint through thermal ablation and mechanical stripping mechanisms. This paper established a thermal-mechanical coupling laser removal model of paint based on the heat conduction equation, Newton’s second law, and Fabbro’s theory. The removal process of epoxy resin paint film on an aluminum alloy surface via a nanosecond pulsed laser was studied using finite element simulations and experimental measurements. The simulation and experimental results show that the nanosecond pulse laser’s primary paint removal mechanism is the mechanical stripping caused by thermal stress and plasma shock. The laser paint removal threshold is 1.4 J/cm2. In addition, due to the different generation times of plasma shock and thermal stress, the mutual superposition of stress waves occurs in the material. This results in a discrepancy between the actual and thermal stress differences. Moreover, the thermal stress difference causes the maximum actual stress difference to fluctuate. The simulation model established in this paper can provide a reference for studying the thermal-mechanical coupling process of laser paint removal.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":"91 4","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139154365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-26DOI: 10.3390/photonics11010018
Ying Zhang, Jiawei Ren, Kexin Li, Haibo Mou
Visible light communication has the advantages of large bandwidth, high security, and no RF interference, among which LED light sources are an important light source for indoor visible light communication. The use of LED as a light source for visible full-duplex communication is both to meet the lighting requirements and to ensure high-speed transmission of information. The uplink using the “cat’s eye” reverse modulation system can greatly reduce the system complexity of the reverse reflector. In order to analyze the factors affecting the optical power at the receiving end of the uplink of the indoor single light source visible light communication, this paper establishes the indoor visible light full-duplex communication system model and deduces the calculation method of the effective incidence angle of the uplink transmission light and the movable range of the reverse reflection end according to the model. The results show that when the link distance of the BK7 lens is 3 m, the lens aperture is increased from 100 mm to 150 mm, the lens focal length is increased from 100 mm to 150 mm, the travel distance of the reverse reflector is increased by 60%, and the effective range of the incidence angle is increased by about twice. In the absence of link loss, each 1 m increase in link distance increases the maximum travel distance of the reverse reflector by 0.8 m. Increasing the lens aperture, decreasing the focal length, and increasing the link distance can improve the movable range of the reverse reflector, and the effective incidence angle changes more gently with the position of the reverse reflector.
{"title":"Performance Analysis of a Single Light Source Bidirectional Visible Light Communication Reverse Reflection Link","authors":"Ying Zhang, Jiawei Ren, Kexin Li, Haibo Mou","doi":"10.3390/photonics11010018","DOIUrl":"https://doi.org/10.3390/photonics11010018","url":null,"abstract":"Visible light communication has the advantages of large bandwidth, high security, and no RF interference, among which LED light sources are an important light source for indoor visible light communication. The use of LED as a light source for visible full-duplex communication is both to meet the lighting requirements and to ensure high-speed transmission of information. The uplink using the “cat’s eye” reverse modulation system can greatly reduce the system complexity of the reverse reflector. In order to analyze the factors affecting the optical power at the receiving end of the uplink of the indoor single light source visible light communication, this paper establishes the indoor visible light full-duplex communication system model and deduces the calculation method of the effective incidence angle of the uplink transmission light and the movable range of the reverse reflection end according to the model. The results show that when the link distance of the BK7 lens is 3 m, the lens aperture is increased from 100 mm to 150 mm, the lens focal length is increased from 100 mm to 150 mm, the travel distance of the reverse reflector is increased by 60%, and the effective range of the incidence angle is increased by about twice. In the absence of link loss, each 1 m increase in link distance increases the maximum travel distance of the reverse reflector by 0.8 m. Increasing the lens aperture, decreasing the focal length, and increasing the link distance can improve the movable range of the reverse reflector, and the effective incidence angle changes more gently with the position of the reverse reflector.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":"80 11","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139154992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Swept-source optical coherence tomography (SS-OCT), benefiting from its high sensitivity, relatively large penetration depth, and non-contact and non-invasive imaging capability, is ideal for human skin imaging. However, limited by the size and performance of the reported optical galvanometer scanners, existing portable/handheld OCT probes are still bulky, which makes continuously handheld imaging difficult. Here, we reported a miniaturized electrothermal-MEMS-based SS-OCT microscope that only weighs about 25 g and has a cylinder with a diameter of 15 mm and a length of 40 mm. This MEMS-based handheld imaging probe can achieve a lateral resolution of 25 μm, a 3D imaging time of 5 s, a penetration depth of up to 3.3 mm, and an effective imaging field of view (FOV) of 3 × 3 mm2. We have carried out both calibration plate and biological tissue imaging experiments to test the imaging performance of this microscope. OCT imaging of leaves, dragonfly, and human skin has been successfully obtained, showing the imaging performance and potential applications of this probe on human skin in the future.
{"title":"A Miniaturized Electrothermal-MEMS-Based Optical Coherence Tomography (OCT) Handheld Microscope","authors":"Qian Chen, Hui Zhao, Tingxiang Qi, Hua Wang, Huikai Xie","doi":"10.3390/photonics11010017","DOIUrl":"https://doi.org/10.3390/photonics11010017","url":null,"abstract":"Swept-source optical coherence tomography (SS-OCT), benefiting from its high sensitivity, relatively large penetration depth, and non-contact and non-invasive imaging capability, is ideal for human skin imaging. However, limited by the size and performance of the reported optical galvanometer scanners, existing portable/handheld OCT probes are still bulky, which makes continuously handheld imaging difficult. Here, we reported a miniaturized electrothermal-MEMS-based SS-OCT microscope that only weighs about 25 g and has a cylinder with a diameter of 15 mm and a length of 40 mm. This MEMS-based handheld imaging probe can achieve a lateral resolution of 25 μm, a 3D imaging time of 5 s, a penetration depth of up to 3.3 mm, and an effective imaging field of view (FOV) of 3 × 3 mm2. We have carried out both calibration plate and biological tissue imaging experiments to test the imaging performance of this microscope. OCT imaging of leaves, dragonfly, and human skin has been successfully obtained, showing the imaging performance and potential applications of this probe on human skin in the future.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":"71 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139155248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-25DOI: 10.3390/photonics11010013
Steve Kamau, N. Hurley, Anupama B. Kaul, Jingbiao Cui, Yuankun Lin
Twisted photonic crystals are photonic analogs of twisted monolayer materials such as graphene and their optical property studies are still in their infancy. This paper reports optical properties of twisted single-layer 2D+ moiré photonic crystals where there is a weak modulation in z direction, and bilayer moiré-overlapping-moiré photonic crystals. In weak-coupling bilayer moiré-overlapping-moiré photonic crystals, the light source is less localized with an increasing twist angle, similar to the results reported by the Harvard research group in References 37 and 38 on twisted bilayer photonic crystals, although there is a gradient pattern in the former case. In a strong-coupling case, however, the light source is tightly localized in AA-stacked region in bilayer PhCs with a large twist angle. For single-layer 2D+ moiré photonic crystals, the light source in Ex polarization can be localized and forms resonance modes when the single-layer 2D+ moiré photonic crystal is integrated on a glass substrate. This study leads to a potential application of 2D+ moiré photonic crystal in future on-chip optoelectronic integration.
扭曲光子晶体是石墨烯等扭曲单层材料的光子类似物,其光学特性研究仍处于起步阶段。本文报告了在 z 方向存在弱调制的扭曲单层 2D+ 摩尔纹光子晶体和双层摩尔纹重叠摩尔纹光子晶体的光学特性。在弱耦合双层莫尔雷-重叠-莫尔雷光子晶体中,光源的局部性随着扭曲角度的增大而减弱,这与哈佛大学研究小组在参考文献 37 和 38 中报告的扭曲双层光子晶体的结果相似,尽管在前一种情况下存在梯度模式。然而,在强耦合情况下,光源被紧密地定位在大扭转角双层光子晶体的 AA 叠层区域。对于单层二维+莫伊里光子晶体,当单层二维+莫伊里光子晶体集成在玻璃衬底上时,Ex 偏振的光源可以定位并形成共振模式。这项研究为 2D+ 摩尔纹光子晶体在未来片上光电集成中的应用提供了可能。
{"title":"Light Confinement in Twisted Single-Layer 2D+ Moiré Photonic Crystals and Bilayer Moiré Photonic Crystals","authors":"Steve Kamau, N. Hurley, Anupama B. Kaul, Jingbiao Cui, Yuankun Lin","doi":"10.3390/photonics11010013","DOIUrl":"https://doi.org/10.3390/photonics11010013","url":null,"abstract":"Twisted photonic crystals are photonic analogs of twisted monolayer materials such as graphene and their optical property studies are still in their infancy. This paper reports optical properties of twisted single-layer 2D+ moiré photonic crystals where there is a weak modulation in z direction, and bilayer moiré-overlapping-moiré photonic crystals. In weak-coupling bilayer moiré-overlapping-moiré photonic crystals, the light source is less localized with an increasing twist angle, similar to the results reported by the Harvard research group in References 37 and 38 on twisted bilayer photonic crystals, although there is a gradient pattern in the former case. In a strong-coupling case, however, the light source is tightly localized in AA-stacked region in bilayer PhCs with a large twist angle. For single-layer 2D+ moiré photonic crystals, the light source in Ex polarization can be localized and forms resonance modes when the single-layer 2D+ moiré photonic crystal is integrated on a glass substrate. This study leads to a potential application of 2D+ moiré photonic crystal in future on-chip optoelectronic integration.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":"15 15‐16","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139158253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Digital holography (DH) is a novel, real-time, non-destructive, and quantitative phase-contrast imaging method that is particularly suitable for label-free live biological cell imaging and real-time dynamic monitoring. It is currently a research hotspot in the interdisciplinary field of optics and biomedical sciences, both domestically and internationally. This article proposes an improved angle spectrum algorithm based on holographic technology, which reconstructs a cellular hologram based on phase information. Optical images and chromosome cell images, reconstructed using holographic technology at different diffraction distances under the improved angle spectrum algorithm, were analyzed and compared. The optimal diffraction distance for reconstructing chromosome cell images was selected, and chromosome cell images reproduced using traditional angle spectrum algorithms, angle spectrum algorithms combined with GS, and improved angle spectrum algorithms were compared. Comparative experiments with the different models show that the proposed algorithm is superior to traditional angle spectrum algorithms in reconstructing cell images based on phase information. Furthermore, experiments have shown that images reconstructed using the improved algorithm can resolve high signal-to-noise ratio information. This algorithmic improvement provides new applications for cellular detection in clinical diagnostics and is more suitable for cell phase reconstruction in practical applications.
{"title":"Investigation of an Improved Angular Spectrum Method Based on Holography","authors":"Ting Wu, Yuling Yang, Hao Wang, Hao Chen, Hao Zhu, Jisheng Yu, Xiuxin Wang","doi":"10.3390/photonics11010016","DOIUrl":"https://doi.org/10.3390/photonics11010016","url":null,"abstract":"Digital holography (DH) is a novel, real-time, non-destructive, and quantitative phase-contrast imaging method that is particularly suitable for label-free live biological cell imaging and real-time dynamic monitoring. It is currently a research hotspot in the interdisciplinary field of optics and biomedical sciences, both domestically and internationally. This article proposes an improved angle spectrum algorithm based on holographic technology, which reconstructs a cellular hologram based on phase information. Optical images and chromosome cell images, reconstructed using holographic technology at different diffraction distances under the improved angle spectrum algorithm, were analyzed and compared. The optimal diffraction distance for reconstructing chromosome cell images was selected, and chromosome cell images reproduced using traditional angle spectrum algorithms, angle spectrum algorithms combined with GS, and improved angle spectrum algorithms were compared. Comparative experiments with the different models show that the proposed algorithm is superior to traditional angle spectrum algorithms in reconstructing cell images based on phase information. Furthermore, experiments have shown that images reconstructed using the improved algorithm can resolve high signal-to-noise ratio information. This algorithmic improvement provides new applications for cellular detection in clinical diagnostics and is more suitable for cell phase reconstruction in practical applications.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":"7 4","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139158097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}