Pub Date : 2022-12-31Epub Date: 2022-02-08DOI: 10.1080/15592324.2021.2024405
Maozhen Luo, Zhiwei Han, Guoye Huang, Rongfang Li, Yi Liu, Junjie Lu, Lin Liu, Rui Miao
Guanine nucleotide-binding (G) proteins, namely, phosphate-binding (P) loop GTPases, play a critical role in life processes among different species. Based on the structural characteristics, G proteins can be divided into heterotrimeric G proteins, small G proteins and multiple unique unconventional G proteins. The highly conserved unconventional G protein YchF is composed of a core G domain, an inserted coiled-coil domain, and a TGS domain from the N-terminus to the C-terminus. In this review, we compared the structural characteristics of the G domain in rice OsYchF1 with those of Rattus norvegicus heterotrimeric G protein α-subunit and human small G protein Ras-related G protein C and analyzed the binding modes of these G proteins with GTP or ATP by performing molecular dynamics simulations. In summary, it will provide new insights into the enormous diversity of biological function of G proteins.
{"title":"Structural comparison of unconventional G protein YchF with heterotrimeric G protein and small G protein.","authors":"Maozhen Luo, Zhiwei Han, Guoye Huang, Rongfang Li, Yi Liu, Junjie Lu, Lin Liu, Rui Miao","doi":"10.1080/15592324.2021.2024405","DOIUrl":"https://doi.org/10.1080/15592324.2021.2024405","url":null,"abstract":"<p><p>Guanine nucleotide-binding (G) proteins, namely, phosphate-binding (P) loop GTPases, play a critical role in life processes among different species. Based on the structural characteristics, G proteins can be divided into heterotrimeric G proteins, small G proteins and multiple unique unconventional G proteins. The highly conserved unconventional G protein YchF is composed of a core G domain, an inserted coiled-coil domain, and a TGS domain from the N-terminus to the C-terminus. In this review, we compared the structural characteristics of the G domain in rice OsYchF1 with those of <i>Rattus norvegicus</i> heterotrimeric G protein α-subunit and human small G protein Ras-related G protein C and analyzed the binding modes of these G proteins with GTP or ATP by performing molecular dynamics simulations. In summary, it will provide new insights into the enormous diversity of biological function of G proteins.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8959515/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39762937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The small regulatory C-TERMINALLY ENCODED PEPTIDE (CEP) peptide family plays crucial roles in plant growth and stress response. However, little is known about this peptide family in Brassica species. Here, we performed a systematic analysis to identify the putative Brassica rapa L. CEP (BrCEP) gene family. In total, 27 BrCEP genes were identified and they were classified into four subgroups based on the CEP motifs similarity. BrCEP genes displayed distinct expression patterns in response to both developmental and several environmental signals, suggesting their broad roles during Brassica rapa development. Furthuremore, the synthetic BrCEP3 peptide accelerated Brassica rapa primary root growth in a hydrogen peroxide (H2O2) and Ca2+ dependent manner. In summary, our work will provide fundamental insights into the physiological function of CEP peptides during Brassica rapa development.
{"title":"Functional characterization of C-TERMINALLY ENCODED PEPTIDE (CEP) family in <i>Brassica rapa</i> L.","authors":"Ziwen Qiu, Keqing Zhuang, Yiting Liu, Xiaomin Ge, Chen Chen, Songping Hu, Huibin Han","doi":"10.1080/15592324.2021.2021365","DOIUrl":"https://doi.org/10.1080/15592324.2021.2021365","url":null,"abstract":"<p><p>The small regulatory C-TERMINALLY ENCODED PEPTIDE (CEP) peptide family plays crucial roles in plant growth and stress response. However, little is known about this peptide family in Brassica species. Here, we performed a systematic analysis to identify the putative <i>Brassica rapa</i> L. <i>CEP</i> (<i>BrCEP</i>) gene family. In total, 27 <i>BrCEP</i> genes were identified and they were classified into four subgroups based on the CEP motifs similarity. <i>BrCEP</i> genes displayed distinct expression patterns in response to both developmental and several environmental signals, suggesting their broad roles during <i>Brassica rapa</i> development. Furthuremore, the synthetic BrCEP3 peptide accelerated <i>Brassica rapa</i> primary root growth in a hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and Ca<sup>2+</sup> dependent manner. In summary, our work will provide fundamental insights into the physiological function of CEP peptides during <i>Brassica rapa</i> development.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8920145/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39775158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-31DOI: 10.1080/15592324.2022.2095139
Hao Zhang, Dan Zhao, Ziyan Tang, Ying Zhang, Ke Zhang, Jingao Dong, Fengru Wang
Brassinosteroids (BRs) regulate of maize (Zea mays L.) growth, but the underlying molecular mechanism remains unclear. In this study, we used a multi-disciplinary approach to determine how BRs regulate maize morphology and physiology during development. Treatment with the BRs promoted primary root the elongation and growth during germination, and the early development of lateral roots. BRs treatment during the middle growth stage increased the levels of various stress resistance factors, and enhanced resistance to lodging, likely by protecting the plant against stem rot and sheath rot. BRs had no significant effect on plant height during late growth, but it increased leaf angle and photosynthetic efficiency, as well as yield and quality traits. Our findings increase our understanding of the regulatory effects of BR on maize root growth and development and the mechanism by which BR improves disease resistance, which could further the potential for using BR to improve maize yield.
{"title":"Exogenous brassinosteroids promotes root growth, enhances stress tolerance, and increases yield in maize.","authors":"Hao Zhang, Dan Zhao, Ziyan Tang, Ying Zhang, Ke Zhang, Jingao Dong, Fengru Wang","doi":"10.1080/15592324.2022.2095139","DOIUrl":"https://doi.org/10.1080/15592324.2022.2095139","url":null,"abstract":"<p><p>Brassinosteroids (BRs) regulate of maize (<i>Zea mays</i> L.) growth, but the underlying molecular mechanism remains unclear. In this study, we used a multi-disciplinary approach to determine how BRs regulate maize morphology and physiology during development. Treatment with the BRs promoted primary root the elongation and growth during germination, and the early development of lateral roots. BRs treatment during the middle growth stage increased the levels of various stress resistance factors, and enhanced resistance to lodging, likely by protecting the plant against stem rot and sheath rot. BRs had no significant effect on plant height during late growth, but it increased leaf angle and photosynthetic efficiency, as well as yield and quality traits. Our findings increase our understanding of the regulatory effects of BR on maize root growth and development and the mechanism by which BR improves disease resistance, which could further the potential for using BR to improve maize yield.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9255028/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40463076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-31DOI: 10.1080/15592324.2022.2096785
Anish Kundu, Jyothilakshmi Vadassery
Piriformospora indica is a root endophyte having a vast host range in plants. Plant growth promotion is a hallmark of the symbiotic interaction of P. indica with its hosts. As a plant growth-promoting microorganism, it is important to know the mechanisms involved in growth induction. Hitherto, multiple reports have demonstrated various molecular mechanisms of P. indica-mediated growth promotion, including protein kinase-mediated pathway, enhanced nutrient uptake and polyamine-mediated growth phytohormone elevation. Here, we briefly present a discussion on the state-of-the-art molecular mechanisms of P. indica-mediated growth promotion in host plants, in order to obtain a future prospect on utilization of this microorganism for sustainable agriculture.
{"title":"Molecular mechanisms of <i>Piriformospora indica</i> mediated growth promotion in plants.","authors":"Anish Kundu, Jyothilakshmi Vadassery","doi":"10.1080/15592324.2022.2096785","DOIUrl":"https://doi.org/10.1080/15592324.2022.2096785","url":null,"abstract":"<p><p><i>Piriformospora indica</i> is a root endophyte having a vast host range in plants. Plant growth promotion is a hallmark of the symbiotic interaction of <i>P. indica</i> with its hosts. As a plant growth-promoting microorganism, it is important to know the mechanisms involved in growth induction. Hitherto, multiple reports have demonstrated various molecular mechanisms of <i>P. indica</i>-mediated growth promotion, including protein kinase-mediated pathway, enhanced nutrient uptake and polyamine-mediated growth phytohormone elevation. Here, we briefly present a discussion on the state-of-the-art molecular mechanisms of <i>P. indica</i>-mediated growth promotion in host plants, in order to obtain a future prospect on utilization of this microorganism for sustainable agriculture.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9272844/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40488902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-31DOI: 10.1080/15592324.2022.2104003
Fan Zhou, Kang Zhang, Xu Zheng, Guanyu Wang, Hongzhe Cao, Jihong Xing, Jingao Dong
BT4 gene was identified to play an important role in Arabidopsis resistance to pst DC3000 in preliminary studies. However, the specific function and molecular mechanism of BT4 gene in regulation of Arabidopsis resistance to Botrytis cinerea had not been described to date. In this study, we found that the expression of BT4 was induced by wounding and B. cinerea inoculation in Arabidopsis. After inoculated with B. cinerea, T-DNA insertion mutants of the BT4 gene, bt4, showed significant susceptibility symptoms, whereas no significant symptoms were found in wild-type (WT), the complemented transgenic plants (CE), and the overexpression transgenic plants (OE). After inoculated with B. cinerea, the expression levels of JAR1 and PDF1.2 genes in bt4 mutant were induced; however, the expression levels of these genes in bt4 mutant were significantly lower than those in the WT, CE, and OE. These results indicated that the BT4 positively regulate the expression of genes in JA/ET signaling pathways. Therefore, the BT4 may be involved in the regulation of JA/ET signaling pathways to affect Arabidopsis resistance to B. cinerea.
{"title":"BTB and TAZ domain protein BT4 positively regulates the resistance to <i>Botrytis cinerea</i> in <i>Arabidopsis</i>.","authors":"Fan Zhou, Kang Zhang, Xu Zheng, Guanyu Wang, Hongzhe Cao, Jihong Xing, Jingao Dong","doi":"10.1080/15592324.2022.2104003","DOIUrl":"https://doi.org/10.1080/15592324.2022.2104003","url":null,"abstract":"<p><p><i>BT4</i> gene was identified to play an important role in <i>Arabidopsis</i> resistance to <i>pst</i> DC3000 in preliminary studies. However, the specific function and molecular mechanism of <i>BT4</i> gene in regulation of <i>Arabidopsis</i> resistance to <i>Botrytis cinerea</i> had not been described to date. In this study, we found that the expression of <i>BT4</i> was induced by wounding and <i>B. cinerea</i> inoculation in <i>Arabidopsis</i>. After inoculated with <i>B. cinerea</i>, T-DNA insertion mutants of the <i>BT4</i> gene, <i>bt4</i>, showed significant susceptibility symptoms, whereas no significant symptoms were found in wild-type (WT), the complemented transgenic plants (CE), and the overexpression transgenic plants (OE). After inoculated with <i>B. cinerea</i>, the expression levels of <i>JAR1</i> and <i>PDF1.2</i> genes in <i>bt4</i> mutant were induced; however, the expression levels of these genes in <i>bt4</i> mutant were significantly lower than those in the WT, CE, and OE. These results indicated that the <i>BT4</i> positively regulate the expression of genes in JA/ET signaling pathways. Therefore, the <i>BT4</i> may be involved in the regulation of JA/ET signaling pathways to affect <i>Arabidopsis</i> resistance to <i>B. cinerea</i>.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9318297/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40552380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Platycodon grandiflorus, a perennial flowering plant widely distributed in China and South Korea, is an excellent resource for both food and medicine. The main active compounds of P. grandiflorus are triterpenoid saponins. WRKY transcription factors (TFs) are among the largest gene families in plants and play an important role in regulating plant terpenoid accumulation, physiological metabolism, and stress response. Numerous studies have been reported on other medicinal plants; however, little is known about WRKY genes in P. grandiflorus. In this study, 27 PgWRKYs were identified in the P. grandiflorus transcriptome. Phylogenetic analysis showed that PgWRKY genes were clustered into three main groups and five subgroups. Transcriptome analysis showed that the PgWRKY gene expression patterns in different tissues differed between those in Tongcheng City (Southern Anhui) and Taihe County (Northern Anhui). Gene expression analysis based on RNA sequencing and qRT-PCR analysis showed that most PgWRKY genes were expressed after induction with methyl jasmonate (MeJA). Co-expressing PgWRKY genes with triterpenoid biosynthesis pathway genes revealed four PgWRKY genes that may have functions in triterpenoid biosynthesis. Additionally, functional annotation and protein-protein interaction analysis of PgWRKY proteins were performed to predict their roles in potential regulatory networks. Thus, we systematically analyzed the structure, evolution, and expression patterns of PgWRKY genes to provide an important theoretical basis for further exploring the molecular basis and regulatory mechanism of WRKY TFs in triterpenoid biosynthesis.
{"title":"Transcriptome-wide identification of WRKY transcription factors and their expression profiles in response to methyl jasmonate in <i>Platycodon grandiflorus</i>.","authors":"Jing Li, Hanwen Yu, Mengli Liu, Bowen Chen, Nan Dong, Xiangwei Chang, Jutao Wang, Shihai Xing, Huasheng Peng, Liangping Zha, Shuangying Gui","doi":"10.1080/15592324.2022.2089473","DOIUrl":"https://doi.org/10.1080/15592324.2022.2089473","url":null,"abstract":"<p><p><i>Platycodon grandiflorus</i>, a perennial flowering plant widely distributed in China and South Korea, is an excellent resource for both food and medicine. The main active compounds of <i>P. grandiflorus</i> are triterpenoid saponins. WRKY transcription factors (TFs) are among the largest gene families in plants and play an important role in regulating plant terpenoid accumulation, physiological metabolism, and stress response. Numerous studies have been reported on other medicinal plants; however, little is known about WRKY genes in <i>P. grandiflorus</i>. In this study, 27 PgWRKYs were identified in the <i>P. grandiflorus</i> transcriptome. Phylogenetic analysis showed that PgWRKY genes were clustered into three main groups and five subgroups. Transcriptome analysis showed that the PgWRKY gene expression patterns in different tissues differed between those in Tongcheng City (Southern Anhui) and Taihe County (Northern Anhui). Gene expression analysis based on RNA sequencing and qRT-PCR analysis showed that most PgWRKY genes were expressed after induction with methyl jasmonate (MeJA). Co-expressing PgWRKY genes with triterpenoid biosynthesis pathway genes revealed four PgWRKY genes that may have functions in triterpenoid biosynthesis. Additionally, functional annotation and protein-protein interaction analysis of PgWRKY proteins were performed to predict their roles in potential regulatory networks. Thus, we systematically analyzed the structure, evolution, and expression patterns of PgWRKY genes to provide an important theoretical basis for further exploring the molecular basis and regulatory mechanism of WRKY TFs in triterpenoid biosynthesis.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/59/73/KPSB_17_2089473.PMC9225661.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40177651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-31DOI: 10.1080/15592324.2022.2050628
Haruna Ohsaki, Akira Yamawo
Belowground plant-plant interactions can affect the concentrations of leaf chemicals, but the mechanism is not clear. Here, we investigated the effects of intra- and interspecific root exudates on the growth and leaf chemical content of Rumex obtusifolius. Seedlings of R. obtusifolius were grown with exposure to root exudates collected from other R. obtusifolius plants or from Trifolium repens, Festuca ovina, or Plantago asiatica plants, and the total phenolic, condensed tannin, dry biomass, and chlorophyll contents of the leaves were examined. The root exudates from conspecific plants had no effect on the total phenolic, condensed tannin, and chlorophyll contents of the leaves but did significantly reduce the dry leaf biomass. Root exudates from heterospecific plants had different effects depending on the species. These results were different from the results of a previous study that examined the effects of direct plant-plant interaction in R. obtusifolius. Thus, indirect interaction via root exudates induces different effects in leaves from direct interaction.
{"title":"Effects of indirect plant-plant interaction via root exudate on growth and leaf chemical contents in <i>Rumex obtusifolius</i>.","authors":"Haruna Ohsaki, Akira Yamawo","doi":"10.1080/15592324.2022.2050628","DOIUrl":"https://doi.org/10.1080/15592324.2022.2050628","url":null,"abstract":"<p><p>Belowground plant-plant interactions can affect the concentrations of leaf chemicals, but the mechanism is not clear. Here, we investigated the effects of intra- and interspecific root exudates on the growth and leaf chemical content of <i>Rumex obtusifolius</i>. Seedlings of <i>R. obtusifolius</i> were grown with exposure to root exudates collected from other <i>R. obtusifolius</i> plants or from <i>Trifolium repens, Festuca ovina</i>, or <i>Plantago asiatica</i> plants, and the total phenolic, condensed tannin, dry biomass, and chlorophyll contents of the leaves were examined. The root exudates from conspecific plants had no effect on the total phenolic, condensed tannin, and chlorophyll contents of the leaves but did significantly reduce the dry leaf biomass. Root exudates from heterospecific plants had different effects depending on the species. These results were different from the results of a previous study that examined the effects of direct plant-plant interaction in <i>R. obtusifolius</i>. Thus, indirect interaction via root exudates induces different effects in leaves from direct interaction.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8959531/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40315797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-31Epub Date: 2021-12-24DOI: 10.1080/15592324.2021.2015893
Ivan Radin, Ryan A Richardson, Elizabeth S Haswell
The PIEZO protein family was first described in animals where these mechanosensitive calcium channels perform numerous essential functions, including the perception of light touch, shear, and compressive forces. PIEZO homologs are present in most eukaryotic lineages and recently we reported that two PIEZO homologs from moss Physcomitrium patens localize to the vacuolar membrane and modulate its morphology in tip-growing caulonemal cells. Here we show that predicted structures of both PpPIEZO1 and PpPIEZO2 are very similar to that of mouse Piezo2. Furthermore, we show that both moss PIEZO genes are ubiquitously expressed in moss vegetative tissues and that they are not required for normal vacuolar pH or intracellular osmotic potential. These results suggest that moss PIEZO proteins are widely expressed mechanosensory calcium channels that serve a signaling rather than maintenance role in vacuoles.
{"title":"Moss PIEZO homologs have a conserved structure, are ubiquitously expressed, and do not affect general vacuole function.","authors":"Ivan Radin, Ryan A Richardson, Elizabeth S Haswell","doi":"10.1080/15592324.2021.2015893","DOIUrl":"10.1080/15592324.2021.2015893","url":null,"abstract":"<p><p>The PIEZO protein family was first described in animals where these mechanosensitive calcium channels perform numerous essential functions, including the perception of light touch, shear, and compressive forces. PIEZO homologs are present in most eukaryotic lineages and recently we reported that two PIEZO homologs from moss <i>Physcomitrium patens</i> localize to the vacuolar membrane and modulate its morphology in tip-growing caulonemal cells. Here we show that predicted structures of both <i>Pp</i>PIEZO1 and <i>Pp</i>PIEZO2 are very similar to that of mouse Piezo2. Furthermore, we show that both moss <i>PIEZO</i> genes are ubiquitously expressed in moss vegetative tissues and that they are not required for normal vacuolar pH or intracellular osmotic potential. These results suggest that moss PIEZO proteins are widely expressed mechanosensory calcium channels that serve a signaling rather than maintenance role in vacuoles.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8920221/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39637125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-31DOI: 10.1080/15592324.2022.2086372
Xu Chao, Tang Yuqing, Liu Xincheng, Yang Huidong, Wang Yuting, Hu Zhongdong, Hu Xinlong, Liu Buchun, Su Jing
Studies have not fully explained the underlying mechanism of spermidine-mediated heat tolerance. This study investigated the possible role of spermidine (Spd) in regulating citrus heat tolerance. The results showed that exogenous Spd effectively alleviated the limitation of high temperature (HT) on photosynthesis. Exogenous Spd increased the chlorophyll content, net photosynthetic rate, intercellular carbon dioxide concentration, stomatal conductance, maximum and effective quantum yield of PSII photochemistry, nonphotochemical quenching coefficient, and electron transport rate in citrus seedlings under HT stress, but declined the stomatal limitation value. In addition, Spd treatment promoted the dynamic balance of the citrus enzymatic and non-enzymatic antioxidants system. Spd application significantly increased the activity of superoxide dismutase, peroxidase, catalase, ascorbic acid, and glutathione and the expression level of corresponding genes at high temperature, while reducing the content of H2O2 and malondialdehyde. Therefore, our findings suggested exogenous Spd significantly ameliorated citrus physiological and photosynthetic adaptation under HT stress, thereby providing helpful guidance for citrus cultivation in HT events.
有关研究尚未完全解释精胺介导耐热性的内在机制。本研究探讨了亚精胺(Spd)在调节柑橘耐热性中可能发挥的作用。结果表明,外源 Spd 能有效缓解高温(HT)对光合作用的限制。外源Spd提高了高温胁迫下柑橘幼苗的叶绿素含量、净光合速率、细胞间二氧化碳浓度、气孔导度、PSII光化学最大量子产率和有效量子产率、非光化学淬灭系数和电子传递速率,但降低了气孔限制值。此外,Spd 处理促进了柑橘酶和非酶抗氧化剂系统的动态平衡。施用 Spd 能明显提高高温下超氧化物歧化酶、过氧化物酶、过氧化氢酶、抗坏血酸和谷胱甘肽的活性以及相应基因的表达水平,同时降低 H2O2 和丙二醛的含量。因此,我们的研究结果表明,外源Spd能显著改善柑橘在高温胁迫下的生理和光合适应性,从而为柑橘在高温条件下的栽培提供有益的指导。
{"title":"Exogenous spermidine enhances the photosynthetic and antioxidant capacity of citrus seedlings under high temperature.","authors":"Xu Chao, Tang Yuqing, Liu Xincheng, Yang Huidong, Wang Yuting, Hu Zhongdong, Hu Xinlong, Liu Buchun, Su Jing","doi":"10.1080/15592324.2022.2086372","DOIUrl":"10.1080/15592324.2022.2086372","url":null,"abstract":"<p><p>Studies have not fully explained the underlying mechanism of spermidine-mediated heat tolerance. This study investigated the possible role of spermidine (Spd) in regulating citrus heat tolerance. The results showed that exogenous Spd effectively alleviated the limitation of high temperature (HT) on photosynthesis. Exogenous Spd increased the chlorophyll content, net photosynthetic rate, intercellular carbon dioxide concentration, stomatal conductance, maximum and effective quantum yield of PSII photochemistry, nonphotochemical quenching coefficient, and electron transport rate in citrus seedlings under HT stress, but declined the stomatal limitation value. In addition, Spd treatment promoted the dynamic balance of the citrus enzymatic and non-enzymatic antioxidants system. Spd application significantly increased the activity of superoxide dismutase, peroxidase, catalase, ascorbic acid, and glutathione and the expression level of corresponding genes at high temperature, while reducing the content of H<sub>2</sub>O<sub>2</sub> and malondialdehyde. Therefore, our findings suggested exogenous Spd significantly ameliorated citrus physiological and photosynthetic adaptation under HT stress, thereby providing helpful guidance for citrus cultivation in HT events.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9225518/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85863024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-31Epub Date: 2022-01-13DOI: 10.1080/15592324.2021.2025325
Ruoxin Zhao, Zonghao Liu, Ziwei Li, Shi Xu, Xianyong Sheng
Gravitropism is an important strategy for the adaptation of plants to the changing environment. Previous reports indicated that Ca2+ participated in plant gravity response. However, present information on the functions of Ca2+ in plant gravitropism was obtained mainly on coleoptiles, hypocotyls, and petioles, little is known about the dynamic changes of Ca2+ during root gravitropism. In the present study, the transgenic Arabidopsis thaliana R-GECO1 was placed horizontally and subsequently vertically on a refitted Leica SP8 laser scanning confocal microscopy with a vertical stage. Real-time observations indicated that gravistimulation induced not only an increase in the Ca2+ concentration, but also an accelerated occurrence of Ca2+ sparks in the root cap, especially in the lower side of the lateral root cap, indicating a strong tie between Ca2+ dynamics and gravistimulation during the early stage of root gravity response.
{"title":"Gravity induces asymmetric Ca<sup>2+</sup> spikes in the root cap in the early stage of gravitropism.","authors":"Ruoxin Zhao, Zonghao Liu, Ziwei Li, Shi Xu, Xianyong Sheng","doi":"10.1080/15592324.2021.2025325","DOIUrl":"10.1080/15592324.2021.2025325","url":null,"abstract":"<p><p>Gravitropism is an important strategy for the adaptation of plants to the changing environment. Previous reports indicated that Ca<sup>2+</sup> participated in plant gravity response. However, present information on the functions of Ca<sup>2+</sup> in plant gravitropism was obtained mainly on coleoptiles, hypocotyls, and petioles, little is known about the dynamic changes of Ca<sup>2+</sup> during root gravitropism. In the present study, the transgenic <i>Arabidopsis thaliana</i> R-GECO1 was placed horizontally and subsequently vertically on a refitted Leica SP8 laser scanning confocal microscopy with a vertical stage. Real-time observations indicated that gravistimulation induced not only an increase in the Ca<sup>2+</sup> concentration, but also an accelerated occurrence of Ca<sup>2+</sup> sparks in the root cap, especially in the lower side of the lateral root cap, indicating a strong tie between Ca<sup>2+</sup> dynamics and gravistimulation during the early stage of root gravity response.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9176234/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39816020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}