首页 > 最新文献

Physics Letters B最新文献

英文 中文
Search for the Higgs boson decays to a ρ0, ϕ, or K⁎0 meson and a photon in proton-proton collisions at s=13TeV
IF 4.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-02-03 DOI: 10.1016/j.physletb.2025.139296
Three rare decay processes of the Higgs boson to a ρ(770)0, ϕ(1020), or K(892)0 meson and a photon are searched for using s=13TeV proton-proton collision data collected by the CMS experiment at the LHC. Events are selected assuming the mesons decay into a pair of charged pions, a pair of charged kaons, or a charged kaon and pion, respectively. Depending on the Higgs boson production mode, different triggering and reconstruction techniques are adopted. The analyzed data sets correspond to integrated luminosities up to 138fb1, depending on the reconstructed final state. After combining various data sets and categories, no significant excess above the background expectations is observed. Upper limits at 95% confidence level on the Higgs boson branching fractions into ρ(770)0γ, ϕ(1020)γ, and K(892)0γ are determined to be 3.7×104, 3.0×104, and 3.0×104, respectively. In case of the ρ(770)0γ and ϕ(1020)γ channels, these are the most stringent experimental limits to date.
{"title":"Search for the Higgs boson decays to a ρ0, ϕ, or K⁎0 meson and a photon in proton-proton collisions at s=13TeV","authors":"","doi":"10.1016/j.physletb.2025.139296","DOIUrl":"10.1016/j.physletb.2025.139296","url":null,"abstract":"<div><div>Three rare decay processes of the Higgs boson to a <span><math><mi>ρ</mi><msup><mrow><mo>(</mo><mn>770</mn><mo>)</mo></mrow><mrow><mn>0</mn></mrow></msup></math></span>, <span><math><mi>ϕ</mi><mo>(</mo><mn>1020</mn><mo>)</mo></math></span>, or <span><math><msup><mrow><mi>K</mi></mrow><mrow><mo>⁎</mo></mrow></msup><msup><mrow><mo>(</mo><mn>892</mn><mo>)</mo></mrow><mrow><mn>0</mn></mrow></msup></math></span> meson and a photon are searched for using <span><math><msqrt><mrow><mi>s</mi></mrow></msqrt><mo>=</mo><mn>13</mn><mspace></mspace><mtext>TeV</mtext></math></span> proton-proton collision data collected by the CMS experiment at the LHC. Events are selected assuming the mesons decay into a pair of charged pions, a pair of charged kaons, or a charged kaon and pion, respectively. Depending on the Higgs boson production mode, different triggering and reconstruction techniques are adopted. The analyzed data sets correspond to integrated luminosities up to 138<span><math><mspace></mspace><msup><mrow><mtext>fb</mtext></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>, depending on the reconstructed final state. After combining various data sets and categories, no significant excess above the background expectations is observed. Upper limits at 95% confidence level on the Higgs boson branching fractions into <span><math><mi>ρ</mi><msup><mrow><mo>(</mo><mn>770</mn><mo>)</mo></mrow><mrow><mn>0</mn></mrow></msup><mi>γ</mi></math></span>, <span><math><mi>ϕ</mi><mo>(</mo><mn>1020</mn><mo>)</mo><mi>γ</mi></math></span>, and <span><math><msup><mrow><mi>K</mi></mrow><mrow><mo>⁎</mo></mrow></msup><msup><mrow><mo>(</mo><mn>892</mn><mo>)</mo></mrow><mrow><mn>0</mn></mrow></msup><mi>γ</mi></math></span> are determined to be <span><math><mn>3.7</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup></math></span>, <span><math><mn>3.0</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup></math></span>, and <span><math><mn>3.0</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup></math></span>, respectively. In case of the <span><math><mi>ρ</mi><msup><mrow><mo>(</mo><mn>770</mn><mo>)</mo></mrow><mrow><mn>0</mn></mrow></msup><mi>γ</mi></math></span> and <span><math><mi>ϕ</mi><mo>(</mo><mn>1020</mn><mo>)</mo><mi>γ</mi></math></span> channels, these are the most stringent experimental limits to date.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"862 ","pages":"Article 139296"},"PeriodicalIF":4.3,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143376924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proposal to use LHC general-purpose detectors in “beam-dump” measurements for long-lived particles 建议使用大型强子对撞机通用探测器对长寿命粒子进行“束流转储”测量
IF 4.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-02-01 DOI: 10.1016/j.physletb.2025.139246
Bhaskar Dutta , Doojin Kim , Hyunyong Kim
We propose a novel scheme for performing a beam-dump-like experiment with the general-purpose detectors (ATLAS and CMS) at the LHC. Collisions of high-energy protons result in jets containing a number of energetic hadrons and electromagnetic objects that are essentially “dumped” to hadronic and electromagnetic calorimeters, respectively, and induce the production of secondary hadrons, electrons, and photons in calorimetric showers. We envision a situation where new physics particles are produced by the interactions of these secondary particles inside the calorimeters. For proof of principles, we consider the axion-like particles (ALPs) produced via the Primakoff process in the presence of their interaction with photons at CMS. We argue that the drift tube chambers and the ME0 module of the muon system can serve as detectors to record the photons from the ALP decay, demonstrating that assuming the background level can be controlled as discussed in this work, the resulting sensitivity reach is competitive due to their close proximity to the signal source points. We further show that the LHC does not suffer from a barrier, dubbed beam-dump “ceiling”, that typical beam-dump experiments hardly surpass. This gives the LHC great potential to explore a wide range of parameter space. This analysis can be extended to investigate various types of light mediators with couplings to the Standard Model leptons and quarks.
我们提出了一种在大型强子对撞机上使用通用探测器(ATLAS和CMS)进行类似束流转储实验的新方案。高能质子的碰撞会产生包含大量高能强子和电磁物体的射流,这些物体本质上分别被“倾倒”到强子和电磁量热计中,并在量热阵雨中诱导次生强子、电子和光子的产生。我们设想一种新的物理粒子是由这些次级粒子在量热计内的相互作用产生的。为了证明原理,我们考虑了通过Primakoff过程产生的类轴子粒子(ALPs),它们在CMS中与光子相互作用。我们认为,漂移管腔和μ子系统的ME0模块可以作为探测器来记录来自ALP衰变的光子,这表明,假设本工作中讨论的背景电平可以控制,由于它们靠近信号源点,由此产生的灵敏度达到具有竞争力。我们进一步表明,大型强子对撞机不受束流转储“天花板”障碍的影响,这是典型的束流转储实验很难超越的。这使得大型强子对撞机有很大的潜力去探索更大范围的参数空间。这种分析可以扩展到研究与标准模型轻子和夸克耦合的各种类型的光介质。
{"title":"Proposal to use LHC general-purpose detectors in “beam-dump” measurements for long-lived particles","authors":"Bhaskar Dutta ,&nbsp;Doojin Kim ,&nbsp;Hyunyong Kim","doi":"10.1016/j.physletb.2025.139246","DOIUrl":"10.1016/j.physletb.2025.139246","url":null,"abstract":"<div><div>We propose a novel scheme for performing a beam-dump-like experiment with the general-purpose detectors (ATLAS and CMS) at the LHC. Collisions of high-energy protons result in jets containing a number of energetic hadrons and electromagnetic objects that are essentially “dumped” to hadronic and electromagnetic calorimeters, respectively, and induce the production of secondary hadrons, electrons, and photons in calorimetric showers. We envision a situation where new physics particles are produced by the interactions of these secondary particles inside the calorimeters. For proof of principles, we consider the axion-like particles (ALPs) produced via the Primakoff process in the presence of their interaction with photons at CMS. We argue that the drift tube chambers and the ME0 module of the muon system can serve as detectors to record the photons from the ALP decay, demonstrating that assuming the background level can be controlled as discussed in this work, the resulting sensitivity reach is competitive due to their close proximity to the signal source points. We further show that the LHC does not suffer from a barrier, dubbed beam-dump “ceiling”, that typical beam-dump experiments hardly surpass. This gives the LHC great potential to explore a wide range of parameter space. This analysis can be extended to investigate various types of light mediators with couplings to the Standard Model leptons and quarks.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"861 ","pages":"Article 139246"},"PeriodicalIF":4.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On (dis)agreement between different methods of calculation of the imaginary part of the effective action in expanding space-times 论膨胀时空中有效作用虚部的不同计算方法的一致性
IF 4.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-02-01 DOI: 10.1016/j.physletb.2025.139256
E.T. Akhmedov , I.A. Belkovich , D.V. Diakonov , K.A. Kazarnovskii
We consider two approaches to calculate imaginary parts of effective actions in expanding space-times. While the first approach uses Bogolyubov coefficients, the second one uses the functional integral or the Feynman propagator. In eternally expanding space-times these two approaches give different answers for the imaginary parts. The origin of the difference can be traced to the presence if the wave-functionals for the initial and final states in the functional integral. We show this explicitly on the example of the expanding Poincare patch of the de Sitter space-time.
我们考虑了两种计算膨胀时空中有效作用虚部的方法。第一种方法使用Bogolyubov系数,第二种方法使用泛函积分或费曼传播算子。在永恒膨胀的时空中,这两种方法对虚部给出了不同的答案。这种差异的根源可以追溯到泛函积分中初始状态和最终状态的波泛函的存在。我们在德西特时空的膨胀庞加莱补丁的例子中明确地说明了这一点。
{"title":"On (dis)agreement between different methods of calculation of the imaginary part of the effective action in expanding space-times","authors":"E.T. Akhmedov ,&nbsp;I.A. Belkovich ,&nbsp;D.V. Diakonov ,&nbsp;K.A. Kazarnovskii","doi":"10.1016/j.physletb.2025.139256","DOIUrl":"10.1016/j.physletb.2025.139256","url":null,"abstract":"<div><div>We consider two approaches to calculate imaginary parts of effective actions in expanding space-times. While the first approach uses Bogolyubov coefficients, the second one uses the functional integral or the Feynman propagator. In eternally expanding space-times these two approaches give different answers for the imaginary parts. The origin of the difference can be traced to the presence if the wave-functionals for the initial and final states in the functional integral. We show this explicitly on the example of the expanding Poincare patch of the de Sitter space-time.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"861 ","pages":"Article 139256"},"PeriodicalIF":4.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142989510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FastEEC: Fast evaluation of N-point energy correlators
IF 4.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-02-01 DOI: 10.1016/j.physletb.2025.139276
Ankita Budhraja , Wouter J. Waalewijn
Energy correlators characterize the asymptotic energy flow in scattering events produced at colliders, from which the microscopic physics of the scattering can be deduced. This view of collisions is akin to analyzes of the Cosmic Microwave Background, and a range of promising phenomenological applications of energy correlators have been identified, including the study of hadronization, the deadcone effect, measuring αs and the top quark mass. While N-point energy correlators are interesting to study for larger values of N, their evaluation is computationally intensive, scaling like MN/N!, where M is the number of particles. In this Letter, we develop a fast, approximate method for their evaluation exploiting that correlations at a given angular scale are insensitive to effects at other (widely-separated) scales. This implies that the energy correlator can be computed on (sub)jets, effectively reducing M. Furthermore, we utilize a dynamical (sub)jet radius that allows us to obtain reliable results without restricting the angular scales being probed. For concreteness, we focus on the projected energy correlator which projects onto the largest separation between the N directions. E.g. for N=7 we find a speed up of up to four orders of magnitude, depending on the desired accuracy. We also consider the possibility of raising the energy to a power higher than one in the energy correlator, which has been proposed to reduce soft sensitivity. These higher-power correlators are not collinear safe, but as a byproduct our approach suggests a natural method to regularize them, such that they can be described using perturbation theory. This Letter is accompanied by a public code that implements our method.
{"title":"FastEEC: Fast evaluation of N-point energy correlators","authors":"Ankita Budhraja ,&nbsp;Wouter J. Waalewijn","doi":"10.1016/j.physletb.2025.139276","DOIUrl":"10.1016/j.physletb.2025.139276","url":null,"abstract":"<div><div>Energy correlators characterize the asymptotic energy flow in scattering events produced at colliders, from which the microscopic physics of the scattering can be deduced. This view of collisions is akin to analyzes of the Cosmic Microwave Background, and a range of promising phenomenological applications of energy correlators have been identified, including the study of hadronization, the deadcone effect, measuring <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> and the top quark mass. While <em>N</em>-point energy correlators are interesting to study for larger values of <em>N</em>, their evaluation is computationally intensive, scaling like <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>/</mo><mi>N</mi><mo>!</mo></math></span>, where <em>M</em> is the number of particles. In this Letter, we develop a fast, approximate method for their evaluation exploiting that correlations at a given angular scale are insensitive to effects at other (widely-separated) scales. This implies that the energy correlator can be computed on (sub)jets, effectively reducing <em>M</em>. Furthermore, we utilize a dynamical (sub)jet radius that allows us to obtain reliable results without restricting the angular scales being probed. For concreteness, we focus on the projected energy correlator which projects onto the largest separation between the <em>N</em> directions. E.g. for <span><math><mi>N</mi><mo>=</mo><mn>7</mn></math></span> we find a speed up of up to four orders of magnitude, depending on the desired accuracy. We also consider the possibility of raising the energy to a power higher than one in the energy correlator, which has been proposed to reduce soft sensitivity. These higher-power correlators are not collinear safe, but as a byproduct our approach suggests a natural method to regularize them, such that they can be described using perturbation theory. This Letter is accompanied by a public code that implements our method.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"861 ","pages":"Article 139276"},"PeriodicalIF":4.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143035228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Searching for signals of an exotic I = 1,JP = 2+ state of D⁎K⁎ nature and the structure of the Pc(4312) in the Λb→Σc++D−K− reaction
IF 4.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-02-01 DOI: 10.1016/j.physletb.2025.139294
Jing Song , Zi-Ying Yang , Eulogio Oset
<div><div>This paper investigates the decay process <span><math><msub><mrow><mi>Λ</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>→</mo><msubsup><mrow><mi>Σ</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>+</mo><mo>+</mo></mrow></msubsup><msup><mrow><mi>D</mi></mrow><mrow><mo>−</mo></mrow></msup><msup><mrow><mi>K</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span> with the objective of finding a predicted molecular state with isospin <span><math><mi>I</mi><mo>=</mo><mn>1</mn></math></span>, <span><math><msup><mrow><mi>J</mi></mrow><mrow><mi>P</mi></mrow></msup><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msup></math></span> of <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>⁎</mo></mrow></msup><msup><mrow><mi>K</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> nature, plus finding support for the <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mn>4312</mn><mo>)</mo></math></span> state as made out of <span><math><msub><mrow><mi>Σ</mi></mrow><mrow><mi>c</mi></mrow></msub><mover><mrow><mi>D</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span>. The mass distribution of the <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>−</mo></mrow></msup><msup><mrow><mi>K</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span> system shows distinct features as a consequence of the existence of this <span><math><msup><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msup></math></span> state, while the <span><math><msub><mrow><mi>Σ</mi></mrow><mrow><mi>c</mi></mrow></msub><mover><mrow><mi>D</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> distribution exhibits a significant peak near the threshold, much bigger than phase space expectations, which is linked to our assumed <span><math><msub><mrow><mi>Σ</mi></mrow><mrow><mi>c</mi></mrow></msub><mover><mrow><mi>D</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> nature of the <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mn>4312</mn><mo>)</mo></math></span> state below the <span><math><msub><mrow><mi>Σ</mi></mrow><mrow><mi>c</mi></mrow></msub><mover><mrow><mi>D</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> threshold. The reaction has been measured at LHCb Collaboration, but only the branching ratio is measured. The present study shows that much valuable information can be obtained about the predicted <span><math><msup><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msup></math></span> <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi><mover><mrow><mi>s</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub><mo>(</mo><mn>2834</mn><mo>)</mo></math></span> of <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>⁎</mo></mrow></msup><msup><mrow><mi>K</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> nature and the <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mn>4312</mn><mo>)</mo></math></span> states from the measurements of the mass distributions in
{"title":"Searching for signals of an exotic I = 1,JP = 2+ state of D⁎K⁎ nature and the structure of the Pc(4312) in the Λb→Σc++D−K− reaction","authors":"Jing Song ,&nbsp;Zi-Ying Yang ,&nbsp;Eulogio Oset","doi":"10.1016/j.physletb.2025.139294","DOIUrl":"10.1016/j.physletb.2025.139294","url":null,"abstract":"&lt;div&gt;&lt;div&gt;This paper investigates the decay process &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Λ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;Σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; with the objective of finding a predicted molecular state with isospin &lt;span&gt;&lt;math&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;J&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; of &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; nature, plus finding support for the &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;4312&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; state as made out of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/math&gt;&lt;/span&gt;. The mass distribution of the &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; system shows distinct features as a consequence of the existence of this &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; state, while the &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/math&gt;&lt;/span&gt; distribution exhibits a significant peak near the threshold, much bigger than phase space expectations, which is linked to our assumed &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/math&gt;&lt;/span&gt; nature of the &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;4312&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; state below the &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/math&gt;&lt;/span&gt; threshold. The reaction has been measured at LHCb Collaboration, but only the branching ratio is measured. The present study shows that much valuable information can be obtained about the predicted &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2834&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; of &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; nature and the &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;4312&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; states from the measurements of the mass distributions in ","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"861 ","pages":"Article 139294"},"PeriodicalIF":4.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143072386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generic symmetry analysis of charmonium decay
IF 4.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-02-01 DOI: 10.1016/j.physletb.2025.139287
X.H. Mo
For charmonium's decaying to the final states involving merely light quarks, in light of SU(3) flavor symmetry, a systematic parametrization scheme is established, which involving binary decays, ternary decays and radiative decays.
{"title":"Generic symmetry analysis of charmonium decay","authors":"X.H. Mo","doi":"10.1016/j.physletb.2025.139287","DOIUrl":"10.1016/j.physletb.2025.139287","url":null,"abstract":"<div><div>For charmonium's decaying to the final states involving merely light quarks, in light of <span><math><mi>S</mi><mi>U</mi><mo>(</mo><mn>3</mn><mo>)</mo></math></span> flavor symmetry, a systematic parametrization scheme is established, which involving binary decays, ternary decays and radiative decays.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"861 ","pages":"Article 139287"},"PeriodicalIF":4.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143072392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scalar perturbation around rotating Einstein-bumblebee BTZ black holes under Robin boundary conditions: Quasinormal modes and superradiance 罗宾边界条件下旋转爱因斯坦-大黄蜂BTZ黑洞周围的标量摄动:准正态模式和超辐射
IF 4.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-02-01 DOI: 10.1016/j.physletb.2024.139228
Chengjia Chen , Fengkai Ge , Qiyuan Pan , Jiliang Jing
We investigate the scalar perturbation around a rotating Einstein-bumblebee BTZ black hole under Robin boundary conditions. It is shown that the relationship curves between real and imaginary parts of scalar quasinormal modes in the complex plane depend on the black hole spin parameter j and the Lorentz symmetry breaking parameter s. The shapes of these curves are similar for different s, but heavily depend on the spin parameter j. With the increase of j, the symmetry of these curves with respect to the imaginary axis in the complex plane is gradually broken for different s. We also discuss the energy and angular momentum fluxes across the black hole horizon under Robin boundary conditions, and probe the changes of the threshold parameter related to the superradiance in Robin boundary conditions with the symmetry breaking parameter and the spin parameter. The combination of the Lorentz symmetry violation and the Robin boundary condition provides richer physics in the scalar perturbation around a rotating Einstein-bumblebee BTZ black hole.
研究了在Robin边界条件下旋转爱因斯坦-大黄蜂BTZ黑洞周围的标量微扰。结果表明,复平面标量拟正态模实部与虚部的关系曲线依赖于黑洞自旋参数j和洛伦兹对称破缺参数s,不同s下曲线形状相似,但严重依赖于自旋参数j。我们还讨论了Robin边界条件下黑洞视界上的能量通量和角动量通量,并利用对称性破缺参数和自旋参数探讨了Robin边界条件下与超辐射相关的阈值参数的变化。洛伦兹对称违反和罗宾边界条件的结合为围绕旋转的爱因斯坦-大黄蜂BTZ黑洞的标量扰动提供了更丰富的物理。
{"title":"Scalar perturbation around rotating Einstein-bumblebee BTZ black holes under Robin boundary conditions: Quasinormal modes and superradiance","authors":"Chengjia Chen ,&nbsp;Fengkai Ge ,&nbsp;Qiyuan Pan ,&nbsp;Jiliang Jing","doi":"10.1016/j.physletb.2024.139228","DOIUrl":"10.1016/j.physletb.2024.139228","url":null,"abstract":"<div><div>We investigate the scalar perturbation around a rotating Einstein-bumblebee BTZ black hole under Robin boundary conditions. It is shown that the relationship curves between real and imaginary parts of scalar quasinormal modes in the complex plane depend on the black hole spin parameter <em>j</em> and the Lorentz symmetry breaking parameter <em>s</em>. The shapes of these curves are similar for different <em>s</em>, but heavily depend on the spin parameter <em>j</em>. With the increase of <em>j</em>, the symmetry of these curves with respect to the imaginary axis in the complex plane is gradually broken for different <em>s</em>. We also discuss the energy and angular momentum fluxes across the black hole horizon under Robin boundary conditions, and probe the changes of the threshold parameter related to the superradiance in Robin boundary conditions with the symmetry breaking parameter and the spin parameter. The combination of the Lorentz symmetry violation and the Robin boundary condition provides richer physics in the scalar perturbation around a rotating Einstein-bumblebee BTZ black hole.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"861 ","pages":"Article 139228"},"PeriodicalIF":4.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142925283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extensive composable entropy for the analysis of cosmological data 用于宇宙学数据分析的广泛可组合熵
IF 4.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-02-01 DOI: 10.1016/j.physletb.2024.139238
Constantino Tsallis , Henrik Jeldtoft Jensen
<div><div>In recent decades, an intensive worldwide research activity is focusing both black holes and cosmos (e.g. the dark-energy phenomenon) on the basis of entropic approaches. The Boltzmann-Gibbs-based Bekenstein-Hawking entropy <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>B</mi><mi>H</mi></mrow></msub><mo>∝</mo><mi>A</mi><mo>/</mo><msubsup><mrow><mi>l</mi></mrow><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> (<em>A</em>≡ area; <span><math><msub><mrow><mi>l</mi></mrow><mrow><mi>P</mi></mrow></msub><mo>≡</mo></math></span> Planck length) systematically plays a crucial theoretical role although it has a serious drawback, namely that it violates the thermodynamic extensivity of spatially-three-dimensional systems. Still, its intriguing area dependence points out the relevance of considering the form <span><math><mi>W</mi><mo>(</mo><mi>N</mi><mo>)</mo><mo>∼</mo><msup><mrow><mi>μ</mi></mrow><mrow><msup><mrow><mi>N</mi></mrow><mrow><mi>γ</mi></mrow></msup></mrow></msup><mspace></mspace><mspace></mspace><mo>(</mo><mi>μ</mi><mo>></mo><mn>1</mn><mo>;</mo><mi>γ</mi><mo>></mo><mn>0</mn><mo>)</mo></math></span>, <em>W</em> and <em>N</em> respectively being the total number of microscopic possibilities and the number of components; <span><math><mi>γ</mi><mo>=</mo><mn>1</mn></math></span> corresponds to standard Boltzmann-Gibbs (BG) statistical mechanics. For this <span><math><mi>W</mi><mo>(</mo><mi>N</mi><mo>)</mo></math></span> asymptotic behavior, we make use of the group-theoretic entropic functional <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>γ</mi></mrow></msub><mo>=</mo><mi>k</mi><msup><mrow><mo>[</mo><mfrac><mrow><mi>ln</mi><mo>⁡</mo><msubsup><mrow><mi>Σ</mi></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>W</mi></mrow></msubsup><msubsup><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>α</mi></mrow></msubsup></mrow><mrow><mn>1</mn><mo>−</mo><mi>α</mi></mrow></mfrac><mo>]</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>γ</mi></mrow></mfrac></mrow></msup><mspace></mspace><mo>(</mo><mi>α</mi><mo>∈</mo><mi>R</mi><mo>;</mo><mspace></mspace><msub><mrow><mi>S</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>B</mi><mi>G</mi></mrow></msub><mo>≡</mo><mo>−</mo><mi>k</mi><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>W</mi></mrow></msubsup><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mi>ln</mi><mo>⁡</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></math></span>, first derived by P. Tempesta in Chaos <strong>30</strong>,123119, (2020). This functional is <em>extensive</em> (as required by thermodynamics) and <em>composable</em>, <span><math><mo>∀</mo><mo>(</mo><mi>α</mi><mo>,</mo><mi>γ</mi><mo>)</mo></math></span>. Being extensive means that in the micro-canonical, or uniform, ensemble where all micro-state occur with the same probabil
近几十年来,世界范围内对黑洞和宇宙(如暗能量现象)的研究都集中在熵方法的基础上。基于玻尔兹曼-吉布斯的贝肯斯坦-霍金熵SBH∝A/lP2 (A≡面积;lP≡普朗克长度)系统地起着至关重要的理论作用,尽管它有一个严重的缺点,即它违反了空间三维系统的热力学广泛性。尽管如此,其有趣的区域依赖性指出了考虑W(N) ~ μNγ(μ>1;γ>0)形式的相关性,W和N分别是微观可能性的总数和组分的数量;γ=1对应于标准玻尔兹曼-吉布斯(BG)统计力学。对于这种W(N)渐近行为,我们使用了群论熵泛函Sα,γ=k[ln (Σi) =1Wpiα1 - α]1γ(α∈R;S1,1=SBG≡- k∑i=1Wpiln (pi)),该泛函首先由P. Tempesta在Chaos 30,123119,(2020)中导出。这个泛函是广泛的(如热力学所要求的)和可组合的,∀(α,γ)。广泛意味着在微正则系综中,所有微观状态都以相同的概率发生,熵与N渐近成正比:S(N)∝N→∞。如果由统计上独立的两个部分B和C组成的系统a =B×C的熵SA一致地表示为SA=Φ(SB,SC),其中组合函数Φ(x,y)由群论得到,则该熵是可组合的。
{"title":"Extensive composable entropy for the analysis of cosmological data","authors":"Constantino Tsallis ,&nbsp;Henrik Jeldtoft Jensen","doi":"10.1016/j.physletb.2024.139238","DOIUrl":"10.1016/j.physletb.2024.139238","url":null,"abstract":"&lt;div&gt;&lt;div&gt;In recent decades, an intensive worldwide research activity is focusing both black holes and cosmos (e.g. the dark-energy phenomenon) on the basis of entropic approaches. The Boltzmann-Gibbs-based Bekenstein-Hawking entropy &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∝&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt; (&lt;em&gt;A&lt;/em&gt;≡ area; &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;≡&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; Planck length) systematically plays a crucial theoretical role although it has a serious drawback, namely that it violates the thermodynamic extensivity of spatially-three-dimensional systems. Still, its intriguing area dependence points out the relevance of considering the form &lt;span&gt;&lt;math&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;∼&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;;&lt;/mo&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, &lt;em&gt;W&lt;/em&gt; and &lt;em&gt;N&lt;/em&gt; respectively being the total number of microscopic possibilities and the number of components; &lt;span&gt;&lt;math&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; corresponds to standard Boltzmann-Gibbs (BG) statistical mechanics. For this &lt;span&gt;&lt;math&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; asymptotic behavior, we make use of the group-theoretic entropic functional &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;ln&lt;/mi&gt;&lt;mo&gt;⁡&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;Σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mo&gt;;&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;≡&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mo&gt;∑&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;ln&lt;/mi&gt;&lt;mo&gt;⁡&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, first derived by P. Tempesta in Chaos &lt;strong&gt;30&lt;/strong&gt;,123119, (2020). This functional is &lt;em&gt;extensive&lt;/em&gt; (as required by thermodynamics) and &lt;em&gt;composable&lt;/em&gt;, &lt;span&gt;&lt;math&gt;&lt;mo&gt;∀&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. Being extensive means that in the micro-canonical, or uniform, ensemble where all micro-state occur with the same probabil","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"861 ","pages":"Article 139238"},"PeriodicalIF":4.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface gravity analysis in Gauss-Bonnet and Barrow black holes 高斯-邦纳和巴罗黑洞的表面重力分析
IF 4.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-02-01 DOI: 10.1016/j.physletb.2024.139236
Everton M.C. Abreu
We have different definitions of the surface gravity (SG) of a horizon since we can say we have distinct classifications of horizons. The SG has an underlying role in the laws of black hole (BH) thermodynamics, being constant in the event horizon. The SG also acts in the emission of Hawking radiation being connected to its temperature. Concerning this last issue, the quantum features that permeate Hawking radiation provide us a direct indication that a BH has its temperature directly connected to its area and that its entropy is proportional to the horizon area. In this work we analyzed some aspects of event horizons. Analyzing how the SG can be classically defined for stationary BHs together with the radial pressure computation. So, the SG, through the laws of BH mechanics is connected to the real thermodynamical temperature of a thermal spectrum. We discussed these subjects in two different BHs scenarios, the five dimensional Gauss-Bonnet one and the recently developed Barrow entropy construction. We discussed how the quantum fluctuations affect these both quantities.
我们对视界的表面重力(SG)有不同的定义,因为我们可以说我们有不同的视界分类。SG在黑洞(BH)热力学定律中具有潜在的作用,在视界中是恒定的。SG还在与其温度相关的霍金辐射发射中起作用。关于最后一个问题,贯穿霍金辐射的量子特征为我们提供了一个直接的指示,即黑洞的温度与其面积直接相关,其熵与视界面积成正比。在这项工作中,我们分析了事件视界的一些方面。结合径向压力计算,分析了如何定义静止黑洞的SG。因此,SG,通过黑洞力学的定律与热谱的实际热力学温度相联系。我们在两种不同的黑洞情景中讨论了这些问题,五维高斯-博内情景和最近发展的巴罗熵结构。我们讨论了量子涨落如何影响这两个量。
{"title":"Surface gravity analysis in Gauss-Bonnet and Barrow black holes","authors":"Everton M.C. Abreu","doi":"10.1016/j.physletb.2024.139236","DOIUrl":"10.1016/j.physletb.2024.139236","url":null,"abstract":"<div><div>We have different definitions of the surface gravity (SG) of a horizon since we can say we have distinct classifications of horizons. The SG has an underlying role in the laws of black hole (BH) thermodynamics, being constant in the event horizon. The SG also acts in the emission of Hawking radiation being connected to its temperature. Concerning this last issue, the quantum features that permeate Hawking radiation provide us a direct indication that a BH has its temperature directly connected to its area and that its entropy is proportional to the horizon area. In this work we analyzed some aspects of event horizons. Analyzing how the SG can be classically defined for stationary BHs together with the radial pressure computation. So, the SG, through the laws of BH mechanics is connected to the real thermodynamical temperature of a thermal spectrum. We discussed these subjects in two different BHs scenarios, the five dimensional Gauss-Bonnet one and the recently developed Barrow entropy construction. We discussed how the quantum fluctuations affect these both quantities.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"861 ","pages":"Article 139236"},"PeriodicalIF":4.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accurate calculation of low energy scattering phase shifts of charged particles in a harmonic oscillator trap 谐振子阱中带电粒子低能量散射相移的精确计算
IF 4.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-02-01 DOI: 10.1016/j.physletb.2024.139230
Mirko Bagnarol , Nir Barnea , Matúš Rojik , Martin Schäfer
Considering the elastic scattering of two charged particles, we present two methods for numerically solving the generalized Coulomb-corrected BERW formula with high accuracy across the entire energy spectrum. We illustrate these methods using pα scattering, employing a phenomenological pα short-range interaction. Our results reproduce the phase shifts computed with the Numerov method for all l=0 and l=1 channels. We also provide full access to the Python script used to obtain these results, which can be readily applied to a wide range of core-fragment scattering problems in nuclear and atomic physics.
考虑到两个带电粒子的弹性散射,我们给出了在整个能谱范围内高精度求解广义库仑修正BERW公式的两种方法。我们用p−α散射来说明这些方法,采用现象学的p−α短程相互作用。我们的结果再现了用Numerov方法计算的所有l=0和l=1通道的相移。我们还提供了用于获得这些结果的Python脚本的完整访问权限,它可以很容易地应用于核和原子物理中广泛的堆芯碎片散射问题。
{"title":"Accurate calculation of low energy scattering phase shifts of charged particles in a harmonic oscillator trap","authors":"Mirko Bagnarol ,&nbsp;Nir Barnea ,&nbsp;Matúš Rojik ,&nbsp;Martin Schäfer","doi":"10.1016/j.physletb.2024.139230","DOIUrl":"10.1016/j.physletb.2024.139230","url":null,"abstract":"<div><div>Considering the elastic scattering of two charged particles, we present two methods for numerically solving the generalized Coulomb-corrected BERW formula with high accuracy across the entire energy spectrum. We illustrate these methods using <span><math><mi>p</mi><mo>−</mo><mi>α</mi></math></span> scattering, employing a phenomenological <span><math><mi>p</mi><mo>−</mo><mi>α</mi></math></span> short-range interaction. Our results reproduce the phase shifts computed with the Numerov method for all <span><math><mi>l</mi><mo>=</mo><mn>0</mn></math></span> and <span><math><mi>l</mi><mo>=</mo><mn>1</mn></math></span> channels. We also provide full access to the Python script used to obtain these results, which can be readily applied to a wide range of core-fragment scattering problems in nuclear and atomic physics.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"861 ","pages":"Article 139230"},"PeriodicalIF":4.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physics Letters B
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1