Sophora flavescens Aiton is a plant in the Leguminosae family. As a traditional Chinese medicine, it is used to treat eczema, bloody stool, skin pruritus, and so on. By studying non-alkaloid components in the roots of S. flavescens, we obtained a total of 49 compounds (1–49), including three undescribed flavonoids (13, 15 and 18), five undescribed isopentenyl flavonoids (32, 34, 38, 39 and 48), two known coumarins (1–2), three phenolic acids (3–5), one known isopentenyl flavonoids (19–31, 33, 35–37, 40–47 and 49). On the basis of chemical evidences and spectral data analysis (UV, ECD, Optical rotation data, 1D/2D-NMR and HR-ESI-MS), the structures of undescribed compounds were elucidated. The inhibitory effect of compounds 1–49 on LPS induced NO production in RAW 264.7 cells was detected. Compounds 11, 19, 21–24, and 28–30 showed significant inhibitory effects, and the IC50 values of compounds 11 and 22 even reached 4.58 ± 0.66 and 4.53 ± 0.66 μM. This study suggests that flavonoids may be the main component that exerts anti-inflammatory effects in the non-alkaloid extraction layer of the extract from the roots of S. flavescens.
Phytochemical investigation of the whole plants of Helleborus niger L. (Ranunculaceae) resulted in the isolation of five undescribed compounds, including one bufadienolide (1), two bufadienolide rhamnosides (2 and 3), and two ecdysteroids (12 and 13), along with eight known compounds (4–11). The chemical structures of 1–3, 12, and 13 were determined by spectroscopic studies, including 2D NMR, and chromatographic and spectroscopic analyses of the hydrolyzed products. Compounds 1–13 were evaluated for their cytotoxic activity against HL-60 human leukemia cells, A549 human lung adenocarcinoma cells, SBC-3 human small-cell lung cancer cells, and TIG-3 human normal diploid lung cells. Compounds 1–12 showed cytotoxic activity against HL-60, A549, and SBC-3 cells, with IC50 values ranging from 0.0016 to 6.1 μM. Bufadienolide rhamnoside 2 exhibited potent cell proliferation inhibitory activity against SBC-3 cells after 24–48 h of treatment and apoptosis-inducing activity in SBC-3 cells via an intrinsic pathway after 72 h of treatment. The JFCR39 panel screening of 2 suggests that the molecular target of 2 is Na+,K+-ATPase.