Yuliana García-Martínez, Amparo Celene Razo-Estrada, Ricardo Pérez-Pastén-Borja, Candelaria Galván-Colorado, Germán Chamorro-Cevallos, José Jorge Chanona-Pérez, Oscar Alberto López-Canales, Hariz Islas-Flores, Salud Pérez-Gutiérrez, Joaquín Cordero-Martínez, José Melesio Cristóbal-Luna
Background/Objectives: In recent years the global incidence of cancer during pregnancy is rising, occurring in 1 out of every 1000 pregnancies. In this regard, the most used chemotherapy drugs to treat cancer are alkylating agents such as cyclophosphamide (Cp). Despite its great efficacy, has been associated with the production of oxidative stress and DNA damage, leading to embryotoxicity, genotoxicity, and teratogenicity in the developing conceptus. Therefore, this study aimed to investigate the protective role of phycobiliproteins (PBP) derived from Arthrospira maxima (spirulina) in reducing Cp-induced embryotoxicity and genotoxicity in pregnant CD1 mice. Methods: Pregnant CD1 mice were divided into five groups: control, Cp 20 mg/kg, and three doses of PBP (50, 100, and 200 mg/kg) + Cp co-treatment. PBP were administered orally from day 6 to 10.5 dpc, followed by a single intraperitoneal dose of Cp on 10.5 dpc. Embryos were collected at 12.5 dpc to assess morphological development and vascular alterations, while maternal DNA damage was evaluated using micronucleus assays and antioxidant enzyme activity in maternal plasma. Results: PBP exhibited a dose-dependent protective effect against Cp-induced damage. The 200 mg/kg PBP dose significantly reduced developmental abnormalities, micronucleated polychromatic erythrocytes, and oxidative stress, (as evidenced by increased SOD and GPx activity). Conclusions: Phycobiliproteins from Arthrospira maxima (spirulina) effectively reduced Cp-induced morphological and vascular alterations in embryos and genotoxicity in pregnant mice. These findings highlight their potential as a complementary therapy to mitigate teratogenic risks during chemotherapy. Further research is needed to optimize dosing and explore clinical applications.
{"title":"Protective Effects of Phycobiliproteins from <i>Arthrospira maxima</i> (Spirulina) Against Cyclophosphamide-Induced Embryotoxicity and Genotoxicity in Pregnant CD1 Mice.","authors":"Yuliana García-Martínez, Amparo Celene Razo-Estrada, Ricardo Pérez-Pastén-Borja, Candelaria Galván-Colorado, Germán Chamorro-Cevallos, José Jorge Chanona-Pérez, Oscar Alberto López-Canales, Hariz Islas-Flores, Salud Pérez-Gutiérrez, Joaquín Cordero-Martínez, José Melesio Cristóbal-Luna","doi":"10.3390/ph18010101","DOIUrl":"10.3390/ph18010101","url":null,"abstract":"<p><p><b>Background/Objectives</b>: In recent years the global incidence of cancer during pregnancy is rising, occurring in 1 out of every 1000 pregnancies. In this regard, the most used chemotherapy drugs to treat cancer are alkylating agents such as cyclophosphamide (Cp). Despite its great efficacy, has been associated with the production of oxidative stress and DNA damage, leading to embryotoxicity, genotoxicity, and teratogenicity in the developing <i>conceptus</i>. Therefore, this study aimed to investigate the protective role of phycobiliproteins (PBP) derived from <i>Arthrospira maxima</i> (spirulina) in reducing Cp-induced embryotoxicity and genotoxicity in pregnant CD1 mice. <b>Methods</b>: Pregnant CD1 mice were divided into five groups: control, Cp 20 mg/kg, and three doses of PBP (50, 100, and 200 mg/kg) + Cp co-treatment. PBP were administered orally from day 6 to 10.5 <i>dpc</i>, followed by a single intraperitoneal dose of Cp on 10.5 <i>dpc</i>. Embryos were collected at 12.5 <i>dpc</i> to assess morphological development and vascular alterations, while maternal DNA damage was evaluated using micronucleus assays and antioxidant enzyme activity in maternal plasma. <b>Results</b>: PBP exhibited a dose-dependent protective effect against Cp-induced damage. The 200 mg/kg PBP dose significantly reduced developmental abnormalities, micronucleated polychromatic erythrocytes, and oxidative stress, (as evidenced by increased SOD and GPx activity). <b>Conclusions</b>: Phycobiliproteins from <i>Arthrospira maxima</i> (spirulina) effectively reduced Cp-induced morphological and vascular alterations in embryos and genotoxicity in pregnant mice. These findings highlight their potential as a complementary therapy to mitigate teratogenic risks during chemotherapy. Further research is needed to optimize dosing and explore clinical applications.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"18 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143041052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuanyuan Fu, Shuyan Zeng, Zhenlin Wang, Huiting Huang, Xin Zhao, Min Li
As a structural and catalytic cofactor, copper is involved in many biological pathways and is required for the biochemistry of all living organisms. However, excess intracellular copper can induce cell death due to its potential to catalyze the generation of reactive oxygen species, thus copper homeostasis is strictly regulated. And the deficiency or accumulation of intracellular copper is connected with various pathological conditions. Since the success of platinum-based compounds in the clinical treatment of various types of neoplasias, metal-based drugs have shown encouraging perspectives for drug development. Compared to platinum, copper is an essential intracellular trace element that may have better prospects for drug development than platinum. Recently, the potential therapeutic role of copper-induced autophagy in chronic diseases such as Parkinson's, Wilson's, and cardiovascular disease has already been demonstrated. In brief, copper ions, numerous copper complexes, and copper-based nano-preparations could induce autophagy, a lysosome-dependent process that plays an important role in various human diseases. In this review, we not only focus on the current advances in elucidating the mechanisms of copper or copper-based compounds/preparations on the regulation of autophagy but also outline the association between copper-induced autophagy and human diseases.
{"title":"Mechanisms of Copper-Induced Autophagy and Links with Human Diseases.","authors":"Yuanyuan Fu, Shuyan Zeng, Zhenlin Wang, Huiting Huang, Xin Zhao, Min Li","doi":"10.3390/ph18010099","DOIUrl":"10.3390/ph18010099","url":null,"abstract":"<p><p>As a structural and catalytic cofactor, copper is involved in many biological pathways and is required for the biochemistry of all living organisms. However, excess intracellular copper can induce cell death due to its potential to catalyze the generation of reactive oxygen species, thus copper homeostasis is strictly regulated. And the deficiency or accumulation of intracellular copper is connected with various pathological conditions. Since the success of platinum-based compounds in the clinical treatment of various types of neoplasias, metal-based drugs have shown encouraging perspectives for drug development. Compared to platinum, copper is an essential intracellular trace element that may have better prospects for drug development than platinum. Recently, the potential therapeutic role of copper-induced autophagy in chronic diseases such as Parkinson's, Wilson's, and cardiovascular disease has already been demonstrated. In brief, copper ions, numerous copper complexes, and copper-based nano-preparations could induce autophagy, a lysosome-dependent process that plays an important role in various human diseases. In this review, we not only focus on the current advances in elucidating the mechanisms of copper or copper-based compounds/preparations on the regulation of autophagy but also outline the association between copper-induced autophagy and human diseases.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"18 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143041274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dejan Stojković, Nina Dragičević, Marija Ivanov, Nevena Gajović, Milena Jurišević, Ivan Jovanović, Marina Tomović, Jelena Živković
Background/objectives: Cotinus coggygria Scop. is traditionally used for treatment of various gastrointestinal ailments. In this study, we investigated the phytochemical profile and biological activities of leaves, bark and flowers extracts of C. coggygria. Methods: Phytochemical analysis was performed using HPLC. The antimicrobial activity of water and methanolic extracts of C. coggygria leaves, bark and flowers towards various oral fungal and bacterial strains of clinical origin was tested by use of a microdilution assay. Additionally, their cytotoxic activity was determined against different gastrointestinal carcinoma cell lines (CAL27, FaDu, SW480, HCT116 and MRC-5) in concentrations ranging from 3.125 to 400 µg/mL for 48 and 72 h.
Results: The presence of numerous flavonoid and phenolic compounds such as sulfuretin, gallic acid, rutin, hyperoside, and isoquercitrine was detected. Micrococcus luteus, Streptococcus parasanguinis, and Candida tropicalis were the most sensitive microbiological species, with MICs of 0.12 mg/mL for the most effective extracts. Additionally, the cytotoxic activity of the samples against different gastrointestinal carcinoma cell lines (CAL27, FaDu, SW480, HCT116, and MRC-5) was determined in concentrations ranging from 3.125 to 400 µg/mL. Among the tested samples, the methanolic leaf extract exhibited the highest cytotoxic capacity, and the possible mechanism could be related to its inhibitory effect on the release of proinflammatory cytokine in CD4+ cells.
Conclusions: The traditional use of C. coggygria for gastrointestinal diseases may be substantiated by its ability to inhibit the growth of harmful microorganisms and its promising cytotoxic properties. The methanolic leaf and flower extracts show significant potential for future clinical applications, and further studies are warranted to explore their mechanisms and applications in medical treatments.
{"title":"New Evidence for <i>Cotinus coggygria</i> Scop. Extracts Application in Gastrointestinal Ailments.","authors":"Dejan Stojković, Nina Dragičević, Marija Ivanov, Nevena Gajović, Milena Jurišević, Ivan Jovanović, Marina Tomović, Jelena Živković","doi":"10.3390/ph18010098","DOIUrl":"10.3390/ph18010098","url":null,"abstract":"<p><strong>Background/objectives: </strong><i>Cotinus coggygria</i> Scop. is traditionally used for treatment of various gastrointestinal ailments. In this study, we investigated the phytochemical profile and biological activities of leaves, bark and flowers extracts of <i>C. coggygria.</i> Methods: Phytochemical analysis was performed using HPLC. The antimicrobial activity of water and methanolic extracts of <i>C. coggygria</i> leaves, bark and flowers towards various oral fungal and bacterial strains of clinical origin was tested by use of a microdilution assay. Additionally, their cytotoxic activity was determined against different gastrointestinal carcinoma cell lines (CAL27, FaDu, SW480, HCT116 and MRC-5) in concentrations ranging from 3.125 to 400 µg/mL for 48 and 72 h.</p><p><strong>Results: </strong>The presence of numerous flavonoid and phenolic compounds such as sulfuretin, gallic acid, rutin, hyperoside, and isoquercitrine was detected. <i>Micrococcus luteus</i>, <i>Streptococcus parasanguinis</i>, and <i>Candida tropicalis</i> were the most sensitive microbiological species, with MICs of 0.12 mg/mL for the most effective extracts. Additionally, the cytotoxic activity of the samples against different gastrointestinal carcinoma cell lines (CAL27, FaDu, SW480, HCT116, and MRC-5) was determined in concentrations ranging from 3.125 to 400 µg/mL. Among the tested samples, the methanolic leaf extract exhibited the highest cytotoxic capacity, and the possible mechanism could be related to its inhibitory effect on the release of proinflammatory cytokine in CD4+ cells.</p><p><strong>Conclusions: </strong>The traditional use of <i>C. coggygria</i> for gastrointestinal diseases may be substantiated by its ability to inhibit the growth of harmful microorganisms and its promising cytotoxic properties. The methanolic leaf and flower extracts show significant potential for future clinical applications, and further studies are warranted to explore their mechanisms and applications in medical treatments.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"18 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143039971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rahul Mallick, Sanjay Basak, Premanjali Chowdhury, Prasenjit Bhowmik, Ranjit K Das, Antara Banerjee, Sujay Paul, Surajit Pathak, Asim K Duttaroy
Cytokine-mediated inflammation is increasingly recognized for playing a vital role in the pathophysiology of a wide range of brain disorders, including neurodegenerative, psychiatric, and neurodevelopmental problems. Pro-inflammatory cytokines such as interleukin-1 (IL-1), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) cause neuroinflammation, alter brain function, and accelerate disease development. Despite progress in understanding these pathways, effective medicines targeting brain inflammation are still limited. Traditional anti-inflammatory and immunomodulatory drugs are effective in peripheral inflammatory illnesses. Still, they face substantial hurdles when applied to the central nervous system (CNS), such as the blood-brain barrier (BBB) and unwanted systemic effects. This review highlights the developing treatment techniques for modifying cytokine-driven neuroinflammation, focusing on advances that selectively target critical cytokines involved in brain pathology. Novel approaches, including cytokine-specific inhibitors, antibody-based therapeutics, gene- and RNA-based interventions, and sophisticated drug delivery systems like nanoparticles, show promise with respect to lowering neuroinflammation with greater specificity and safety. Furthermore, developments in biomarker discoveries and neuroimaging techniques are improving our ability to monitor inflammatory responses, allowing for more accurate and personalized treatment regimens. Preclinical and clinical trial data demonstrate the therapeutic potential of these tailored techniques. However, significant challenges remain, such as improving delivery across the BBB and reducing off-target effects. As research advances, the creation of personalized, cytokine-centered therapeutics has the potential to alter the therapy landscape for brain illnesses, giving patients hope for better results and a higher quality of life.
{"title":"Targeting Cytokine-Mediated Inflammation in Brain Disorders: Developing New Treatment Strategies.","authors":"Rahul Mallick, Sanjay Basak, Premanjali Chowdhury, Prasenjit Bhowmik, Ranjit K Das, Antara Banerjee, Sujay Paul, Surajit Pathak, Asim K Duttaroy","doi":"10.3390/ph18010104","DOIUrl":"10.3390/ph18010104","url":null,"abstract":"<p><p>Cytokine-mediated inflammation is increasingly recognized for playing a vital role in the pathophysiology of a wide range of brain disorders, including neurodegenerative, psychiatric, and neurodevelopmental problems. Pro-inflammatory cytokines such as interleukin-1 (IL-1), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) cause neuroinflammation, alter brain function, and accelerate disease development. Despite progress in understanding these pathways, effective medicines targeting brain inflammation are still limited. Traditional anti-inflammatory and immunomodulatory drugs are effective in peripheral inflammatory illnesses. Still, they face substantial hurdles when applied to the central nervous system (CNS), such as the blood-brain barrier (BBB) and unwanted systemic effects. This review highlights the developing treatment techniques for modifying cytokine-driven neuroinflammation, focusing on advances that selectively target critical cytokines involved in brain pathology. Novel approaches, including cytokine-specific inhibitors, antibody-based therapeutics, gene- and RNA-based interventions, and sophisticated drug delivery systems like nanoparticles, show promise with respect to lowering neuroinflammation with greater specificity and safety. Furthermore, developments in biomarker discoveries and neuroimaging techniques are improving our ability to monitor inflammatory responses, allowing for more accurate and personalized treatment regimens. Preclinical and clinical trial data demonstrate the therapeutic potential of these tailored techniques. However, significant challenges remain, such as improving delivery across the BBB and reducing off-target effects. As research advances, the creation of personalized, cytokine-centered therapeutics has the potential to alter the therapy landscape for brain illnesses, giving patients hope for better results and a higher quality of life.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"18 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143041158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brandon Wee Siang Phon, Shalini Sundramurthi Chelliah, Dina El-Rabie Osman, Saatheeyavaane Bhuvanendran, Ammu Kutty Radhakrishnan, Muhamad Noor Alfarizal Kamarudin
Background: The multiple drug-resistant phenomenon has long since plagued the effectiveness of various chemotherapies used in the treatment of patients with glioblastoma (GBM), which is still incurable to this day. ATP-binding cassette (ABC) transporters function as drug transporters and have been touted to be the main culprits in developing resistance to xenobiotic drugs in GBM. Methods: This review systematically analyzed the efficacy of ABC transporters against various anticancer drugs from 16 studies identified from five databases (PubMed, Medline, Embase, Scopus, and ScienceDirect). Results: Inhibition of ABC transporters, especially ABCB1, improved drug efficacies. Staple GBM phenotypes, such as GBM stem cells and increased activation of the PI3K/Akt/NF-κB pathway, have been implicated in the expression of several ABC transporters. Using the datasets in The Cancer Genome Atlas and Gene Expression Omnibus, we found upregulated ABC transporters that either negatively impacted survival in univariate analyses (ABCA1, ABCA13, ABCB9, ABCD4) or were independent negative prognosis factors for patients with GBM (ABCA13, ABCB9). Our multivariate analysis further demonstrated three ABC transporters, ABCA13 (Hazard Ratio (HR) = 1.31, p = 0.017), ABCB9 (HR = 1.26, p = 0.03), and ABCB5 (HR = 0.77, p = 0.016), with the administration of alkylating agents (HR = 0.41, p < 0.001), were independent negative prognosis factors for patients with GBM. Conclusions: These findings reinforce the important role played by ABC transporters, particularly by ABCA13, ABCB9, and ABCB1, which could be potential targets that warrant further evaluations for alternate strategies to augment the effects of existing alkylating agents and xenobiotic drugs.
{"title":"Revisiting ABC Transporters and Their Clinical Significance in Glioblastoma.","authors":"Brandon Wee Siang Phon, Shalini Sundramurthi Chelliah, Dina El-Rabie Osman, Saatheeyavaane Bhuvanendran, Ammu Kutty Radhakrishnan, Muhamad Noor Alfarizal Kamarudin","doi":"10.3390/ph18010102","DOIUrl":"10.3390/ph18010102","url":null,"abstract":"<p><p><b>Background</b>: The multiple drug-resistant phenomenon has long since plagued the effectiveness of various chemotherapies used in the treatment of patients with glioblastoma (GBM), which is still incurable to this day. ATP-binding cassette (ABC) transporters function as drug transporters and have been touted to be the main culprits in developing resistance to xenobiotic drugs in GBM. <b>Methods</b>: This review systematically analyzed the efficacy of ABC transporters against various anticancer drugs from 16 studies identified from five databases (PubMed, Medline, Embase, Scopus, and ScienceDirect). <b>Results</b>: Inhibition of ABC transporters, especially ABCB1, improved drug efficacies. Staple GBM phenotypes, such as GBM stem cells and increased activation of the PI3K/Akt/NF-κB pathway, have been implicated in the expression of several ABC transporters. Using the datasets in The Cancer Genome Atlas and Gene Expression Omnibus, we found upregulated ABC transporters that either negatively impacted survival in univariate analyses (ABCA1, ABCA13, ABCB9, ABCD4) or were independent negative prognosis factors for patients with GBM (ABCA13, ABCB9). Our multivariate analysis further demonstrated three ABC transporters, ABCA13 (Hazard Ratio (HR) = 1.31, <i>p</i> = 0.017), ABCB9 (HR = 1.26, <i>p</i> = 0.03), and ABCB5 (HR = 0.77, <i>p</i> = 0.016), with the administration of alkylating agents (HR = 0.41, <i>p</i> < 0.001), were independent negative prognosis factors for patients with GBM. Conclusions: These findings reinforce the important role played by ABC transporters, particularly by ABCA13, ABCB9, and ABCB1, which could be potential targets that warrant further evaluations for alternate strategies to augment the effects of existing alkylating agents and xenobiotic drugs.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"18 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143041175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: The genus Astragalus is renowned for its diverse bioactive potential, yet the chemical composition and biological properties of Astragalus melanophrurius remain inadequately explored. This study aimed to investigate the chemical profile, antioxidant capacity, and enzyme inhibitory activities of methanol extracts from various plant parts of A. melanophrurius. Methods: Methanol extracts were obtained from leaves, stems, flowers, roots, and aerial portions of A. melanophrurius. The chemical composition was determined using LC-ESI-MS/MS, focusing on key phytochemicals such as hyperoside, kaempferol, 4-hydroxybenzoic acid, and chlorogenic acid. Antioxidant activities were assessed via DPPH, ABTS, and FRAP assays, while enzyme inhibitory activities were evaluated against α-amylase and tyrosinase. In silico molecular docking analyses were conducted to explore the interactions between major compounds and target enzymes. Results: The leaf extract exhibited the highest total phenolic and flavonoid contents, correlating with superior antioxidant activities, achieving IC50 values of 16.55 mg/mL, 4.58 mg/mL, and 3.07 mg/mL in DPPH, ABTS, and FRAP assays, respectively. The root extract demonstrated notable α-amylase (IC50 = 2.99 mg/mL) and tyrosinase (IC50 = 1.34 mg/mL) inhibitory activities, suggesting potential applications in diabetes and hyperpigmentation management. Molecular docking revealed stable complexes of hyperoside and kaempferol with target enzymes, supporting their roles in observed bioactivities. Conclusions: This study highlights the bioactivity of A. melanophrurius extracts, particularly from leaves and roots, supporting their therapeutic potential. Future research should focus on isolating active compounds and conducting in vivo studies to confirm efficacy and elucidate mechanisms of action.
{"title":"Unveiling the Phytochemical Diversity and Bioactivity of <i>Astragalus melanophrurius</i>: A First Report Integrating Experimental and In Silico Approaches.","authors":"Gulcan Gencer, Cengiz Sarikurkcu, Bektas Tepe","doi":"10.3390/ph18010103","DOIUrl":"10.3390/ph18010103","url":null,"abstract":"<p><p><b>Background</b>: The genus <i>Astragalus</i> is renowned for its diverse bioactive potential, yet the chemical composition and biological properties of <i>Astragalus melanophrurius</i> remain inadequately explored. This study aimed to investigate the chemical profile, antioxidant capacity, and enzyme inhibitory activities of methanol extracts from various plant parts of <i>A. melanophrurius</i>. <b>Methods</b>: Methanol extracts were obtained from leaves, stems, flowers, roots, and aerial portions of <i>A. melanophrurius</i>. The chemical composition was determined using LC-ESI-MS/MS, focusing on key phytochemicals such as hyperoside, kaempferol, 4-hydroxybenzoic acid, and chlorogenic acid. Antioxidant activities were assessed via DPPH, ABTS, and FRAP assays, while enzyme inhibitory activities were evaluated against α-amylase and tyrosinase. In silico molecular docking analyses were conducted to explore the interactions between major compounds and target enzymes. <b>Results</b>: The leaf extract exhibited the highest total phenolic and flavonoid contents, correlating with superior antioxidant activities, achieving IC<sub>50</sub> values of 16.55 mg/mL, 4.58 mg/mL, and 3.07 mg/mL in DPPH, ABTS, and FRAP assays, respectively. The root extract demonstrated notable α-amylase (IC<sub>50</sub> = 2.99 mg/mL) and tyrosinase (IC<sub>50</sub> = 1.34 mg/mL) inhibitory activities, suggesting potential applications in diabetes and hyperpigmentation management. Molecular docking revealed stable complexes of hyperoside and kaempferol with target enzymes, supporting their roles in observed bioactivities. <b>Conclusions</b>: This study highlights the bioactivity of <i>A. melanophrurius</i> extracts, particularly from leaves and roots, supporting their therapeutic potential. Future research should focus on isolating active compounds and conducting in vivo studies to confirm efficacy and elucidate mechanisms of action.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"18 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143041047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huiling Wei, Tianyi Du, Weiwei Zhang, Wei Ma, Yao Yao, Juan Li
Alzheimer's disease (AD) is the leading cause of dementia among the elderly, yet effective treatments remain elusive. Total saikosaponins (TSS), the primary bioactive components in Bupleurum chinense, have shown promising therapeutic effects against AD in previous studies. Methods: To delve deeper into the mechanisms underlying the therapeutic role of TSS in AD, we investigated its neuroprotective effects and associated molecular mechanisms in APP/PS1 mice. Further, we employed metabolomic and proteomic analyses, with a focus on the potential protein-level changes induced by TSS, particularly those related to metabolite accumulation in the brain. Results: Our results showed that lysophosphatidylcholine, adenosine, and sphingomyelin in plasma might serve as potential biomarkers. Compared to the control group, AD mice exhibited significantly increased expression of proteins related to neuroinflammatory pathways, whereas proteins involved in cAMP signaling, cGMP-PKG signaling, and synaptic plasticity pathways were significantly downregulated. Notably, these signaling pathways were partially reversed in APP/PS1 mice following TSS administration. Behavioral tests demonstrated that TSS effectively improved the learning and memory functions of mice. Conclusions: Our findings suggest that TSS ameliorate cognitive decline through regulating neuroinflammatory pathways, cAMP and cGMP signaling, and synaptic plasticity pathways, providing insights into its therapeutic potential in AD.
{"title":"Investigating the Therapeutic Mechanisms of Total Saikosaponins in Alzheimer's Disease: A Metabolomic and Proteomic Approach.","authors":"Huiling Wei, Tianyi Du, Weiwei Zhang, Wei Ma, Yao Yao, Juan Li","doi":"10.3390/ph18010100","DOIUrl":"10.3390/ph18010100","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is the leading cause of dementia among the elderly, yet effective treatments remain elusive. Total saikosaponins (TSS), the primary bioactive components in <i>Bupleurum chinense</i>, have shown promising therapeutic effects against AD in previous studies. <b>Methods</b>: To delve deeper into the mechanisms underlying the therapeutic role of TSS in AD, we investigated its neuroprotective effects and associated molecular mechanisms in APP/PS1 mice. Further, we employed metabolomic and proteomic analyses, with a focus on the potential protein-level changes induced by TSS, particularly those related to metabolite accumulation in the brain. <b>Results</b>: Our results showed that lysophosphatidylcholine, adenosine, and sphingomyelin in plasma might serve as potential biomarkers. Compared to the control group, AD mice exhibited significantly increased expression of proteins related to neuroinflammatory pathways, whereas proteins involved in cAMP signaling, cGMP-PKG signaling, and synaptic plasticity pathways were significantly downregulated. Notably, these signaling pathways were partially reversed in APP/PS1 mice following TSS administration. Behavioral tests demonstrated that TSS effectively improved the learning and memory functions of mice. <b>Conclusions</b>: Our findings suggest that TSS ameliorate cognitive decline through regulating neuroinflammatory pathways, cAMP and cGMP signaling, and synaptic plasticity pathways, providing insights into its therapeutic potential in AD.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"18 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143041269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jackson J Alcázar, Ignacio Sánchez, Cristian Merino, Bruno Monasterio, Gaspar Sajuria, Diego Miranda, Felipe Díaz, Paola R Campodónico
Background/Objectives: Acute myeloid leukemia (AML) presents significant therapeutic challenges, particularly in cases driven by mutations in the FLT3 tyrosine kinase. This study aimed to develop a robust and user-friendly machine learning-based quantitative structure-activity relationship (QSAR) model to predict the inhibitory potency (pIC50 values) of FLT3 inhibitors, addressing the limitations of previous models in dataset size, diversity, and predictive accuracy. Methods: Using a dataset which was 14 times larger than those employed in prior studies (1350 compounds with 1269 molecular descriptors), we trained a random forest regressor, chosen due to its superior predictive performance and resistance to overfitting. Rigorous internal validation via leave-one-out and 10-fold cross-validation yielded Q2 values of 0.926 and 0.922, respectively, while external validation on 270 independent compounds resulted in an R2 value of 0.941 with a standard deviation of 0.237. Results: Key molecular descriptors influencing the inhibitor potency were identified, thereby improving the interpretability of structural requirements. Additionally, a user-friendly computational tool was developed to enable rapid prediction of pIC50 values and facilitate ligand-based virtual screening, leading to the identification of promising FLT3 inhibitors. Conclusions: These results represent a significant advancement in the field of FLT3 inhibitor discovery, offering a reliable, practical, and efficient approach for early-stage drug development, potentially accelerating the creation of targeted therapies for AML.
{"title":"A Simple Machine Learning-Based Quantitative Structure-Activity Relationship Model for Predicting pIC<sub>50</sub> Inhibition Values of FLT3 Tyrosine Kinase.","authors":"Jackson J Alcázar, Ignacio Sánchez, Cristian Merino, Bruno Monasterio, Gaspar Sajuria, Diego Miranda, Felipe Díaz, Paola R Campodónico","doi":"10.3390/ph18010096","DOIUrl":"10.3390/ph18010096","url":null,"abstract":"<p><p><b>Background/Objectives:</b> Acute myeloid leukemia (AML) presents significant therapeutic challenges, particularly in cases driven by mutations in the FLT3 tyrosine kinase. This study aimed to develop a robust and user-friendly machine learning-based quantitative structure-activity relationship (QSAR) model to predict the inhibitory potency (pIC<sub>50</sub> values) of FLT3 inhibitors, addressing the limitations of previous models in dataset size, diversity, and predictive accuracy. <b>Methods:</b> Using a dataset which was 14 times larger than those employed in prior studies (1350 compounds with 1269 molecular descriptors), we trained a random forest regressor, chosen due to its superior predictive performance and resistance to overfitting. Rigorous internal validation via leave-one-out and 10-fold cross-validation yielded Q2 values of 0.926 and 0.922, respectively, while external validation on 270 independent compounds resulted in an R<sup>2</sup> value of 0.941 with a standard deviation of 0.237. <b>Results:</b> Key molecular descriptors influencing the inhibitor potency were identified, thereby improving the interpretability of structural requirements. Additionally, a user-friendly computational tool was developed to enable rapid prediction of pIC<sub>50</sub> values and facilitate ligand-based virtual screening, leading to the identification of promising FLT3 inhibitors. <b>Conclusions:</b> These results represent a significant advancement in the field of FLT3 inhibitor discovery, offering a reliable, practical, and efficient approach for early-stage drug development, potentially accelerating the creation of targeted therapies for AML.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"18 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143040044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sameh Saber, Mohannad Mohammad S Alamri, Jaber Alfaifi, Lobna A Saleh, Sameh Abdel-Ghany, Adel Mohamed Aboregela, Alshaimaa A Farrag, Abdulrahman H Almaeen, Masoud I E Adam, AbdulElah Al Jarallah AlQahtani, Ali M S Eleragi, Mustafa Ahmed Abdel-Reheim, Heba A Ramadan, Osama A Mohammed
Text Correction [...].
{"title":"Correction: Saber et al. BD-AcAc2 Mitigates Chronic Colitis in Rats: A Promising Multi-Pronged Approach Modulating Inflammasome Activity, Autophagy, and Pyroptosis. <i>Pharmaceuticals</i> 2023, <i>16</i>, 953.","authors":"Sameh Saber, Mohannad Mohammad S Alamri, Jaber Alfaifi, Lobna A Saleh, Sameh Abdel-Ghany, Adel Mohamed Aboregela, Alshaimaa A Farrag, Abdulrahman H Almaeen, Masoud I E Adam, AbdulElah Al Jarallah AlQahtani, Ali M S Eleragi, Mustafa Ahmed Abdel-Reheim, Heba A Ramadan, Osama A Mohammed","doi":"10.3390/ph18010093","DOIUrl":"https://doi.org/10.3390/ph18010093","url":null,"abstract":"<p><p><b>Text Correction</b> [...].</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"18 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143041053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inas M Elgharib, Fatma M Abdelhamid, Gehad E Elshopakey, Hatem Sembawa, Talat A Albukhari, Waheed A Filimban, Rehab M Bagadood, Mohamed E El-Boshy, Engy F Risha
Hazardous heavy metals, particularly cadmium (Cd), are widely distributed in the environment and cause oxidative stress in various animal and human organs. Clove oil (CLO), a common aromatic spice, has been used as a traditional medication as it has potent anti-inflammatory, antioxidant, and hepatoprotective properties.
Background/objectives: This study aimed to investigate the antioxidant, antiapoptotic, and anti-inflammatory effects of clove oil (CLO) against hepatorenal toxicity induced by cadmium (Cd).
Methods: Twenty rats were equally divided into four groups: a control group, a Cd group treated with 15 mg/kg b.wt CdCl2, a CLO group administered 200 mg/kg b.wt CLO, and a Cd+CLO group. All groups were orally treated for 4 weeks.
Results: Cadmium (Cd) exposure caused anemia and hepatorenal damage, as evidenced by increased serum levels of urea, creatinine, uric acid, total bilirubin (including its direct and indirect fractions), and elevated activities of liver enzymes such as alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP). However, total protein and albumin levels decreased. Furthermore, there was a decrease in the levels of glutathione, glutathione transferase, and catalase in the liver antioxidant profiles. Meanwhile, malondialdehyde levels increased. Cadmium toxicity caused elevated expression of liver apoptosis markers, such as tumor necrosis factor-alpha (TNF-α) and caspase-3, and inflammation. CLO ameliorated the oxidative effects of Cd through decreasing urea (27.4%), creatinine (41.6%), liver enzymes, and hepatic apoptotic markers while increasing levels of total protein, albumin, and hepatic values of SOD (60.37%), CAT (64.49%), GSH (50.41%), and GST (9.16%).
Conclusions: Hematological and biochemical parameters, as well as the antioxidant system, improved following clove oil treatment, leading to a reduction in hepatorenal damage. Therefore, it is possible to conclude that CLO protects rats from inflammation, apoptosis, and hepatorenal oxidative damage caused by Cd poisoning. Comprehensive translational research is required to validate CLO's efficacy and safety of use in humans. Future studies should focus on elucidating the precise molecular mechanisms, optimal dosing strategies, and potential synergistic effects of CLO with other therapeutic agents.
{"title":"Therapeutic Potential of Clove Oil in Mitigating Cadmium-Induced Hepatorenal Toxicity Through Antioxidant, Anti-Inflammatory, and Antiapoptotic Mechanisms.","authors":"Inas M Elgharib, Fatma M Abdelhamid, Gehad E Elshopakey, Hatem Sembawa, Talat A Albukhari, Waheed A Filimban, Rehab M Bagadood, Mohamed E El-Boshy, Engy F Risha","doi":"10.3390/ph18010094","DOIUrl":"10.3390/ph18010094","url":null,"abstract":"<p><p>Hazardous heavy metals, particularly cadmium (Cd), are widely distributed in the environment and cause oxidative stress in various animal and human organs. Clove oil (CLO), a common aromatic spice, has been used as a traditional medication as it has potent anti-inflammatory, antioxidant, and hepatoprotective properties.</p><p><strong>Background/objectives: </strong>This study aimed to investigate the antioxidant, antiapoptotic, and anti-inflammatory effects of clove oil (CLO) against hepatorenal toxicity induced by cadmium (Cd).</p><p><strong>Methods: </strong>Twenty rats were equally divided into four groups: a control group, a Cd group treated with 15 mg/kg b.wt CdCl<sub>2</sub>, a CLO group administered 200 mg/kg b.wt CLO, and a Cd+CLO group. All groups were orally treated for 4 weeks.</p><p><strong>Results: </strong>Cadmium (Cd) exposure caused anemia and hepatorenal damage, as evidenced by increased serum levels of urea, creatinine, uric acid, total bilirubin (including its direct and indirect fractions), and elevated activities of liver enzymes such as alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP). However, total protein and albumin levels decreased. Furthermore, there was a decrease in the levels of glutathione, glutathione transferase, and catalase in the liver antioxidant profiles. Meanwhile, malondialdehyde levels increased. Cadmium toxicity caused elevated expression of liver apoptosis markers, such as tumor necrosis factor-alpha (TNF-α) and caspase-3, and inflammation. CLO ameliorated the oxidative effects of Cd through decreasing urea (27.4%), creatinine (41.6%), liver enzymes, and hepatic apoptotic markers while increasing levels of total protein, albumin, and hepatic values of SOD (60.37%), CAT (64.49%), GSH (50.41%), and GST (9.16%).</p><p><strong>Conclusions: </strong>Hematological and biochemical parameters, as well as the antioxidant system, improved following clove oil treatment, leading to a reduction in hepatorenal damage. Therefore, it is possible to conclude that CLO protects rats from inflammation, apoptosis, and hepatorenal oxidative damage caused by Cd poisoning. Comprehensive translational research is required to validate CLO's efficacy and safety of use in humans. Future studies should focus on elucidating the precise molecular mechanisms, optimal dosing strategies, and potential synergistic effects of CLO with other therapeutic agents.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"18 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143041031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}