Thiago Saksanian Hallak, José Ferreira Gaspar, Carlos António Pancada Guedes Soares
AmAmong the challenges currently being faced by the wave energy industry, there are the ones related to the mathematical and numerical modelling of Wave Energy Converters. Because various levels of physical complexity are reflected in the dynamics of wave converters, the mathematical modelling of such systems usually comes up with nonlinear dynamic equations to be solved. The nonlinearities, however, may appear in many ways. In this paper, the nonlinear geometric constraints that arise naturally in hinged structures are investigated for floating multi-body systems including wave point absorbers. To achieve that, a method of constraint linearization is proposed and applied to a realistic case study. The method is based on generalized coordinates and generates a robust first-order dynamic matrix to characterize the multi-degrees of freedom hydrodynamic system. The simulation outputs the motion response for all floating bodies, as well as the constraining forces responses, among other parameters. The method requires knowledge of the geometries of the system but rather few assumptions, namely, to perform the linearization of constraints. The method is illustrated with a case study, where three wave point absorbers are concentrically attached to a Floating Offshore Wind Turbine platform with an onboard hydraulic Power-Take Off system.
{"title":"Dynamic Simulation of Wave Point Absorbers Connected to a Central Floating Platform","authors":"Thiago Saksanian Hallak, José Ferreira Gaspar, Carlos António Pancada Guedes Soares","doi":"10.36688/ewtec-2023-496","DOIUrl":"https://doi.org/10.36688/ewtec-2023-496","url":null,"abstract":"AmAmong the challenges currently being faced by the wave energy industry, there are the ones related to the mathematical and numerical modelling of Wave Energy Converters. Because various levels of physical complexity are reflected in the dynamics of wave converters, the mathematical modelling of such systems usually comes up with nonlinear dynamic equations to be solved. The nonlinearities, however, may appear in many ways. In this paper, the nonlinear geometric constraints that arise naturally in hinged structures are investigated for floating multi-body systems including wave point absorbers. To achieve that, a method of constraint linearization is proposed and applied to a realistic case study. The method is based on generalized coordinates and generates a robust first-order dynamic matrix to characterize the multi-degrees of freedom hydrodynamic system. The simulation outputs the motion response for all floating bodies, as well as the constraining forces responses, among other parameters. The method requires knowledge of the geometries of the system but rather few assumptions, namely, to perform the linearization of constraints. The method is illustrated with a case study, where three wave point absorbers are concentrically attached to a Floating Offshore Wind Turbine platform with an onboard hydraulic Power-Take Off system.","PeriodicalId":201789,"journal":{"name":"Proceedings of the European Wave and Tidal Energy Conference","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133741794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kilwon Kim, Sewan Park, C. Lim, Kyong-Hwan Kim, Jeonghwan Oh, Seung-Ho Shin
In 2016, Korea started to develop a 30kW class wave power plant connected to a breakwater. After designing, manufacturing and performance testing of each energy conversion device, a demonstration plant was installed in Mukri Port, Jeju Island, Korea in 2021. After passing the completion inspection of the power generation facility, a full-scale grid-connected trial operation began in October 2021. The power plant consists of a sloped Oscillating Water Column, impulse air turbine, permanent magnet synchronous generator, AC-DC converter, energy storage system and integrated control system. This study introduces the performance evaluation results based on real sea operation data. The performance evaluation of the wave power plant under various wave height and period conditions was performed to evaluate the output power and efficiency of each bin. In addition, performance evaluations were conducted according to wave direction and tidal conditions to examine the effects. The correlation coefficient was derived by analyzing the correlation between wave height, period, wave directions, tide level and output power.
{"title":"Performance evaluation of 30kW class OWC wave power plant integrated with breakwater","authors":"Kilwon Kim, Sewan Park, C. Lim, Kyong-Hwan Kim, Jeonghwan Oh, Seung-Ho Shin","doi":"10.36688/ewtec-2023-592","DOIUrl":"https://doi.org/10.36688/ewtec-2023-592","url":null,"abstract":"In 2016, Korea started to develop a 30kW class wave power plant connected to a breakwater. After designing, manufacturing and performance testing of each energy conversion device, a demonstration plant was installed in Mukri Port, Jeju Island, Korea in 2021. After passing the completion inspection of the power generation facility, a full-scale grid-connected trial operation began in October 2021. The power plant consists of a sloped Oscillating Water Column, impulse air turbine, permanent magnet synchronous generator, AC-DC converter, energy storage system and integrated control system. \u0000This study introduces the performance evaluation results based on real sea operation data. The performance evaluation of the wave power plant under various wave height and period conditions was performed to evaluate the output power and efficiency of each bin. In addition, performance evaluations were conducted according to wave direction and tidal conditions to examine the effects. The correlation coefficient was derived by analyzing the correlation between wave height, period, wave directions, tide level and output power.","PeriodicalId":201789,"journal":{"name":"Proceedings of the European Wave and Tidal Energy Conference","volume":"158 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133400637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hydrodynamic drag plays a significant role in the motions and response of floating bodies – whether it be a wave energy converter, floating wind structure, or offshore oil & gas platform. Existing literature provides significant overview of the methodologies (both experimental and numerical) to characterize translational drag, however, there is limited research on the contributions (and methods of application) for rotational drag.
This paper will detail both numerical modelling and a physical experimental campaign to assess how rotational drag impacts floating body dynamics, and best practices for numerical model inclusion. Specific focus will be on 1) the variety of methods used to input rotational drag into numerical models; 2) processes and lessons learnt from the experimental derivation of rotational drag coefficients; and 3) how does weakly non-linear wave stretching methods influence rotational drag.
The experimental campaign is currently underway to classify the significance of rotational drag coefficients in characterizing floating body behavior. Translational and rotational drag coefficients of a simplified, inertial property matched, 1:50 floating body is being determined through a series of calibration tests. Both traditional free decay tests and forced oscillation tests will be implemented to evaluate these coefficients across multiple degrees-of-freedom. The final paper will present an overview of the experimental campaign, the results and lesson learnt.
On the numerical side, the floating body will be modelled in the open-source wave energy converter modelling tool, WEC-Sim, and validated against the experimental results. Numerical results will be presented to review general body responses, with and without rotational drag, and generic wave conditions plus those expected at the PacWave wave energy test site in Oregon, USA.
The inclusion of rotational drag coefficients and weakly nonlinear hydrodynamics are expected to improve computational model results, especially in the nonlinear wave excitation range, providing a better understanding of floating body behavior.
{"title":"Numerical and Experimental Characterization of Rotational Floating Body Drag","authors":"Bryson Robertson","doi":"10.36688/ewtec-2023-392","DOIUrl":"https://doi.org/10.36688/ewtec-2023-392","url":null,"abstract":"Hydrodynamic drag plays a significant role in the motions and response of floating bodies – whether it be a wave energy converter, floating wind structure, or offshore oil & gas platform. Existing literature provides significant overview of the methodologies (both experimental and numerical) to characterize translational drag, however, there is limited research on the contributions (and methods of application) for rotational drag.
 
 This paper will detail both numerical modelling and a physical experimental campaign to assess how rotational drag impacts floating body dynamics, and best practices for numerical model inclusion. Specific focus will be on 1) the variety of methods used to input rotational drag into numerical models; 2) processes and lessons learnt from the experimental derivation of rotational drag coefficients; and 3) how does weakly non-linear wave stretching methods influence rotational drag.
 
 The experimental campaign is currently underway to classify the significance of rotational drag coefficients in characterizing floating body behavior. Translational and rotational drag coefficients of a simplified, inertial property matched, 1:50 floating body is being determined through a series of calibration tests. Both traditional free decay tests and forced oscillation tests will be implemented to evaluate these coefficients across multiple degrees-of-freedom. The final paper will present an overview of the experimental campaign, the results and lesson learnt.
 
 On the numerical side, the floating body will be modelled in the open-source wave energy converter modelling tool, WEC-Sim, and validated against the experimental results. Numerical results will be presented to review general body responses, with and without rotational drag, and generic wave conditions plus those expected at the PacWave wave energy test site in Oregon, USA.
 
 The inclusion of rotational drag coefficients and weakly nonlinear hydrodynamics are expected to improve computational model results, especially in the nonlinear wave excitation range, providing a better understanding of floating body behavior.
","PeriodicalId":201789,"journal":{"name":"Proceedings of the European Wave and Tidal Energy Conference","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134949273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
An actuator-line CFD model is used to simulate tidal-stream turbines acting alone or in a compact 3-turbine staggered array. CFD results confirm that the accelerated bypass flow between two proximal turbines in shallow water can enhance the power output for a close downstream turbine, with additional smaller effect of the upstream turbines’ operating point. Comparison with other authors’ experimental data in a narrow flume (IFREMER) and circular wave-current tank (FloWave) show some difference in relative loads between the turbines, possibly associated with ambiguity in overall blade pitch and difficulty in characterising onset flow in the FloWave tank. The accelerated bypass flow is persistent and largely established on the rotor plane of the upstream turbines, indicating how local array effects might be incorporated in simpler blade-element/momentum-theory design tools.
{"title":"Actuator-Line CFD Simulation of Tidal-Stream Turbines in a Compact Array","authors":"David Apsley","doi":"10.36688/ewtec-2023-195","DOIUrl":"https://doi.org/10.36688/ewtec-2023-195","url":null,"abstract":"An actuator-line CFD model is used to simulate tidal-stream turbines acting alone or in a compact 3-turbine staggered array. CFD results confirm that the accelerated bypass flow between two proximal turbines in shallow water can enhance the power output for a close downstream turbine, with additional smaller effect of the upstream turbines’ operating point. Comparison with other authors’ experimental data in a narrow flume (IFREMER) and circular wave-current tank (FloWave) show some difference in relative loads between the turbines, possibly associated with ambiguity in overall blade pitch and difficulty in characterising onset flow in the FloWave tank. The accelerated bypass flow is persistent and largely established on the rotor plane of the upstream turbines, indicating how local array effects might be incorporated in simpler blade-element/momentum-theory design tools.","PeriodicalId":201789,"journal":{"name":"Proceedings of the European Wave and Tidal Energy Conference","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125656969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The optimisation design of Wave Energy Converters (WEC) to reduce the cost of energy of the technology is a widely investigated topic. In literature classical optimisation strategies have been presented and applied to identify the optimal system parameters of WECs to optimise specific techno-economic metrics. The performance of the optimal identified devices relies on these nominal parameters and it can be strongly affected by construction and modelling uncertainties. In this context, the concept of robustness of the optimal solution plays a relevant role in the identification of a device whose performance is affected as little as possible by uncertainties of various kinds. In the first part of this paper different declinations of robustness concept are derived from other fields of application and described. The identified robustness indexes are then applied to optimal solutions obtained via classical optimisation to evaluate its importance in the design process of WECs. Strictly related to this kind of methodology is the Sensitivity Analysis (SA) technique, it aims to investigate how the input variation (due to uncertainties or external noise or additional environmental parameters) influences the output results of a defined numerical model and highlight the relative input parameters relevance. Sensitivity Analysis, therefore, can be a valuable tool applicable in the uncertainty set estimation to identify the variables most subject to such uncertainties and their prominence. The main objective of the work is to underline the importance of introduce the robustness evaluation of WECs during the optimisation process since classical optimisation techniques can lead to solutions that are affected by uncertainties.
{"title":"Relevance of Robustness and Uncertainties Analysis in the Optimal Design of Wave Energy Converters","authors":"Filippo Giorcelli, S. Sirigu, Dario Basile","doi":"10.36688/ewtec-2023-352","DOIUrl":"https://doi.org/10.36688/ewtec-2023-352","url":null,"abstract":"The optimisation design of Wave Energy Converters (WEC) to reduce the cost of energy of the technology is a widely investigated topic. In literature classical optimisation strategies have been presented and applied to identify the optimal system parameters of WECs to optimise specific techno-economic metrics. The performance of the optimal identified devices relies on these nominal parameters and it can be strongly affected by construction and modelling uncertainties. In this context, the concept of robustness of the optimal solution plays a relevant role in the identification of a device whose performance is affected as little as possible by uncertainties of various kinds. In the first part of this paper different declinations of robustness concept are derived from other fields of application and described. The identified robustness indexes are then applied to optimal solutions obtained via classical optimisation to evaluate its importance in the design process of WECs. \u0000Strictly related to this kind of methodology is the Sensitivity Analysis (SA) technique, it aims to investigate how the input variation (due to uncertainties or external noise or additional environmental parameters) influences the output results of a defined numerical model and highlight the relative input parameters relevance. Sensitivity Analysis, therefore, can be a valuable tool applicable in the uncertainty set estimation to identify the variables most subject to such uncertainties and their prominence. \u0000The main objective of the work is to underline the importance of introduce the robustness evaluation of WECs during the optimisation process since classical optimisation techniques can lead to solutions that are affected by uncertainties.","PeriodicalId":201789,"journal":{"name":"Proceedings of the European Wave and Tidal Energy Conference","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131980966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Model predictive control (MPC) has proven its effectiveness in improving the energy capture efficiency of wave energy converters (WECs) under physical constraints. Further application of MPC requires to speed up its online computation for an industrial controller. To this end, the rollout-based MPC (RMPC) for WECs has been developed. The idea of rollout is to decouple the optimization horizon and the prediction horizon, so as to achieve long-horizon performance with short-horizon optimization. In this paper, the RMPC that has previously only been validated by simulation is further put through wave tank testing. The experimental device is a realistic two-body, taut-moored point absorber prototype. The RMPC is based on a simplified model of the device and implemented in real time with wave force estimation and prediction. Experiment results confirm RMPC’s energy efficiency as well as constraint satisfaction, so its computational advantage against conventional MPC is highlighted.
{"title":"Experimental validation of rollout-based model predictive control for wave energy converters on a two-body, taut-moored point absorber prototype","authors":"Zechuan Lin, Xuanrui Huang, Xi Xiao","doi":"10.36688/ewtec-2023-174","DOIUrl":"https://doi.org/10.36688/ewtec-2023-174","url":null,"abstract":"Model predictive control (MPC) has proven its effectiveness in improving the energy capture efficiency of wave energy converters (WECs) under physical constraints. Further application of MPC requires to speed up its online computation for an industrial controller. To this end, the rollout-based MPC (RMPC) for WECs has been developed. The idea of rollout is to decouple the optimization horizon and the prediction horizon, so as to achieve long-horizon performance with short-horizon optimization. In this paper, the RMPC that has previously only been validated by simulation is further put through wave tank testing. The experimental device is a realistic two-body, taut-moored point absorber prototype. The RMPC is based on a simplified model of the device and implemented in real time with wave force estimation and prediction. Experiment results confirm RMPC’s energy efficiency as well as constraint satisfaction, so its computational advantage against conventional MPC is highlighted.","PeriodicalId":201789,"journal":{"name":"Proceedings of the European Wave and Tidal Energy Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129173973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammad Rafiei, Francesco Salvatore, Carwyn Frost, Ian Benson
The purpose of this study is to demonstrate through towing tank experiments the effectiveness of a novel sensor-less Maximum Power Point Tracking (MPPT) control for Tidal Stream Turbines (TST) under fluctuations of the onset flow. Ocean energies will play a crucial role in the renewable energy sector over the next decades. Instream turbines for tidal currents are a rapidly maturing technology to exploit a highly predictable energy source. However, short-term fluctuations on the inflow velocity caused by waves or turbulence determine fatigue loads that affect system reliability. Power control strategies to maximize the energy yield can be also used to mitigate the effects of transient loading on drivetrain components. Aim of this paper is to present a straightforward and robust MPPT control method based on the linear relationship between the current and voltage squared of the generator's DC outputs. The method requires pre-determined turbine characteristics to establish the control reference that is effective across operating conditions. The proposed MPPT model was derived mathematically through linearization and simplifications of the turbine power conversion system and validated by model tests carried out in the wave-towing tank facility of CNR-INM in Rome, Italy, using the 1.5 m diameter Tidal Turbine Testing (TTT) device developed at the Queen’s University Belfast (QUB). In the study, a conventional TSR control method was also considered in order to perform a comparative analysis of system response to inflow speed fluctuations with time scales comparable to turbine revolution periods. TSR control was tested using two control references: TSR = 5 (design point) and TSR = 6 (over-speed zone) to verify the operation of the turbine under different loading conditions. The tests were conducted in two scenarios: calm water (steady state) and unsteady inflow with a regular (sinusoidal or monochromatic) waveform, with amplitude chosen to simulate an extreme wave case. The power output was measured from the turbine during regular wave conditions and compared to results from steady flow to assess the impact of wave-induced velocity on turbine performance (Fig. 1). Test results showed that by using the proposed MPPT control strategy, the algorithms converged to the maximum power coefficient (Fig. 2), which validates the proposed methodology. Results also demonstrated the capability of the proposed MPPT to significantly reduce mechanical loads fluctuations as compared to the TSR control. In the full-length paper, the proposed MPPT control strategy is outlined, the test methodology, set-up and conditions are described, and main results are presented and discussed.
本研究的目的是通过拖曳槽实验来证明一种新的无传感器最大功率点跟踪(MPPT)控制潮汐流涡轮机(TST)在初始流量波动下的有效性。未来几十年,海洋能源将在可再生能源领域发挥至关重要的作用。潮汐能涡轮机是一项迅速成熟的技术,可以利用高度可预测的能源。然而,由波浪或湍流引起的流入速度的短期波动决定了影响系统可靠性的疲劳载荷。功率控制策略,以最大限度地提高能源产量也可以用来减轻瞬态负载对传动系统部件的影响。本文的目的是基于发电机直流输出的电流和电压平方之间的线性关系,提出一种简单而鲁棒的MPPT控制方法。该方法需要预先确定涡轮机特性,以建立在各种运行条件下有效的控制参考。利用贝尔法斯特女王大学(Queen’s University Belfast, QUB)开发的1.5 m直径潮汐涡轮机测试(TTT)装置,在意大利罗马CNR-INM的拖曳水罐设施中进行了模型试验,验证了所提出的MPPT模型的正确性。本研究还考虑了传统的TSR控制方法,以便在与涡轮转速周期相当的时间尺度上对系统对流入速度波动的响应进行对比分析。采用TSR = 5(设计点)和TSR = 6(超速区)两个控制参考进行TSR控制试验,验证汽轮机在不同负荷条件下的运行情况。试验在两种情况下进行:静水(稳态)和非定常流入,具有规则(正弦或单色)波形,振幅选择以模拟极端波浪情况。在规则波浪条件下测量涡轮机的输出功率,并将其与稳定流动的结果进行比较,以评估波浪诱导速度对涡轮机性能的影响(图1)。测试结果表明,通过使用所提出的MPPT控制策略,算法收敛到最大功率系数(图2),验证了所提出的方法。结果还表明,与TSR控制相比,所提出的MPPT能够显著减少机械载荷波动。在全文中,概述了提出的MPPT控制策略,描述了测试方法,设置和条件,并给出了主要结果并进行了讨论。
{"title":"Laboratory Tests Assessment of a Mechanical Sensor-less MPPT Control Strategy for Tidal Turbines","authors":"Mohammad Rafiei, Francesco Salvatore, Carwyn Frost, Ian Benson","doi":"10.36688/ewtec-2023-434","DOIUrl":"https://doi.org/10.36688/ewtec-2023-434","url":null,"abstract":"The purpose of this study is to demonstrate through towing tank experiments the effectiveness of a novel sensor-less Maximum Power Point Tracking (MPPT) control for Tidal Stream Turbines (TST) under fluctuations of the onset flow.\u0000 \u0000Ocean energies will play a crucial role in the renewable energy sector over the next decades. Instream turbines for tidal currents are a rapidly maturing technology to exploit a highly predictable energy source. However, short-term fluctuations on the inflow velocity caused by waves or turbulence determine fatigue loads that affect system reliability. Power control strategies to maximize the energy yield can be also used to mitigate the effects of transient loading on drivetrain components.\u0000Aim of this paper is to present a straightforward and robust MPPT control method based on the linear relationship between the current and voltage squared of the generator's DC outputs. The method requires pre-determined turbine characteristics to establish the control reference that is effective across operating conditions. The proposed MPPT model was derived mathematically through linearization and simplifications of the turbine power conversion system and validated by model tests carried out in the wave-towing tank facility of CNR-INM in Rome, Italy, using the 1.5 m diameter Tidal Turbine Testing (TTT) device developed at the Queen’s University Belfast (QUB).\u0000 \u0000In the study, a conventional TSR control method was also considered in order to perform a comparative analysis of system response to inflow speed fluctuations with time scales comparable to turbine revolution periods. TSR control was tested using two control references: TSR = 5 (design point) and TSR = 6 (over-speed zone) to verify the operation of the turbine under different loading conditions. The tests were conducted in two scenarios: calm water (steady state) and unsteady inflow with a regular (sinusoidal or monochromatic) waveform, with amplitude chosen to simulate an extreme wave case.\u0000The power output was measured from the turbine during regular wave conditions and compared to results from steady flow to assess the impact of wave-induced velocity on turbine performance (Fig. 1). Test results showed that by using the proposed MPPT control strategy, the algorithms converged to the maximum power coefficient (Fig. 2), which validates the proposed methodology. Results also demonstrated the capability of the proposed MPPT to significantly reduce mechanical loads fluctuations as compared to the TSR control.\u0000In the full-length paper, the proposed MPPT control strategy is outlined, the test methodology, set-up and conditions are described, and main results are presented and discussed.","PeriodicalId":201789,"journal":{"name":"Proceedings of the European Wave and Tidal Energy Conference","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134102995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wave energy is one of important marine renewable energy resources. Many studies have been devoted to harnessing the energy for human use. Though they are almost everywhere in the sea, waves can be much more significant in some sea areas than others. For example, the wave energy density in Asian waters is usually much less than that in European west coasts. To make the wave energy harvesting more viable in Asian waters with medium wave energy density, we propose to employ an open caisson to amplify the wave locally and to combine it with a wave energy converter to tap the amplified wave energy. In this study, we focus on the effect of incident wave height on the amplification factor which is defined as the ratio of the wave height inside the caisson to that of the incident wave. Shown in Figure 1, the caisson is mounted vertically on the horizontal seabed in the open sea. At the edge of the opening, it has two guides on the two sides of the opening. They are identical in geometry and part of a solid cylinder. The purpose of the two guides is to enhance the wave amplification inside the caisson. The study was conducted primarily by CFD computations and partially verified by experiments. In computations, the finite volume method was employed to discretize the Navier-Stokes equations. A multi-block grid was generated for computational purposes. The volume-of-fluid (VOF) method was used to capture the free surface. The nonlinear iterations were conducted with the PISO method. And the implicit time marching scheme was adopted in the time direction. It is interesting to find that the amplified wave height in the caisson is not linearly related to the incident wave height. Furthermore, the amplification factor is also a function of the incident wave period. The wave period at which the peak value of the amplification factor appears is insensitive to the wave height. The amplification factor is usually greater than unity for a wide range of incident wave period.
{"title":"Wave Amplification inside an Open Circular Caisson for Wave Energy Conversion in Waters with Medium Energy Density","authors":"Jiahn-Horng Chen","doi":"10.36688/ewtec-2023-164","DOIUrl":"https://doi.org/10.36688/ewtec-2023-164","url":null,"abstract":"Wave energy is one of important marine renewable energy resources. Many studies have been devoted to harnessing the energy for human use. Though they are almost everywhere in the sea, waves can be much more significant in some sea areas than others. For example, the wave energy density in Asian waters is usually much less than that in European west coasts. \u0000To make the wave energy harvesting more viable in Asian waters with medium wave energy density, we propose to employ an open caisson to amplify the wave locally and to combine it with a wave energy converter to tap the amplified wave energy. In this study, we focus on the effect of incident wave height on the amplification factor which is defined as the ratio of the wave height inside the caisson to that of the incident wave. Shown in Figure 1, the caisson is mounted vertically on the horizontal seabed in the open sea. At the edge of the opening, it has two guides on the two sides of the opening. They are identical in geometry and part of a solid cylinder. The purpose of the two guides is to enhance the wave amplification inside the caisson. \u0000The study was conducted primarily by CFD computations and partially verified by experiments. In computations, the finite volume method was employed to discretize the Navier-Stokes equations. A multi-block grid was generated for computational purposes. The volume-of-fluid (VOF) method was used to capture the free surface. The nonlinear iterations were conducted with the PISO method. And the implicit time marching scheme was adopted in the time direction. It is interesting to find that the amplified wave height in the caisson is not linearly related to the incident wave height. Furthermore, the amplification factor is also a function of the incident wave period. The wave period at which the peak value of the amplification factor appears is insensitive to the wave height. The amplification factor is usually greater than unity for a wide range of incident wave period.","PeriodicalId":201789,"journal":{"name":"Proceedings of the European Wave and Tidal Energy Conference","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134504425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents the first blind prediction stage of the Tidal Turbine Benchmarking Project being conducted and funded by the UK's EPSRC and Supergen ORE Hub. In this first stage, only steady flow conditions, at low and elevated turbulence (3.1%) levels, were considered. Prior to the blind prediction stage, a large laboratory scale experiment was conducted in which a highly instrumented 1.6m diameter tidal rotor was towed through a large towing tank in well-defined flow conditions with and without an upstream turbulence grid. Details of the test campaign and rotor design were released as part of this community blind prediction exercise. Participants were invited to use a range of engineering modelling approaches to simulate the performance and loads of the turbine. 26 submissions were received from 12 groups from across academia and industry using solution techniques ranging from blade resolved computational fluid dynamics through actuator line, boundary integral element methods, vortex methods to engineering Blade Element Momentum methods. The comparisons between experiments and blind predictions were extremely positive helping to provide validation and uncertainty estimates for the models, but also validating the experimental tests themselves. The exercise demonstrated that the experimental turbine data provides a robust data set against which researchers and design engineers can test their models and implementations to ensure robustness in their processes, helping to reduce uncertainty and provide increased confidence in engineering processes. Furthermore, the data set provides the basis by which modellers can evaluate and refine approaches.
{"title":"Tidal Turbine Benchmarking Project: Stage I - Steady Flow Blind Predictions","authors":"R. Willden, Xiaosheng Chen, C.R. Vogel","doi":"10.36688/ewtec-2023-574","DOIUrl":"https://doi.org/10.36688/ewtec-2023-574","url":null,"abstract":"This paper presents the first blind prediction stage of the Tidal Turbine Benchmarking Project being conducted and funded by the UK's EPSRC and Supergen ORE Hub. In this first stage, only steady flow conditions, at low and elevated turbulence (3.1%) levels, were considered. Prior to the blind prediction stage, a large laboratory scale experiment was conducted in which a highly instrumented 1.6m diameter tidal rotor was towed through a large towing tank in well-defined flow conditions with and without an upstream turbulence grid.\u0000Details of the test campaign and rotor design were released as part of this community blind prediction exercise. Participants were invited to use a range of engineering modelling approaches to simulate the performance and loads of the turbine. 26 submissions were received from 12 groups from across academia and industry using solution techniques ranging from blade resolved computational fluid dynamics through actuator line, boundary integral element methods, vortex methods to engineering Blade Element Momentum methods.\u0000The comparisons between experiments and blind predictions were extremely positive helping to provide validation and uncertainty estimates for the models, but also validating the experimental tests themselves. The exercise demonstrated that the experimental turbine data provides a robust data set against which researchers and design engineers can test their models and implementations to ensure robustness in their processes, helping to reduce uncertainty and provide increased confidence in engineering processes. Furthermore, the data set provides the basis by which modellers can evaluate and refine approaches.","PeriodicalId":201789,"journal":{"name":"Proceedings of the European Wave and Tidal Energy Conference","volume":"666 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134505924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Copping, Lysel Garavelli, Zhaoqing Yang, Taiping Wang, Mithun Deb, Candace Briggs
The development of tidal energy technologies has progressed to where devices can be deployed, operated, maintained, and recovered with some level of assurance that they will and produce adequate levels of power. Equally important to further the tidal energy industry is the ability to site and gain regulatory permission to deploy and operate these devices. This paper sets out a framework for reaching preliminary siting of tidal devices, drawing from case studies from three locations in the US where research studies have provided information in support of tidal deployments. Through the TEAMER funding opportunity in the US, tidal energy device and project developers were able to engage US Department of Energy national laboratory scientists and engineers to provide technical assistance for investigating potential tidal deployment sites within US waters. The bodies of water of interest had already been determined by the proponents at the start of the project and constraints and opportunities within those bodies of water were examined to optimize siting capabilities for the developers. Using numerical models and field observations, we characterized tidal resources at a scale that will allow for optimization of energy extraction. We examined the natural and human infrastructure constraints for deploying and operating tidal devices and arrays including channel widths, bathymetry, vessel traffic, ferry lanes, and grid interconnects, in order to narrow siting options. We also examined the biological resources in the water bodies of interest, with a focus on populations of endangered marine mammals and fish, and the critical habitats that support them. The biological resources were then related to the applicable regulatory requirements in place in US for federal and state statutes in areas where the tidal applicants wish to deploy. Based on these analyses, preferred deployment locations were delineated and processes for meeting regulatory requirements laid out, including post-installation monitoring plans that will be needed. This initial assessment of logistical, regulatory, and environmental conditions for the deployment of a tidal technology is a first step toward the achievement of regulatory compliance for tidal energy projects. Three locations were considered for tidal energy development in the US. The first one included the area around an archipelago of islands in the northern portion of Washington State, near the US-Canada border, with the intent of installing one or more floating tidal devices to add energy resilience and independence for the single utility that services the isolated islands. The second location was in the coastal waters of Maine where tidal power would be added to the local electrical grid. The third location was in Cook Inlet, Alaska, where the applicant seeks to deploy multiple floating tidal devices to provide renewable energy in place of conventionally generated power for the city of Anchorage.
{"title":"Siting tidal energy projects through resource characterization and environmental considerations","authors":"A. Copping, Lysel Garavelli, Zhaoqing Yang, Taiping Wang, Mithun Deb, Candace Briggs","doi":"10.36688/ewtec-2023-220","DOIUrl":"https://doi.org/10.36688/ewtec-2023-220","url":null,"abstract":"The development of tidal energy technologies has progressed to where devices can be deployed, operated, maintained, and recovered with some level of assurance that they will and produce adequate levels of power. Equally important to further the tidal energy industry is the ability to site and gain regulatory permission to deploy and operate these devices. This paper sets out a framework for reaching preliminary siting of tidal devices, drawing from case studies from three locations in the US where research studies have provided information in support of tidal deployments. \u0000Through the TEAMER funding opportunity in the US, tidal energy device and project developers were able to engage US Department of Energy national laboratory scientists and engineers to provide technical assistance for investigating potential tidal deployment sites within US waters. The bodies of water of interest had already been determined by the proponents at the start of the project and constraints and opportunities within those bodies of water were examined to optimize siting capabilities for the developers. Using numerical models and field observations, we characterized tidal resources at a scale that will allow for optimization of energy extraction. We examined the natural and human infrastructure constraints for deploying and operating tidal devices and arrays including channel widths, bathymetry, vessel traffic, ferry lanes, and grid interconnects, in order to narrow siting options. We also examined the biological resources in the water bodies of interest, with a focus on populations of endangered marine mammals and fish, and the critical habitats that support them. The biological resources were then related to the applicable regulatory requirements in place in US for federal and state statutes in areas where the tidal applicants wish to deploy. Based on these analyses, preferred deployment locations were delineated and processes for meeting regulatory requirements laid out, including post-installation monitoring plans that will be needed. This initial assessment of logistical, regulatory, and environmental conditions for the deployment of a tidal technology is a first step toward the achievement of regulatory compliance for tidal energy projects. \u0000Three locations were considered for tidal energy development in the US. The first one included the area around an archipelago of islands in the northern portion of Washington State, near the US-Canada border, with the intent of installing one or more floating tidal devices to add energy resilience and independence for the single utility that services the isolated islands. The second location was in the coastal waters of Maine where tidal power would be added to the local electrical grid. The third location was in Cook Inlet, Alaska, where the applicant seeks to deploy multiple floating tidal devices to provide renewable energy in place of conventionally generated power for the city of Anchorage.","PeriodicalId":201789,"journal":{"name":"Proceedings of the European Wave and Tidal Energy Conference","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132101741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}