Pub Date : 2024-08-31Epub Date: 2024-07-17DOI: 10.33549/physiolres.935425
J Kuneš, J Zicha
The study of ontogenetic aspects of water and electrolyte metabolism performed in the Institute of Physiology (Czechoslovak Academy of Sciences) led to the research on the increased susceptibility of immature rats to salt-dependent forms of hypertension since 1966. Hemodynamic studies in developing rats paved the way to the evaluation of hemodynamic mechanisms during the development of genetic hypertension in SHR. A particular attention was focused on altered renal function and kidney damage in both salt and genetic hypertension with a special respect to renin-angiotensin system. Renal damage associated with hypertension progression was in the center of interest of several research groups in Prague. The alterations in ion transport, cell calcium handling and membrane structure as well as their relationship to abnormal lipid metabolism were studied in a close cooperation with laboratories in Munich, Glasgow, Montreal and Paris. The role of NO and oxidative stress in various forms of hypertension was a subject of a joint research with our Slovak colleagues focused mainly on NO-deficient hypertension elicited by chronic L-NAME administration. Finally, we adopted a method enabling us to evaluate the balance of vasoconstrictor and vasodilator mechanisms in BP maintenance. Using this method we demonstrated sympathetic hyperactivity and relative NO deficiency in rats with either salt-dependent or genetic hypertension. At the end of the first decennium of this century we were ready to modify our traditional approach towards modern trends in the research of experimental hypertension. Keywords: Salt-dependent hypertension o Genetic hypertension o Body fluids o Hemodynamics o Ion transport o Cell membrane structure and function o Renal function o Renin-angiotensin systems.
自 1966 年以来,捷克斯洛伐克科学院生理学研究所(Institute of Physiology)对水和电解质新陈代谢的本体方面进行了研究,结果发现未成熟大鼠对盐依赖型高血压的易感性增加。发育中大鼠的血液动力学研究为评估 SHR 遗传性高血压发展过程中的血液动力学机制铺平了道路。盐依赖性高血压和遗传性高血压的肾功能改变和肾脏损伤受到特别关注,尤其是肾素-血管紧张素系统。与高血压进展相关的肾损伤是布拉格几个研究小组关注的焦点。通过与慕尼黑、格拉斯哥、蒙特利尔和巴黎的实验室密切合作,研究了离子传输、细胞钙处理和膜结构的改变,以及它们与脂质代谢异常的关系。NO 和氧化应激在各种形式的高血压中的作用是我们与斯洛伐克同事联合研究的一个主题,主要集中在长期服用 L-NAME 引起的 NO 缺失型高血压。最后,我们采用了一种方法来评估血压维持过程中血管收缩和血管舒张机制的平衡。利用这种方法,我们证明了盐依赖性高血压或遗传性高血压大鼠的交感神经功能亢进和氮氧化物相对缺乏。在本世纪第一个十年结束时,我们已经准备好改变传统的研究方法,以适应现代实验性高血压研究的发展趋势。
{"title":"Research on Experimental Hypertension in Prague (1966-2009).","authors":"J Kuneš, J Zicha","doi":"10.33549/physiolres.935425","DOIUrl":"10.33549/physiolres.935425","url":null,"abstract":"<p><p>The study of ontogenetic aspects of water and electrolyte metabolism performed in the Institute of Physiology (Czechoslovak Academy of Sciences) led to the research on the increased susceptibility of immature rats to salt-dependent forms of hypertension since 1966. Hemodynamic studies in developing rats paved the way to the evaluation of hemodynamic mechanisms during the development of genetic hypertension in SHR. A particular attention was focused on altered renal function and kidney damage in both salt and genetic hypertension with a special respect to renin-angiotensin system. Renal damage associated with hypertension progression was in the center of interest of several research groups in Prague. The alterations in ion transport, cell calcium handling and membrane structure as well as their relationship to abnormal lipid metabolism were studied in a close cooperation with laboratories in Munich, Glasgow, Montreal and Paris. The role of NO and oxidative stress in various forms of hypertension was a subject of a joint research with our Slovak colleagues focused mainly on NO-deficient hypertension elicited by chronic L-NAME administration. Finally, we adopted a method enabling us to evaluate the balance of vasoconstrictor and vasodilator mechanisms in BP maintenance. Using this method we demonstrated sympathetic hyperactivity and relative NO deficiency in rats with either salt-dependent or genetic hypertension. At the end of the first decennium of this century we were ready to modify our traditional approach towards modern trends in the research of experimental hypertension. Keywords: Salt-dependent hypertension o Genetic hypertension o Body fluids o Hemodynamics o Ion transport o Cell membrane structure and function o Renal function o Renin-angiotensin systems.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":" ","pages":"S49-S66"},"PeriodicalIF":1.9,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412355/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141627419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The study aims to elucidate the therapeutic mechanism of Baicalin (BAI) in alleviating cartilage injury in osteoarthritic (OA) rat models, concentrating on its regulation of the miR-766-3p/AIFM1 axis. An OA rat model was developed with unilateral anterior cruciate ligament transection (ACLT). Interventions comprised of BAI treatment and intra-articular administration of miR-766-3p inhibitor. For evaluation, histopathological staining was conducted to investigate the pathological severity of knee cartilage injury. The levels of oxidative stress (OS) indicators including MDA, SOD, and GSH-Px, were quantified using colorimetric assays. Inflammatory factors (IFs; TNF-?, IL-1?, and IL-6) in knee joint lavage fluids were assessed using ELISA, while RT-PCR was employed to quantify miR-766-3p expression. TUNEL apoptosis staining was utilized to detect chondrocyte apoptosis, and western blotting examined autophagy-related markers (LC3, Beclin, p62), extracellular matrix (ECM) synthesis-associated indices (COL2A, ACAN, MMP13), and apoptosis-inducing factor mitochondrion-associated 1 (AIFM1). Histological examination revealed a marked amelioration of cartilage injury in the BAI-treated OA rat models compared to controls. BAI treatment significantly reduced inflammation and OS of knee joint fluid, activated autophagy, and decreased chondrocyte apoptosis and ECM degradation. Interestingly, the inhibitory effects of BAI on these pathological markers were significantly decreased by the miR-766-3p inhibitor. Further assessment revealed that BAI efficiently promoted miR-766-3p expression while inhibiting AIFM1 protein expression. BAI potentially mitigates articular cartilage injury in OA rats, likely through modulation of miR-766-3p/AIFM1 axis. Keywords: Baicalin, microRNA, AIFM1, Osteoarthritisv, Rat.
本研究旨在阐明黄芩苷(BAI)缓解骨关节炎(OA)大鼠模型软骨损伤的治疗机制,重点研究其对 miR-766-3p/AIFM1 轴的调节作用。通过单侧前十字韧带横断(ACLT)建立了一个 OA 大鼠模型。干预措施包括 BAI 治疗和关节内注射 miR-766-3p 抑制剂。为了进行评估,对膝关节软骨损伤的病理严重程度进行了组织病理学染色。氧化应激(OS)指标(包括 MDA、SOD 和 GSH-Px)的水平采用比色法进行量化。膝关节灌洗液中的炎症因子(IFs;TNF-?、IL-1?和IL-6)采用酶联免疫吸附法进行评估,miR-766-3p的表达则采用RT-PCR法进行量化。采用 TUNEL 细胞凋亡染色法检测软骨细胞凋亡情况,并用 Western 印迹法检测自噬相关标记物(LC3、Beclin、p62)、细胞外基质(ECM)合成相关指标(COL2A、ACAN、MMP13)和凋亡诱导因子线粒体相关 1(AIFM1)。组织学检查显示,与对照组相比,经 BAI 治疗的 OA 大鼠模型的软骨损伤明显改善。BAI 治疗明显减轻了膝关节液的炎症和OS,激活了自噬,减少了软骨细胞凋亡和 ECM 降解。有趣的是,miR-766-3p 抑制剂能明显降低 BAI 对这些病理指标的抑制作用。进一步的评估显示,BAI 在抑制 AIFM1 蛋白表达的同时,有效地促进了 miR-766-3p 的表达。BAI可能通过调节miR-766-3p/AIFM1轴来减轻OA大鼠的关节软骨损伤。关键词黄芩素 microRNA AIFM1 骨关节炎v 大鼠
{"title":"Baicalin Ameliorates Cartilage Injury in Rats With Osteoarthritis via Modulating miR-766-3p/AIFM1 Axis.","authors":"J Liu, H Zhou, J Chen, Q Zuo, F Liu","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The study aims to elucidate the therapeutic mechanism of Baicalin (BAI) in alleviating cartilage injury in osteoarthritic (OA) rat models, concentrating on its regulation of the miR-766-3p/AIFM1 axis. An OA rat model was developed with unilateral anterior cruciate ligament transection (ACLT). Interventions comprised of BAI treatment and intra-articular administration of miR-766-3p inhibitor. For evaluation, histopathological staining was conducted to investigate the pathological severity of knee cartilage injury. The levels of oxidative stress (OS) indicators including MDA, SOD, and GSH-Px, were quantified using colorimetric assays. Inflammatory factors (IFs; TNF-?, IL-1?, and IL-6) in knee joint lavage fluids were assessed using ELISA, while RT-PCR was employed to quantify miR-766-3p expression. TUNEL apoptosis staining was utilized to detect chondrocyte apoptosis, and western blotting examined autophagy-related markers (LC3, Beclin, p62), extracellular matrix (ECM) synthesis-associated indices (COL2A, ACAN, MMP13), and apoptosis-inducing factor mitochondrion-associated 1 (AIFM1). Histological examination revealed a marked amelioration of cartilage injury in the BAI-treated OA rat models compared to controls. BAI treatment significantly reduced inflammation and OS of knee joint fluid, activated autophagy, and decreased chondrocyte apoptosis and ECM degradation. Interestingly, the inhibitory effects of BAI on these pathological markers were significantly decreased by the miR-766-3p inhibitor. Further assessment revealed that BAI efficiently promoted miR-766-3p expression while inhibiting AIFM1 protein expression. BAI potentially mitigates articular cartilage injury in OA rats, likely through modulation of miR-766-3p/AIFM1 axis. Keywords: Baicalin, microRNA, AIFM1, Osteoarthritisv, Rat.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":"73 4","pages":"633-642"},"PeriodicalIF":1.9,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11414588/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142293629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-31Epub Date: 2024-07-17DOI: 10.33549/physiolres.935407
K Tauchmannová, A Pecinová, J Houštěk, T Mráček
Disorders of ATP synthase, the key enzyme in mitochondrial energy supply, belong to the most severe metabolic diseases, manifesting as early-onset mitochondrial encephalo-cardiomyopathies. Since ATP synthase subunits are encoded by both mitochondrial and nuclear DNA, pathogenic variants can be found in either genome. In addition, the biogenesis of ATP synthase requires several assembly factors, some of which are also hotspots for pathogenic variants. While variants of MT-ATP6 and TMEM70 represent the most common cases of mitochondrial and nuclear DNA mutations respectively, the advent of next-generation sequencing has revealed new pathogenic variants in a number of structural genes and TMEM70, sometimes with truly peculiar genetics. Here we present a systematic review of the reported cases and discuss biochemical mechanisms, through which they are affecting ATP synthase. We explore how the knowledge of pathophysiology can improve our understanding of enzyme biogenesis and function. Keywords: Mitochondrial diseases o ATP synthase o Nuclear DNA o Mitochondrial DNA o TMEM70.
ATP 合成酶是线粒体能量供应的关键酶,它的失调属于最严重的代谢性疾病,表现为早发性线粒体脑心肌病。由于 ATP 合酶亚基由线粒体和核 DNA 共同编码,因此在任一基因组中都可能发现致病变体。此外,ATP 合酶的生物生成需要几个组装因子,其中一些也是致病变体的热点。虽然 MT-ATP6 和 TMEM70 的变异分别代表了线粒体和核 DNA 变异中最常见的情况,但下一代测序技术的出现揭示了一些结构基因和 TMEM70 中新的致病变异,有时还具有真正奇特的遗传学特征。在此,我们对已报道的病例进行了系统回顾,并讨论了它们影响 ATP 合成酶的生化机制。我们将探讨病理生理学知识如何提高我们对酶的生物发生和功能的认识。
{"title":"Variability of Clinical Phenotypes Caused by Isolated Defects of Mitochondrial ATP Synthase.","authors":"K Tauchmannová, A Pecinová, J Houštěk, T Mráček","doi":"10.33549/physiolres.935407","DOIUrl":"10.33549/physiolres.935407","url":null,"abstract":"<p><p>Disorders of ATP synthase, the key enzyme in mitochondrial energy supply, belong to the most severe metabolic diseases, manifesting as early-onset mitochondrial encephalo-cardiomyopathies. Since ATP synthase subunits are encoded by both mitochondrial and nuclear DNA, pathogenic variants can be found in either genome. In addition, the biogenesis of ATP synthase requires several assembly factors, some of which are also hotspots for pathogenic variants. While variants of MT-ATP6 and TMEM70 represent the most common cases of mitochondrial and nuclear DNA mutations respectively, the advent of next-generation sequencing has revealed new pathogenic variants in a number of structural genes and TMEM70, sometimes with truly peculiar genetics. Here we present a systematic review of the reported cases and discuss biochemical mechanisms, through which they are affecting ATP synthase. We explore how the knowledge of pathophysiology can improve our understanding of enzyme biogenesis and function. Keywords: Mitochondrial diseases o ATP synthase o Nuclear DNA o Mitochondrial DNA o TMEM70.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":" ","pages":"S243-S278"},"PeriodicalIF":1.9,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412354/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141627420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S Ezumi, A Kaneguchi, M Kanehara, Y Iwamoto, M Takahashi, N Nishida, J Ozawa
Abnormal hip bone morphologies are associated with various diseases of the hip joint. Weight bearing, especially during growth, may be important to achieve normal acetabulum development. This study aimed to investigate whether hip bone morphologies were affected by hindlimb suspension (HS) in 4 week-old rats. In HS groups, tail suspension was applied for 0, 2, 4, and 8 weeks. Age-matched rats were used as controls. The complex of hip bones with lumbar and sacral vertebrae were assessed based on morphological indexes using three-dimensional reconstructed images from X-ray computed tomography. Acetabular widths (measured from cranial to caudal) unchanged and depths became larger in both groups with age. Acetabular lengths (from the ventral side to the dorsal side) became larger in control groups but unchanged in HS groups with age. In HS groups, acetabular width, length, and depths were smaller than the control groups at 4 and/or 8 weeks. Acetabular versions became enlarged (rotated inwards) with age in both groups, although this was particularly pronounced in HS groups. Histologically, triradiate cartilage layers in the acetabulum were thinner with age and almost disappeared at 8 weeks in both groups. However, HS decreased Safranin O staining and prolonged the presence of hypertrophic chondrocyte indicating alterations in the chondral ossification processes. Iliac wing angles remained unchanged and anterior superior iliac crest (ASIC) distances increased with age in controls. In contrast, HS groups showed narrowed iliac wing angles with small ASIC distances. These results suggest that reduced mechanical loading during growth can interfere with hip joint formation. Keywords Hindlimb suspension, Hip joint, Acetabular morphology, Triradiate cartilage.
{"title":"Effects of Hindlimb Suspension on the Development of Hip Bone Morphologies in Growing Rats.","authors":"S Ezumi, A Kaneguchi, M Kanehara, Y Iwamoto, M Takahashi, N Nishida, J Ozawa","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Abnormal hip bone morphologies are associated with various diseases of the hip joint. Weight bearing, especially during growth, may be important to achieve normal acetabulum development. This study aimed to investigate whether hip bone morphologies were affected by hindlimb suspension (HS) in 4 week-old rats. In HS groups, tail suspension was applied for 0, 2, 4, and 8 weeks. Age-matched rats were used as controls. The complex of hip bones with lumbar and sacral vertebrae were assessed based on morphological indexes using three-dimensional reconstructed images from X-ray computed tomography. Acetabular widths (measured from cranial to caudal) unchanged and depths became larger in both groups with age. Acetabular lengths (from the ventral side to the dorsal side) became larger in control groups but unchanged in HS groups with age. In HS groups, acetabular width, length, and depths were smaller than the control groups at 4 and/or 8 weeks. Acetabular versions became enlarged (rotated inwards) with age in both groups, although this was particularly pronounced in HS groups. Histologically, triradiate cartilage layers in the acetabulum were thinner with age and almost disappeared at 8 weeks in both groups. However, HS decreased Safranin O staining and prolonged the presence of hypertrophic chondrocyte indicating alterations in the chondral ossification processes. Iliac wing angles remained unchanged and anterior superior iliac crest (ASIC) distances increased with age in controls. In contrast, HS groups showed narrowed iliac wing angles with small ASIC distances. These results suggest that reduced mechanical loading during growth can interfere with hip joint formation. Keywords Hindlimb suspension, Hip joint, Acetabular morphology, Triradiate cartilage.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":"73 4","pages":"643-653"},"PeriodicalIF":1.9,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11414583/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142293713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xi-Kun Yuan Pin-Shi Ni Zhen-Hao Yan Zhi Yu Zhuang-Zhi Wang Chen-Kai Zhang Fang-Hui Li Xiao-Ming Yu 1Sports Department, Nanjing University of Science and Technology ZiJin College, Nanjing, China, 2School of Sport Sciences, Nanjing Normal University, Nanjing, China, 3Shanghai Seventh People's Hospital, Shanghai, China To investigate the effects of life-long exercise (LLE) on age-related inflammatory cytokines, apoptosis, oxidative stress, ferroptosis markers, and the NRF2/KAEP 1/Klotho pathway in rats. Eight-month-old female Sprague-Dawley rats were divided into four groups: 1) LLE: 18-month LLE training starting at 8 months of age, 2) Old moderate-intensity continuous training (OMICT): 8 months of moderate-intensity continuous training starting at 18 months of age, 3) Adult sedentary (ASED): 8 month-old adult sedentary control group, and 4) Old sedentary (OSED): a 26-month-old sedentary control group. Hematoxylin eosin staining was performed to observe the pathological changes of kidney tissue injury in rats; Masson's staining to observe the deposition of collagen fibers in rat kidney tissues; and western blotting to detect the expression levels of IL-6, IL 1beta, p53, p21, TNF-alpha, GPX4, KAEP 1, NRF2, SLC7A11, and other proteins in kidney tissues. Results: Compared with the ASED group, the OSED group showed significant morphological changes in renal tubules and glomeruli, which were swollen and deformed, with a small number of inflammatory cells infiltrated in the tubules. Compared with the OSED group, the expression levels of inflammation-related proteins such as IL-1beta, IL-6, TNF alpha, and MMP3 were significantly lower in the LLE group. Quantitative immunofluorescence analysis and western blotting revealed that compared with the ASED group, KAEP 1 protein fluorescence intensity and protein expression levels were significantly enhanced, while Klotho and NRF2 protein fluorescence intensity and protein expression levels were reduced in the OSED group. Compared with the OSED group, KAEP 1 protein fluorescence intensity and protein expression levels were reduced in the LLE and OMICT groups. Klotho and KAEP 1 protein expression levels and immunofluorescence intensity were higher in the LLE group than in the OSED group. The expression levels of GPX4 and SLC7A11, two negative marker proteins associated with ferroptosis, were significantly higher in the LLE group than in the OSED group, while the expression of p53 a cellular senescence-associated protein that negatively regulates SLC7A11, and the downstream protein p21 were significantly decreased. LLE may ameliorated aging-induced oxidative stress, inflammatory response, apoptosis, and ferroptosis by regulating Klotho and synergistically activating the NRF2/KAEP 1 pathway. Keywords: Life-long exercise, Moderate intensity continuous training, Aging, Kidney tissue, Ferroptosis.
{"title":"Effects of Life-Long Exercise on Age-Related Inflammation, Apoptosis, Oxidative Stress, Ferroptosis Markers, and NRF2/KAEP 1/Klotho Pathway in Rat Kidneys.","authors":"Xi-Kun Yuan, Pin-Shi Ni, Zhen-Hao Yan, Zhi Yu, Zhuang-Zhi Wang, Chen-Kai Zhang, Fang-Hui Li, Xiao-Ming Yu","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Xi-Kun Yuan Pin-Shi Ni Zhen-Hao Yan Zhi Yu Zhuang-Zhi Wang Chen-Kai Zhang Fang-Hui Li Xiao-Ming Yu 1Sports Department, Nanjing University of Science and Technology ZiJin College, Nanjing, China, 2School of Sport Sciences, Nanjing Normal University, Nanjing, China, 3Shanghai Seventh People's Hospital, Shanghai, China To investigate the effects of life-long exercise (LLE) on age-related inflammatory cytokines, apoptosis, oxidative stress, ferroptosis markers, and the NRF2/KAEP 1/Klotho pathway in rats. Eight-month-old female Sprague-Dawley rats were divided into four groups: 1) LLE: 18-month LLE training starting at 8 months of age, 2) Old moderate-intensity continuous training (OMICT): 8 months of moderate-intensity continuous training starting at 18 months of age, 3) Adult sedentary (ASED): 8 month-old adult sedentary control group, and 4) Old sedentary (OSED): a 26-month-old sedentary control group. Hematoxylin eosin staining was performed to observe the pathological changes of kidney tissue injury in rats; Masson's staining to observe the deposition of collagen fibers in rat kidney tissues; and western blotting to detect the expression levels of IL-6, IL 1beta, p53, p21, TNF-alpha, GPX4, KAEP 1, NRF2, SLC7A11, and other proteins in kidney tissues. Results: Compared with the ASED group, the OSED group showed significant morphological changes in renal tubules and glomeruli, which were swollen and deformed, with a small number of inflammatory cells infiltrated in the tubules. Compared with the OSED group, the expression levels of inflammation-related proteins such as IL-1beta, IL-6, TNF alpha, and MMP3 were significantly lower in the LLE group. Quantitative immunofluorescence analysis and western blotting revealed that compared with the ASED group, KAEP 1 protein fluorescence intensity and protein expression levels were significantly enhanced, while Klotho and NRF2 protein fluorescence intensity and protein expression levels were reduced in the OSED group. Compared with the OSED group, KAEP 1 protein fluorescence intensity and protein expression levels were reduced in the LLE and OMICT groups. Klotho and KAEP 1 protein expression levels and immunofluorescence intensity were higher in the LLE group than in the OSED group. The expression levels of GPX4 and SLC7A11, two negative marker proteins associated with ferroptosis, were significantly higher in the LLE group than in the OSED group, while the expression of p53 a cellular senescence-associated protein that negatively regulates SLC7A11, and the downstream protein p21 were significantly decreased. LLE may ameliorated aging-induced oxidative stress, inflammatory response, apoptosis, and ferroptosis by regulating Klotho and synergistically activating the NRF2/KAEP 1 pathway. Keywords: Life-long exercise, Moderate intensity continuous training, Aging, Kidney tissue, Ferroptosis.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":"73 4","pages":"577-591"},"PeriodicalIF":1.9,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11414594/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142293714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Z Tatarková, L Lichardusová, T Lysiková, M Kmeťová Sivoňová, P Račay, J Lehotský, P Kaplán
Hyperhomocysteinemia (HHcy) is considered an independent risk factor of cardiovascular diseases. Among the proposed mechanisms underlying homocysteine toxicity are altered protein expression and induction of oxidative stress. In the present study, we explored protein abundance and parameters related to oxidative stress in heart homogenates of rats exposed to chronic mild HHcy. Using two-dimensional gel electrophoresis followed by MALDI-TOF/TOF mass spectrometry 22 altered proteins (6 upregulated and 14 downregulated) were identified. For eight proteins the altered abundances were validated by Western blot analysis. Identified proteins are primarily involved in energy metabolism (mainly enzymes of glycolysis, pyruvate dehydrogenase complex, citric acid cycle, and ATP synthase), cardiac muscle contraction (alpha-actin and myosin light chains), stress response (heat-shock protein beta1 and alphaB-crystallin) and antioxidant defense (glutathione peroxidase 1). Diminished antioxidant defense was confirmed by decreases in total antioxidant capacity and GSH/GSSG ratio. Consistent with the decline in enzymatic and non-enzymatic antioxidant defense the protein oxidative modification, as determined by tyrosine nitration, was significantly increased. These findings suggest that both, altered protein expression and elevated oxidative stress contribute to cardiovascular injury caused by HHcy. Keywords: Homocysteine, Heart, Protein abundance, Antioxidant capacity, Nitrotyrosines.
{"title":"Hyperhomocysteinemia-Induced Alterations in Protein Expression and Oxidative Stress Parameters in Rat Heart.","authors":"Z Tatarková, L Lichardusová, T Lysiková, M Kmeťová Sivoňová, P Račay, J Lehotský, P Kaplán","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Hyperhomocysteinemia (HHcy) is considered an independent risk factor of cardiovascular diseases. Among the proposed mechanisms underlying homocysteine toxicity are altered protein expression and induction of oxidative stress. In the present study, we explored protein abundance and parameters related to oxidative stress in heart homogenates of rats exposed to chronic mild HHcy. Using two-dimensional gel electrophoresis followed by MALDI-TOF/TOF mass spectrometry 22 altered proteins (6 upregulated and 14 downregulated) were identified. For eight proteins the altered abundances were validated by Western blot analysis. Identified proteins are primarily involved in energy metabolism (mainly enzymes of glycolysis, pyruvate dehydrogenase complex, citric acid cycle, and ATP synthase), cardiac muscle contraction (alpha-actin and myosin light chains), stress response (heat-shock protein beta1 and alphaB-crystallin) and antioxidant defense (glutathione peroxidase 1). Diminished antioxidant defense was confirmed by decreases in total antioxidant capacity and GSH/GSSG ratio. Consistent with the decline in enzymatic and non-enzymatic antioxidant defense the protein oxidative modification, as determined by tyrosine nitration, was significantly increased. These findings suggest that both, altered protein expression and elevated oxidative stress contribute to cardiovascular injury caused by HHcy. Keywords: Homocysteine, Heart, Protein abundance, Antioxidant capacity, Nitrotyrosines.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":"73 4","pages":"515-527"},"PeriodicalIF":1.9,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11414592/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142293716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J Liang, H Chu, Y Ran, R Lin, Y Cai, X Guan, X Cui, X Zhang, H Li, M Cheng
The endothelial-mesenchymal transition (EndMT) of endothelial progenitor cells (EPCs) plays a notable role in pathological vascular remodeling. Emerging evidence indicated that long non-coding RNA-regulator of reprogramming (linc-ROR) can promote epithelial-mesenchymal transition (EMT) in a variety of cancer cells. Nevertheless, the function of linc-ROR in EPC EndMT has not been well elucidated. The present study investigated the effect and possible mechanisms of function of linc-ROR on the EndMT of EPCs. A linc-ROR overexpression lentiviral vector (LV linc-ROR) or a linc-ROR short hairpin RNA lentiviral vector (LV-shlinc-ROR) was used to up or downregulate linc-ROR expression in EPCs isolated from human umbilical cord blood. Functional experiments demonstrated that LV-linc-ROR promoted the proliferation and migration of EPCs, but inhibited EPC angiogenesis in vitro. In the meantime, reverse transcription-quantitative PCR and western blotting results showed that the expression of the endothelial cell markers vascular endothelial-cadherin and CD31 was decreased, while the expression of the mesenchymal cell markers ?-smooth muscle actin and SM22? was increased at both mRNA and protein levels in LV-linc-ROR-treated EPCs, indicating that linc-ROR induced EPC EndMT. Mechanistically, the dual-luciferase reporter assay demonstrated that microRNA (miR/miRNA)-145 was a direct target of linc-ROR, and miR-145 binds to the 3'-untranslated region of Smad3. Moreover, LV-shlinc-ROR increased the expression of miR-145, but decreased the expression of Smad3. In conclusion, linc-ROR promotes EPC EndMT, which may be associated with the miR-145/Smad3 signaling pathway. Keywords: Endothelial progenitor cells, Endothelial to mesenchymal transition, Linc-ROR, MiR-145, Atherosclerosis.
{"title":"Linc-ROR Modulates the Endothelial-Mesenchymal Transition of Endothelial Progenitor Cells through the miR-145/Smad3 Signaling Pathway.","authors":"J Liang, H Chu, Y Ran, R Lin, Y Cai, X Guan, X Cui, X Zhang, H Li, M Cheng","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The endothelial-mesenchymal transition (EndMT) of endothelial progenitor cells (EPCs) plays a notable role in pathological vascular remodeling. Emerging evidence indicated that long non-coding RNA-regulator of reprogramming (linc-ROR) can promote epithelial-mesenchymal transition (EMT) in a variety of cancer cells. Nevertheless, the function of linc-ROR in EPC EndMT has not been well elucidated. The present study investigated the effect and possible mechanisms of function of linc-ROR on the EndMT of EPCs. A linc-ROR overexpression lentiviral vector (LV linc-ROR) or a linc-ROR short hairpin RNA lentiviral vector (LV-shlinc-ROR) was used to up or downregulate linc-ROR expression in EPCs isolated from human umbilical cord blood. Functional experiments demonstrated that LV-linc-ROR promoted the proliferation and migration of EPCs, but inhibited EPC angiogenesis in vitro. In the meantime, reverse transcription-quantitative PCR and western blotting results showed that the expression of the endothelial cell markers vascular endothelial-cadherin and CD31 was decreased, while the expression of the mesenchymal cell markers ?-smooth muscle actin and SM22? was increased at both mRNA and protein levels in LV-linc-ROR-treated EPCs, indicating that linc-ROR induced EPC EndMT. Mechanistically, the dual-luciferase reporter assay demonstrated that microRNA (miR/miRNA)-145 was a direct target of linc-ROR, and miR-145 binds to the 3'-untranslated region of Smad3. Moreover, LV-shlinc-ROR increased the expression of miR-145, but decreased the expression of Smad3. In conclusion, linc-ROR promotes EPC EndMT, which may be associated with the miR-145/Smad3 signaling pathway. Keywords: Endothelial progenitor cells, Endothelial to mesenchymal transition, Linc-ROR, MiR-145, Atherosclerosis.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":"73 4","pages":"565-576"},"PeriodicalIF":1.9,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11414589/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142293718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D Liu, B Duan, M Zhao, L Wu, Y Cao, N Liu, Z Xue, Z He, J Mi
In this study, we investigated the mechanism underlying electrocardiogram (ECG) alterations in a rabbit model of acute pulmonary thromboembolism (PTE). Twelve healthy adult New Zealand white rabbits were used, with eight in the experimental group (PTE group) and four in the control group. After developing the rabbit model of acute PTE, ECG and coronary angiography were performed. HE staining was conducted on the right and left ventricular tissues, and polymerase chain reaction (PCR) was used to determine brain natriuretic peptide (BNP), tumor necrosis factor-alpha (TNF-?), and Troponin I (TNI) mRNA expression in the myocardium. There were considerable changes in the ST segment of the ECG in the PTE group. Coronary angiography revealed the absence of spasm, stenosis, and occlusion. In the plasma of the PTE group, the levels of D-dimer, BNP, TNF-?, and TNI were significantly elevated, and these changes were statistically significant (P<0.05). PCR analysis of ventricular myocardial tissue indicated significantly higher levels of BNP, TNF-?, and TNI mRNA in the PTE group than in the control group. These differences were statistically significant (P<0.05). The ST-T variations on the ECG of rabbits with acute PTE correlate strongly with the temporary changes in right heart volume caused by acute PTE. Keywords: Animal model of pulmonary embolism, B-type natriuretic peptide, Electrocardiogram, Pulmonary thromboembolism, Troponin I, Tumor necrosis factor-alpha.
{"title":"ST-Segment Alterations in the Electrocardiogram of Acute Pulmonary Thromboembolism: A Rabbit Model.","authors":"D Liu, B Duan, M Zhao, L Wu, Y Cao, N Liu, Z Xue, Z He, J Mi","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>In this study, we investigated the mechanism underlying electrocardiogram (ECG) alterations in a rabbit model of acute pulmonary thromboembolism (PTE). Twelve healthy adult New Zealand white rabbits were used, with eight in the experimental group (PTE group) and four in the control group. After developing the rabbit model of acute PTE, ECG and coronary angiography were performed. HE staining was conducted on the right and left ventricular tissues, and polymerase chain reaction (PCR) was used to determine brain natriuretic peptide (BNP), tumor necrosis factor-alpha (TNF-?), and Troponin I (TNI) mRNA expression in the myocardium. There were considerable changes in the ST segment of the ECG in the PTE group. Coronary angiography revealed the absence of spasm, stenosis, and occlusion. In the plasma of the PTE group, the levels of D-dimer, BNP, TNF-?, and TNI were significantly elevated, and these changes were statistically significant (P<0.05). PCR analysis of ventricular myocardial tissue indicated significantly higher levels of BNP, TNF-?, and TNI mRNA in the PTE group than in the control group. These differences were statistically significant (P<0.05). The ST-T variations on the ECG of rabbits with acute PTE correlate strongly with the temporary changes in right heart volume caused by acute PTE. Keywords: Animal model of pulmonary embolism, B-type natriuretic peptide, Electrocardiogram, Pulmonary thromboembolism, Troponin I, Tumor necrosis factor-alpha.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":"73 4","pages":"543-552"},"PeriodicalIF":1.9,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11414595/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142293720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gestational diabetes mellitus (GDM) is a common disease during pregnancy that has adverse effects on both the mother and fetus. There are currently rare researches on the effect of vitamin supplementation on GDM pregnant mother and their offspring on animal and cell levels systematically. This work supplemented the GDM pregnant mouse model with vitamin D and found that vitamin D can effectively alleviate the hyperglycemia in GDM pregnant mice, increase blood insulin and adiponectin concentrations, and improve GTT and ITT in pregnant mice. In addition, vitamin D can reduce the incidence of death and high birth weight of offspring caused by GDM. The offspring of GDM pregnant mice had higher blood glucose levels in the first 5 weeks after birth compared to the normal group, and then returned to normal levels. Vitamin D can alleviate abnormal glucose metabolism in newborn mice. The therapeutic effect exhibited by vitamin D may be due to their anti-inflammatory effects, as vitamin D supplementation significantly reduces the levels of TFN-?, MCP-1, IL-1? and IL-8 in the blood. Vitamin D also regulates liver lipid metabolism, resulting in a decrease in liver lipid accumulation and a decrease in blood triglycerides (TG) and cholesterol (CHO). The results of this study demonstrate that vitamin D supplementation can serve as an effective treatment strategy for alleviating GDM symptoms. Keywords: Gestational diabetes mellitus, Vitamin D, Glucose metabolism, Anti-inflammatory.
妊娠糖尿病(GDM)是孕期常见疾病,对母亲和胎儿都有不利影响。目前,在动物和细胞水平上系统研究补充维生素对 GDM 孕妇及其后代影响的研究还很少。本研究在GDM妊娠小鼠模型中补充维生素D,发现维生素D能有效缓解GDM妊娠小鼠的高血糖症状,提高血胰岛素和脂肪连接蛋白的浓度,改善妊娠小鼠的GTT和ITT。此外,维生素 D 还能降低 GDM 导致的后代死亡和高出生体重的发生率。与正常组相比,GDM 妊娠小鼠的后代在出生后 5 周内血糖水平较高,随后恢复到正常水平。维生素 D 可以缓解新生小鼠的糖代谢异常。维生素 D 的治疗作用可能是由于其抗炎作用,因为补充维生素 D 能显著降低血液中的 TFN-?、MCP-1、IL-1?维生素 D 还能调节肝脏脂质代谢,从而减少肝脏脂质堆积,降低血液中甘油三酯(TG)和胆固醇(CHO)的含量。本研究结果表明,补充维生素 D 可作为缓解 GDM 症状的有效治疗策略。关键词妊娠糖尿病 维生素 D 糖代谢 抗炎
{"title":"Vitamin D Prevents Gestational Diabetes Mellitus via Modulating Glucose Metabolism in a Mouse Model.","authors":"S Gu, X Chen, Y Liu","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Gestational diabetes mellitus (GDM) is a common disease during pregnancy that has adverse effects on both the mother and fetus. There are currently rare researches on the effect of vitamin supplementation on GDM pregnant mother and their offspring on animal and cell levels systematically. This work supplemented the GDM pregnant mouse model with vitamin D and found that vitamin D can effectively alleviate the hyperglycemia in GDM pregnant mice, increase blood insulin and adiponectin concentrations, and improve GTT and ITT in pregnant mice. In addition, vitamin D can reduce the incidence of death and high birth weight of offspring caused by GDM. The offspring of GDM pregnant mice had higher blood glucose levels in the first 5 weeks after birth compared to the normal group, and then returned to normal levels. Vitamin D can alleviate abnormal glucose metabolism in newborn mice. The therapeutic effect exhibited by vitamin D may be due to their anti-inflammatory effects, as vitamin D supplementation significantly reduces the levels of TFN-?, MCP-1, IL-1? and IL-8 in the blood. Vitamin D also regulates liver lipid metabolism, resulting in a decrease in liver lipid accumulation and a decrease in blood triglycerides (TG) and cholesterol (CHO). The results of this study demonstrate that vitamin D supplementation can serve as an effective treatment strategy for alleviating GDM symptoms. Keywords: Gestational diabetes mellitus, Vitamin D, Glucose metabolism, Anti-inflammatory.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":"73 4","pages":"609-619"},"PeriodicalIF":1.9,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11414587/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142293722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S Cirrik, G Hacioglu, E Kabartan, B Tezcan Yavuz, C Sirin Tomruk
The effects of alpha-pinene (AP), a monoterpenoid, known for its antioxidant, anti-inflammatory, and anti-apoptotic properties, on methotrexate (MTX)-induced cardiac and hepatic damage were investigated in this study. Male Sprague-Dawley rats were divided into Control, Vehicle, AP, MTX, and AP+MTX groups (n=7). AP (50 mg/kg/day, 14 days) was applied subcutaneously in the AP and AP+MTX groups. MTX (20 mg/kg) was injected three days before sacrification. Serum CK-MB, troponin T, ALT, and AST levels, as well as cardiac and hepatic MDA, GSH, caspase-3, and p53 levels, were measured by ELISA. Histological changes in tissues were evaluated by scoring in terms of tissue damage and cellular degeneration parameters after hematoxylin-eosin staining. MTX caused significant increase in serum CK-MB, troponin T, ALT, and AST levels, hepatic and cardiac lipid peroxidation, GSH depletion, and caspase-3 level. However, tissue levels of p53 did not change significantly. MTX-induced histological deterioration was observed in both tissues. These MTX-induced changes were significantly reduced in the AP+MTX group. Present results show that MTX-induced cardiac and hepatic damage is prevented by AP pretreatment. This protection can be attributed to the antioxidant and anti-apoptotic properties of AP. Considering the importance of MTX in cancer treatment, AP appears to have highly promising potential as a cardioprotective and hepatoprotective agent in anti-tumoral therapy. Key words: MDA, GSH, Caspase-3, p53, Oxidative stress, Apoptosis.
{"title":"Can Alpha-Pinene Prevent Methotrexate-Induced Cardiac and Hepatic Damage?","authors":"S Cirrik, G Hacioglu, E Kabartan, B Tezcan Yavuz, C Sirin Tomruk","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The effects of alpha-pinene (AP), a monoterpenoid, known for its antioxidant, anti-inflammatory, and anti-apoptotic properties, on methotrexate (MTX)-induced cardiac and hepatic damage were investigated in this study. Male Sprague-Dawley rats were divided into Control, Vehicle, AP, MTX, and AP+MTX groups (n=7). AP (50 mg/kg/day, 14 days) was applied subcutaneously in the AP and AP+MTX groups. MTX (20 mg/kg) was injected three days before sacrification. Serum CK-MB, troponin T, ALT, and AST levels, as well as cardiac and hepatic MDA, GSH, caspase-3, and p53 levels, were measured by ELISA. Histological changes in tissues were evaluated by scoring in terms of tissue damage and cellular degeneration parameters after hematoxylin-eosin staining. MTX caused significant increase in serum CK-MB, troponin T, ALT, and AST levels, hepatic and cardiac lipid peroxidation, GSH depletion, and caspase-3 level. However, tissue levels of p53 did not change significantly. MTX-induced histological deterioration was observed in both tissues. These MTX-induced changes were significantly reduced in the AP+MTX group. Present results show that MTX-induced cardiac and hepatic damage is prevented by AP pretreatment. This protection can be attributed to the antioxidant and anti-apoptotic properties of AP. Considering the importance of MTX in cancer treatment, AP appears to have highly promising potential as a cardioprotective and hepatoprotective agent in anti-tumoral therapy. Key words: MDA, GSH, Caspase-3, p53, Oxidative stress, Apoptosis.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":"73 4","pages":"621-631"},"PeriodicalIF":1.9,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11414590/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142293712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}