Pub Date : 2025-02-03DOI: 10.1016/j.physletb.2025.139296
Three rare decay processes of the Higgs boson to a , , or meson and a photon are searched for using proton-proton collision data collected by the CMS experiment at the LHC. Events are selected assuming the mesons decay into a pair of charged pions, a pair of charged kaons, or a charged kaon and pion, respectively. Depending on the Higgs boson production mode, different triggering and reconstruction techniques are adopted. The analyzed data sets correspond to integrated luminosities up to 138, depending on the reconstructed final state. After combining various data sets and categories, no significant excess above the background expectations is observed. Upper limits at 95% confidence level on the Higgs boson branching fractions into , , and are determined to be , , and , respectively. In case of the and channels, these are the most stringent experimental limits to date.
{"title":"Search for the Higgs boson decays to a ρ0, ϕ, or K⁎0 meson and a photon in proton-proton collisions at s=13TeV","authors":"","doi":"10.1016/j.physletb.2025.139296","DOIUrl":"10.1016/j.physletb.2025.139296","url":null,"abstract":"<div><div>Three rare decay processes of the Higgs boson to a <span><math><mi>ρ</mi><msup><mrow><mo>(</mo><mn>770</mn><mo>)</mo></mrow><mrow><mn>0</mn></mrow></msup></math></span>, <span><math><mi>ϕ</mi><mo>(</mo><mn>1020</mn><mo>)</mo></math></span>, or <span><math><msup><mrow><mi>K</mi></mrow><mrow><mo>⁎</mo></mrow></msup><msup><mrow><mo>(</mo><mn>892</mn><mo>)</mo></mrow><mrow><mn>0</mn></mrow></msup></math></span> meson and a photon are searched for using <span><math><msqrt><mrow><mi>s</mi></mrow></msqrt><mo>=</mo><mn>13</mn><mspace></mspace><mtext>TeV</mtext></math></span> proton-proton collision data collected by the CMS experiment at the LHC. Events are selected assuming the mesons decay into a pair of charged pions, a pair of charged kaons, or a charged kaon and pion, respectively. Depending on the Higgs boson production mode, different triggering and reconstruction techniques are adopted. The analyzed data sets correspond to integrated luminosities up to 138<span><math><mspace></mspace><msup><mrow><mtext>fb</mtext></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>, depending on the reconstructed final state. After combining various data sets and categories, no significant excess above the background expectations is observed. Upper limits at 95% confidence level on the Higgs boson branching fractions into <span><math><mi>ρ</mi><msup><mrow><mo>(</mo><mn>770</mn><mo>)</mo></mrow><mrow><mn>0</mn></mrow></msup><mi>γ</mi></math></span>, <span><math><mi>ϕ</mi><mo>(</mo><mn>1020</mn><mo>)</mo><mi>γ</mi></math></span>, and <span><math><msup><mrow><mi>K</mi></mrow><mrow><mo>⁎</mo></mrow></msup><msup><mrow><mo>(</mo><mn>892</mn><mo>)</mo></mrow><mrow><mn>0</mn></mrow></msup><mi>γ</mi></math></span> are determined to be <span><math><mn>3.7</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup></math></span>, <span><math><mn>3.0</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup></math></span>, and <span><math><mn>3.0</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup></math></span>, respectively. In case of the <span><math><mi>ρ</mi><msup><mrow><mo>(</mo><mn>770</mn><mo>)</mo></mrow><mrow><mn>0</mn></mrow></msup><mi>γ</mi></math></span> and <span><math><mi>ϕ</mi><mo>(</mo><mn>1020</mn><mo>)</mo><mi>γ</mi></math></span> channels, these are the most stringent experimental limits to date.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"862 ","pages":"Article 139296"},"PeriodicalIF":4.3,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143376924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.physletb.2025.139246
Bhaskar Dutta , Doojin Kim , Hyunyong Kim
We propose a novel scheme for performing a beam-dump-like experiment with the general-purpose detectors (ATLAS and CMS) at the LHC. Collisions of high-energy protons result in jets containing a number of energetic hadrons and electromagnetic objects that are essentially “dumped” to hadronic and electromagnetic calorimeters, respectively, and induce the production of secondary hadrons, electrons, and photons in calorimetric showers. We envision a situation where new physics particles are produced by the interactions of these secondary particles inside the calorimeters. For proof of principles, we consider the axion-like particles (ALPs) produced via the Primakoff process in the presence of their interaction with photons at CMS. We argue that the drift tube chambers and the ME0 module of the muon system can serve as detectors to record the photons from the ALP decay, demonstrating that assuming the background level can be controlled as discussed in this work, the resulting sensitivity reach is competitive due to their close proximity to the signal source points. We further show that the LHC does not suffer from a barrier, dubbed beam-dump “ceiling”, that typical beam-dump experiments hardly surpass. This gives the LHC great potential to explore a wide range of parameter space. This analysis can be extended to investigate various types of light mediators with couplings to the Standard Model leptons and quarks.
{"title":"Proposal to use LHC general-purpose detectors in “beam-dump” measurements for long-lived particles","authors":"Bhaskar Dutta , Doojin Kim , Hyunyong Kim","doi":"10.1016/j.physletb.2025.139246","DOIUrl":"10.1016/j.physletb.2025.139246","url":null,"abstract":"<div><div>We propose a novel scheme for performing a beam-dump-like experiment with the general-purpose detectors (ATLAS and CMS) at the LHC. Collisions of high-energy protons result in jets containing a number of energetic hadrons and electromagnetic objects that are essentially “dumped” to hadronic and electromagnetic calorimeters, respectively, and induce the production of secondary hadrons, electrons, and photons in calorimetric showers. We envision a situation where new physics particles are produced by the interactions of these secondary particles inside the calorimeters. For proof of principles, we consider the axion-like particles (ALPs) produced via the Primakoff process in the presence of their interaction with photons at CMS. We argue that the drift tube chambers and the ME0 module of the muon system can serve as detectors to record the photons from the ALP decay, demonstrating that assuming the background level can be controlled as discussed in this work, the resulting sensitivity reach is competitive due to their close proximity to the signal source points. We further show that the LHC does not suffer from a barrier, dubbed beam-dump “ceiling”, that typical beam-dump experiments hardly surpass. This gives the LHC great potential to explore a wide range of parameter space. This analysis can be extended to investigate various types of light mediators with couplings to the Standard Model leptons and quarks.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"861 ","pages":"Article 139246"},"PeriodicalIF":4.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We consider two approaches to calculate imaginary parts of effective actions in expanding space-times. While the first approach uses Bogolyubov coefficients, the second one uses the functional integral or the Feynman propagator. In eternally expanding space-times these two approaches give different answers for the imaginary parts. The origin of the difference can be traced to the presence if the wave-functionals for the initial and final states in the functional integral. We show this explicitly on the example of the expanding Poincare patch of the de Sitter space-time.
{"title":"On (dis)agreement between different methods of calculation of the imaginary part of the effective action in expanding space-times","authors":"E.T. Akhmedov , I.A. Belkovich , D.V. Diakonov , K.A. Kazarnovskii","doi":"10.1016/j.physletb.2025.139256","DOIUrl":"10.1016/j.physletb.2025.139256","url":null,"abstract":"<div><div>We consider two approaches to calculate imaginary parts of effective actions in expanding space-times. While the first approach uses Bogolyubov coefficients, the second one uses the functional integral or the Feynman propagator. In eternally expanding space-times these two approaches give different answers for the imaginary parts. The origin of the difference can be traced to the presence if the wave-functionals for the initial and final states in the functional integral. We show this explicitly on the example of the expanding Poincare patch of the de Sitter space-time.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"861 ","pages":"Article 139256"},"PeriodicalIF":4.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142989510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.physletb.2025.139276
Ankita Budhraja , Wouter J. Waalewijn
Energy correlators characterize the asymptotic energy flow in scattering events produced at colliders, from which the microscopic physics of the scattering can be deduced. This view of collisions is akin to analyzes of the Cosmic Microwave Background, and a range of promising phenomenological applications of energy correlators have been identified, including the study of hadronization, the deadcone effect, measuring and the top quark mass. While N-point energy correlators are interesting to study for larger values of N, their evaluation is computationally intensive, scaling like , where M is the number of particles. In this Letter, we develop a fast, approximate method for their evaluation exploiting that correlations at a given angular scale are insensitive to effects at other (widely-separated) scales. This implies that the energy correlator can be computed on (sub)jets, effectively reducing M. Furthermore, we utilize a dynamical (sub)jet radius that allows us to obtain reliable results without restricting the angular scales being probed. For concreteness, we focus on the projected energy correlator which projects onto the largest separation between the N directions. E.g. for we find a speed up of up to four orders of magnitude, depending on the desired accuracy. We also consider the possibility of raising the energy to a power higher than one in the energy correlator, which has been proposed to reduce soft sensitivity. These higher-power correlators are not collinear safe, but as a byproduct our approach suggests a natural method to regularize them, such that they can be described using perturbation theory. This Letter is accompanied by a public code that implements our method.
{"title":"FastEEC: Fast evaluation of N-point energy correlators","authors":"Ankita Budhraja , Wouter J. Waalewijn","doi":"10.1016/j.physletb.2025.139276","DOIUrl":"10.1016/j.physletb.2025.139276","url":null,"abstract":"<div><div>Energy correlators characterize the asymptotic energy flow in scattering events produced at colliders, from which the microscopic physics of the scattering can be deduced. This view of collisions is akin to analyzes of the Cosmic Microwave Background, and a range of promising phenomenological applications of energy correlators have been identified, including the study of hadronization, the deadcone effect, measuring <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> and the top quark mass. While <em>N</em>-point energy correlators are interesting to study for larger values of <em>N</em>, their evaluation is computationally intensive, scaling like <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>/</mo><mi>N</mi><mo>!</mo></math></span>, where <em>M</em> is the number of particles. In this Letter, we develop a fast, approximate method for their evaluation exploiting that correlations at a given angular scale are insensitive to effects at other (widely-separated) scales. This implies that the energy correlator can be computed on (sub)jets, effectively reducing <em>M</em>. Furthermore, we utilize a dynamical (sub)jet radius that allows us to obtain reliable results without restricting the angular scales being probed. For concreteness, we focus on the projected energy correlator which projects onto the largest separation between the <em>N</em> directions. E.g. for <span><math><mi>N</mi><mo>=</mo><mn>7</mn></math></span> we find a speed up of up to four orders of magnitude, depending on the desired accuracy. We also consider the possibility of raising the energy to a power higher than one in the energy correlator, which has been proposed to reduce soft sensitivity. These higher-power correlators are not collinear safe, but as a byproduct our approach suggests a natural method to regularize them, such that they can be described using perturbation theory. This Letter is accompanied by a public code that implements our method.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"861 ","pages":"Article 139276"},"PeriodicalIF":4.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143035228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.physletb.2025.139294
Jing Song , Zi-Ying Yang , Eulogio Oset
<div><div>This paper investigates the decay process <span><math><msub><mrow><mi>Λ</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>→</mo><msubsup><mrow><mi>Σ</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>+</mo><mo>+</mo></mrow></msubsup><msup><mrow><mi>D</mi></mrow><mrow><mo>−</mo></mrow></msup><msup><mrow><mi>K</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span> with the objective of finding a predicted molecular state with isospin <span><math><mi>I</mi><mo>=</mo><mn>1</mn></math></span>, <span><math><msup><mrow><mi>J</mi></mrow><mrow><mi>P</mi></mrow></msup><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msup></math></span> of <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>⁎</mo></mrow></msup><msup><mrow><mi>K</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> nature, plus finding support for the <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mn>4312</mn><mo>)</mo></math></span> state as made out of <span><math><msub><mrow><mi>Σ</mi></mrow><mrow><mi>c</mi></mrow></msub><mover><mrow><mi>D</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span>. The mass distribution of the <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>−</mo></mrow></msup><msup><mrow><mi>K</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span> system shows distinct features as a consequence of the existence of this <span><math><msup><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msup></math></span> state, while the <span><math><msub><mrow><mi>Σ</mi></mrow><mrow><mi>c</mi></mrow></msub><mover><mrow><mi>D</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> distribution exhibits a significant peak near the threshold, much bigger than phase space expectations, which is linked to our assumed <span><math><msub><mrow><mi>Σ</mi></mrow><mrow><mi>c</mi></mrow></msub><mover><mrow><mi>D</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> nature of the <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mn>4312</mn><mo>)</mo></math></span> state below the <span><math><msub><mrow><mi>Σ</mi></mrow><mrow><mi>c</mi></mrow></msub><mover><mrow><mi>D</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> threshold. The reaction has been measured at LHCb Collaboration, but only the branching ratio is measured. The present study shows that much valuable information can be obtained about the predicted <span><math><msup><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msup></math></span> <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi><mover><mrow><mi>s</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub><mo>(</mo><mn>2834</mn><mo>)</mo></math></span> of <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>⁎</mo></mrow></msup><msup><mrow><mi>K</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> nature and the <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mn>4312</mn><mo>)</mo></math></span> states from the measurements of the mass distributions in
{"title":"Searching for signals of an exotic I = 1,JP = 2+ state of D⁎K⁎ nature and the structure of the Pc(4312) in the Λb→Σc++D−K− reaction","authors":"Jing Song , Zi-Ying Yang , Eulogio Oset","doi":"10.1016/j.physletb.2025.139294","DOIUrl":"10.1016/j.physletb.2025.139294","url":null,"abstract":"<div><div>This paper investigates the decay process <span><math><msub><mrow><mi>Λ</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>→</mo><msubsup><mrow><mi>Σ</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>+</mo><mo>+</mo></mrow></msubsup><msup><mrow><mi>D</mi></mrow><mrow><mo>−</mo></mrow></msup><msup><mrow><mi>K</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span> with the objective of finding a predicted molecular state with isospin <span><math><mi>I</mi><mo>=</mo><mn>1</mn></math></span>, <span><math><msup><mrow><mi>J</mi></mrow><mrow><mi>P</mi></mrow></msup><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msup></math></span> of <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>⁎</mo></mrow></msup><msup><mrow><mi>K</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> nature, plus finding support for the <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mn>4312</mn><mo>)</mo></math></span> state as made out of <span><math><msub><mrow><mi>Σ</mi></mrow><mrow><mi>c</mi></mrow></msub><mover><mrow><mi>D</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span>. The mass distribution of the <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>−</mo></mrow></msup><msup><mrow><mi>K</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span> system shows distinct features as a consequence of the existence of this <span><math><msup><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msup></math></span> state, while the <span><math><msub><mrow><mi>Σ</mi></mrow><mrow><mi>c</mi></mrow></msub><mover><mrow><mi>D</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> distribution exhibits a significant peak near the threshold, much bigger than phase space expectations, which is linked to our assumed <span><math><msub><mrow><mi>Σ</mi></mrow><mrow><mi>c</mi></mrow></msub><mover><mrow><mi>D</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> nature of the <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mn>4312</mn><mo>)</mo></math></span> state below the <span><math><msub><mrow><mi>Σ</mi></mrow><mrow><mi>c</mi></mrow></msub><mover><mrow><mi>D</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> threshold. The reaction has been measured at LHCb Collaboration, but only the branching ratio is measured. The present study shows that much valuable information can be obtained about the predicted <span><math><msup><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msup></math></span> <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi><mover><mrow><mi>s</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub><mo>(</mo><mn>2834</mn><mo>)</mo></math></span> of <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>⁎</mo></mrow></msup><msup><mrow><mi>K</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> nature and the <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mn>4312</mn><mo>)</mo></math></span> states from the measurements of the mass distributions in ","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"861 ","pages":"Article 139294"},"PeriodicalIF":4.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143072386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.physletb.2025.139287
X.H. Mo
For charmonium's decaying to the final states involving merely light quarks, in light of flavor symmetry, a systematic parametrization scheme is established, which involving binary decays, ternary decays and radiative decays.
{"title":"Generic symmetry analysis of charmonium decay","authors":"X.H. Mo","doi":"10.1016/j.physletb.2025.139287","DOIUrl":"10.1016/j.physletb.2025.139287","url":null,"abstract":"<div><div>For charmonium's decaying to the final states involving merely light quarks, in light of <span><math><mi>S</mi><mi>U</mi><mo>(</mo><mn>3</mn><mo>)</mo></math></span> flavor symmetry, a systematic parametrization scheme is established, which involving binary decays, ternary decays and radiative decays.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"861 ","pages":"Article 139287"},"PeriodicalIF":4.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143072392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.physletb.2024.139228
Chengjia Chen , Fengkai Ge , Qiyuan Pan , Jiliang Jing
We investigate the scalar perturbation around a rotating Einstein-bumblebee BTZ black hole under Robin boundary conditions. It is shown that the relationship curves between real and imaginary parts of scalar quasinormal modes in the complex plane depend on the black hole spin parameter j and the Lorentz symmetry breaking parameter s. The shapes of these curves are similar for different s, but heavily depend on the spin parameter j. With the increase of j, the symmetry of these curves with respect to the imaginary axis in the complex plane is gradually broken for different s. We also discuss the energy and angular momentum fluxes across the black hole horizon under Robin boundary conditions, and probe the changes of the threshold parameter related to the superradiance in Robin boundary conditions with the symmetry breaking parameter and the spin parameter. The combination of the Lorentz symmetry violation and the Robin boundary condition provides richer physics in the scalar perturbation around a rotating Einstein-bumblebee BTZ black hole.
{"title":"Scalar perturbation around rotating Einstein-bumblebee BTZ black holes under Robin boundary conditions: Quasinormal modes and superradiance","authors":"Chengjia Chen , Fengkai Ge , Qiyuan Pan , Jiliang Jing","doi":"10.1016/j.physletb.2024.139228","DOIUrl":"10.1016/j.physletb.2024.139228","url":null,"abstract":"<div><div>We investigate the scalar perturbation around a rotating Einstein-bumblebee BTZ black hole under Robin boundary conditions. It is shown that the relationship curves between real and imaginary parts of scalar quasinormal modes in the complex plane depend on the black hole spin parameter <em>j</em> and the Lorentz symmetry breaking parameter <em>s</em>. The shapes of these curves are similar for different <em>s</em>, but heavily depend on the spin parameter <em>j</em>. With the increase of <em>j</em>, the symmetry of these curves with respect to the imaginary axis in the complex plane is gradually broken for different <em>s</em>. We also discuss the energy and angular momentum fluxes across the black hole horizon under Robin boundary conditions, and probe the changes of the threshold parameter related to the superradiance in Robin boundary conditions with the symmetry breaking parameter and the spin parameter. The combination of the Lorentz symmetry violation and the Robin boundary condition provides richer physics in the scalar perturbation around a rotating Einstein-bumblebee BTZ black hole.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"861 ","pages":"Article 139228"},"PeriodicalIF":4.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142925283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.physletb.2024.139238
Constantino Tsallis , Henrik Jeldtoft Jensen
<div><div>In recent decades, an intensive worldwide research activity is focusing both black holes and cosmos (e.g. the dark-energy phenomenon) on the basis of entropic approaches. The Boltzmann-Gibbs-based Bekenstein-Hawking entropy <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>B</mi><mi>H</mi></mrow></msub><mo>∝</mo><mi>A</mi><mo>/</mo><msubsup><mrow><mi>l</mi></mrow><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> (<em>A</em>≡ area; <span><math><msub><mrow><mi>l</mi></mrow><mrow><mi>P</mi></mrow></msub><mo>≡</mo></math></span> Planck length) systematically plays a crucial theoretical role although it has a serious drawback, namely that it violates the thermodynamic extensivity of spatially-three-dimensional systems. Still, its intriguing area dependence points out the relevance of considering the form <span><math><mi>W</mi><mo>(</mo><mi>N</mi><mo>)</mo><mo>∼</mo><msup><mrow><mi>μ</mi></mrow><mrow><msup><mrow><mi>N</mi></mrow><mrow><mi>γ</mi></mrow></msup></mrow></msup><mspace></mspace><mspace></mspace><mo>(</mo><mi>μ</mi><mo>></mo><mn>1</mn><mo>;</mo><mi>γ</mi><mo>></mo><mn>0</mn><mo>)</mo></math></span>, <em>W</em> and <em>N</em> respectively being the total number of microscopic possibilities and the number of components; <span><math><mi>γ</mi><mo>=</mo><mn>1</mn></math></span> corresponds to standard Boltzmann-Gibbs (BG) statistical mechanics. For this <span><math><mi>W</mi><mo>(</mo><mi>N</mi><mo>)</mo></math></span> asymptotic behavior, we make use of the group-theoretic entropic functional <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>γ</mi></mrow></msub><mo>=</mo><mi>k</mi><msup><mrow><mo>[</mo><mfrac><mrow><mi>ln</mi><mo></mo><msubsup><mrow><mi>Σ</mi></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>W</mi></mrow></msubsup><msubsup><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>α</mi></mrow></msubsup></mrow><mrow><mn>1</mn><mo>−</mo><mi>α</mi></mrow></mfrac><mo>]</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>γ</mi></mrow></mfrac></mrow></msup><mspace></mspace><mo>(</mo><mi>α</mi><mo>∈</mo><mi>R</mi><mo>;</mo><mspace></mspace><msub><mrow><mi>S</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>B</mi><mi>G</mi></mrow></msub><mo>≡</mo><mo>−</mo><mi>k</mi><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>W</mi></mrow></msubsup><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mi>ln</mi><mo></mo><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></math></span>, first derived by P. Tempesta in Chaos <strong>30</strong>,123119, (2020). This functional is <em>extensive</em> (as required by thermodynamics) and <em>composable</em>, <span><math><mo>∀</mo><mo>(</mo><mi>α</mi><mo>,</mo><mi>γ</mi><mo>)</mo></math></span>. Being extensive means that in the micro-canonical, or uniform, ensemble where all micro-state occur with the same probabil
{"title":"Extensive composable entropy for the analysis of cosmological data","authors":"Constantino Tsallis , Henrik Jeldtoft Jensen","doi":"10.1016/j.physletb.2024.139238","DOIUrl":"10.1016/j.physletb.2024.139238","url":null,"abstract":"<div><div>In recent decades, an intensive worldwide research activity is focusing both black holes and cosmos (e.g. the dark-energy phenomenon) on the basis of entropic approaches. The Boltzmann-Gibbs-based Bekenstein-Hawking entropy <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>B</mi><mi>H</mi></mrow></msub><mo>∝</mo><mi>A</mi><mo>/</mo><msubsup><mrow><mi>l</mi></mrow><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> (<em>A</em>≡ area; <span><math><msub><mrow><mi>l</mi></mrow><mrow><mi>P</mi></mrow></msub><mo>≡</mo></math></span> Planck length) systematically plays a crucial theoretical role although it has a serious drawback, namely that it violates the thermodynamic extensivity of spatially-three-dimensional systems. Still, its intriguing area dependence points out the relevance of considering the form <span><math><mi>W</mi><mo>(</mo><mi>N</mi><mo>)</mo><mo>∼</mo><msup><mrow><mi>μ</mi></mrow><mrow><msup><mrow><mi>N</mi></mrow><mrow><mi>γ</mi></mrow></msup></mrow></msup><mspace></mspace><mspace></mspace><mo>(</mo><mi>μ</mi><mo>></mo><mn>1</mn><mo>;</mo><mi>γ</mi><mo>></mo><mn>0</mn><mo>)</mo></math></span>, <em>W</em> and <em>N</em> respectively being the total number of microscopic possibilities and the number of components; <span><math><mi>γ</mi><mo>=</mo><mn>1</mn></math></span> corresponds to standard Boltzmann-Gibbs (BG) statistical mechanics. For this <span><math><mi>W</mi><mo>(</mo><mi>N</mi><mo>)</mo></math></span> asymptotic behavior, we make use of the group-theoretic entropic functional <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>γ</mi></mrow></msub><mo>=</mo><mi>k</mi><msup><mrow><mo>[</mo><mfrac><mrow><mi>ln</mi><mo></mo><msubsup><mrow><mi>Σ</mi></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>W</mi></mrow></msubsup><msubsup><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>α</mi></mrow></msubsup></mrow><mrow><mn>1</mn><mo>−</mo><mi>α</mi></mrow></mfrac><mo>]</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>γ</mi></mrow></mfrac></mrow></msup><mspace></mspace><mo>(</mo><mi>α</mi><mo>∈</mo><mi>R</mi><mo>;</mo><mspace></mspace><msub><mrow><mi>S</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>B</mi><mi>G</mi></mrow></msub><mo>≡</mo><mo>−</mo><mi>k</mi><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>W</mi></mrow></msubsup><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mi>ln</mi><mo></mo><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></math></span>, first derived by P. Tempesta in Chaos <strong>30</strong>,123119, (2020). This functional is <em>extensive</em> (as required by thermodynamics) and <em>composable</em>, <span><math><mo>∀</mo><mo>(</mo><mi>α</mi><mo>,</mo><mi>γ</mi><mo>)</mo></math></span>. Being extensive means that in the micro-canonical, or uniform, ensemble where all micro-state occur with the same probabil","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"861 ","pages":"Article 139238"},"PeriodicalIF":4.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.physletb.2024.139236
Everton M.C. Abreu
We have different definitions of the surface gravity (SG) of a horizon since we can say we have distinct classifications of horizons. The SG has an underlying role in the laws of black hole (BH) thermodynamics, being constant in the event horizon. The SG also acts in the emission of Hawking radiation being connected to its temperature. Concerning this last issue, the quantum features that permeate Hawking radiation provide us a direct indication that a BH has its temperature directly connected to its area and that its entropy is proportional to the horizon area. In this work we analyzed some aspects of event horizons. Analyzing how the SG can be classically defined for stationary BHs together with the radial pressure computation. So, the SG, through the laws of BH mechanics is connected to the real thermodynamical temperature of a thermal spectrum. We discussed these subjects in two different BHs scenarios, the five dimensional Gauss-Bonnet one and the recently developed Barrow entropy construction. We discussed how the quantum fluctuations affect these both quantities.
{"title":"Surface gravity analysis in Gauss-Bonnet and Barrow black holes","authors":"Everton M.C. Abreu","doi":"10.1016/j.physletb.2024.139236","DOIUrl":"10.1016/j.physletb.2024.139236","url":null,"abstract":"<div><div>We have different definitions of the surface gravity (SG) of a horizon since we can say we have distinct classifications of horizons. The SG has an underlying role in the laws of black hole (BH) thermodynamics, being constant in the event horizon. The SG also acts in the emission of Hawking radiation being connected to its temperature. Concerning this last issue, the quantum features that permeate Hawking radiation provide us a direct indication that a BH has its temperature directly connected to its area and that its entropy is proportional to the horizon area. In this work we analyzed some aspects of event horizons. Analyzing how the SG can be classically defined for stationary BHs together with the radial pressure computation. So, the SG, through the laws of BH mechanics is connected to the real thermodynamical temperature of a thermal spectrum. We discussed these subjects in two different BHs scenarios, the five dimensional Gauss-Bonnet one and the recently developed Barrow entropy construction. We discussed how the quantum fluctuations affect these both quantities.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"861 ","pages":"Article 139236"},"PeriodicalIF":4.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Considering the elastic scattering of two charged particles, we present two methods for numerically solving the generalized Coulomb-corrected BERW formula with high accuracy across the entire energy spectrum. We illustrate these methods using scattering, employing a phenomenological short-range interaction. Our results reproduce the phase shifts computed with the Numerov method for all and channels. We also provide full access to the Python script used to obtain these results, which can be readily applied to a wide range of core-fragment scattering problems in nuclear and atomic physics.
{"title":"Accurate calculation of low energy scattering phase shifts of charged particles in a harmonic oscillator trap","authors":"Mirko Bagnarol , Nir Barnea , Matúš Rojik , Martin Schäfer","doi":"10.1016/j.physletb.2024.139230","DOIUrl":"10.1016/j.physletb.2024.139230","url":null,"abstract":"<div><div>Considering the elastic scattering of two charged particles, we present two methods for numerically solving the generalized Coulomb-corrected BERW formula with high accuracy across the entire energy spectrum. We illustrate these methods using <span><math><mi>p</mi><mo>−</mo><mi>α</mi></math></span> scattering, employing a phenomenological <span><math><mi>p</mi><mo>−</mo><mi>α</mi></math></span> short-range interaction. Our results reproduce the phase shifts computed with the Numerov method for all <span><math><mi>l</mi><mo>=</mo><mn>0</mn></math></span> and <span><math><mi>l</mi><mo>=</mo><mn>1</mn></math></span> channels. We also provide full access to the Python script used to obtain these results, which can be readily applied to a wide range of core-fragment scattering problems in nuclear and atomic physics.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"861 ","pages":"Article 139230"},"PeriodicalIF":4.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}